1
|
Herrera Rodríguez LE, Sindhu A, Rueda Espinosa KJ, Kananenka AA. Cavity-Mediated Enhancement of the Energy Transfer in the Reduced Fenna-Matthews-Olson Complex. J Chem Theory Comput 2024; 20:7393-7403. [PMID: 39190922 DOI: 10.1021/acs.jctc.4c00626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/29/2024]
Abstract
Strong light-matter interaction leads to the formation of hybrid polariton states and can alter the light-harvesting properties of natural photosynthetic systems without modifying their chemical structure. In the present study, we computationally investigate the effect of the resonant cavity on the efficiency and the rate of the population transfer in a quantum system coupled to the cavity and the dissipative environment. The parameters of the model system were chosen to represent the Fenna-Matthews-Olson natural light-harvesting complex reduced to the three essential sites. The dynamics of the total system was propagated using the hierarchical equations of motion. Our results show that the strong light-matter interaction can accelerate the population transfer process compared to the cavity-free case but at the cost of lowering the transfer efficiency. The transition to the strong coupling regime was found to coincide with the degeneracy of polariton eigenvalues. Our findings indicate the potential and the limit of tuning the energy transfer in already efficient natural light-harvesting systems.
Collapse
Affiliation(s)
- Luis E Herrera Rodríguez
- Department of Physics and Astronomy, University of Delaware, Newark, Delaware 19716, United States
| | - Aarti Sindhu
- Department of Physics and Astronomy, University of Delaware, Newark, Delaware 19716, United States
| | - Kennet J Rueda Espinosa
- Department of Physics and Astronomy, University of Delaware, Newark, Delaware 19716, United States
| | - Alexei A Kananenka
- Department of Physics and Astronomy, University of Delaware, Newark, Delaware 19716, United States
| |
Collapse
|
2
|
Csányi E, Hammond DB, Bower B, Johnson EC, Lishchuk A, Armes SP, Dong Z, Leggett GJ. XPS Depth-Profiling Studies of Chlorophyll Binding to Poly(cysteine methacrylate) Scaffolds in Pigment-Polymer Antenna Complexes Using a Gas Cluster Ion Source. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:14527-14539. [PMID: 38954522 PMCID: PMC11256746 DOI: 10.1021/acs.langmuir.4c01361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 06/12/2024] [Accepted: 06/17/2024] [Indexed: 07/04/2024]
Abstract
X-ray photoelectron spectroscopy (XPS) depth-profiling with an argon gas cluster ion source (GCIS) was used to characterize the spatial distribution of chlorophyll a (Chl) within a poly(cysteine methacrylate) (PCysMA) brush grown by surface-initiated atom-transfer radical polymerization (ATRP) from a planar surface. The organization of Chl is controlled by adjusting the brush grafting density and polymerization time. For dense brushes, the C, N, S elemental composition remains constant throughout the 36 nm brush layer until the underlying gold substrate is approached. However, for either reduced density brushes (mean thickness ∼20 nm) or mushrooms grown with reduced grafting densities (mean thickness 6-9 nm), elemental intensities decrease continuously throughout the brush layer, because photoelectrons are less strongly attenuated for such systems. For all brushes, the fraction of positively charged nitrogen atoms (N+/N0) decreases with increasing depth. Chl binding causes a marked reduction in N+/N0 within the brushes and produces a new feature at 398.1 eV in the N1s core-line spectrum assigned to tetrapyrrole ring nitrogen atoms coordinated to Zn2+. For all grafting densities, the N/S atomic ratio remains approximately constant as a function of brush depth, which indicates a uniform distribution of Chl throughout the brush layer. However, a larger fraction of repeat units bound to Chl is observed at lower grafting densities, reflecting a progressive reduction in steric congestion that enables more uniform distribution of the bulky Chl units throughout the brush layer. In summary, XPS depth-profiling using a GCIS is a powerful tool for characterization of these complex materials.
Collapse
Affiliation(s)
- Evelin Csányi
- Department
of Chemistry, University of Sheffield, Brook Hill, Sheffield S3 7HF, U.K.
- Institute
of Materials Research and Engineering, A*STAR
(Agency for Science, Technology and Research), 2 Fusionopolis Way, #08-03 Innovis, 138634 Singapore
| | - Deborah B. Hammond
- Department
of Chemistry, University of Sheffield, Brook Hill, Sheffield S3 7HF, U.K.
| | - Benjamin Bower
- Department
of Chemistry, University of Sheffield, Brook Hill, Sheffield S3 7HF, U.K.
| | - Edwin C. Johnson
- Department
of Chemistry, University of Sheffield, Brook Hill, Sheffield S3 7HF, U.K.
| | - Anna Lishchuk
- Department
of Chemistry, University of Sheffield, Brook Hill, Sheffield S3 7HF, U.K.
| | - Steven P. Armes
- Department
of Chemistry, University of Sheffield, Brook Hill, Sheffield S3 7HF, U.K.
| | - Zhaogang Dong
- Institute
of Materials Research and Engineering, A*STAR
(Agency for Science, Technology and Research), 2 Fusionopolis Way, #08-03 Innovis, 138634 Singapore
| | - Graham J. Leggett
- Department
of Chemistry, University of Sheffield, Brook Hill, Sheffield S3 7HF, U.K.
| |
Collapse
|
3
|
Lishchuk A, Csányi E, Darroch B, Wilson C, Nabok A, Leggett GJ. Active control of strong plasmon-exciton coupling in biomimetic pigment-polymer antenna complexes grown by surface-initiated polymerisation from gold nanostructures. Chem Sci 2022; 13:2405-2417. [PMID: 35310503 PMCID: PMC8864694 DOI: 10.1039/d1sc05842h] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 02/03/2022] [Indexed: 11/24/2022] Open
Abstract
Plexcitonic antenna complexes, inspired by photosynthetic light-harvesting complexes, are formed by attachment of chlorophylls (Chl) to poly(cysteine methacrylate) (PCysMA) scaffolds grown by atom-transfer radical polymerisation from gold nanostructure arrays. In these pigment–polymer antenna complexes, localised surface plasmon resonances on gold nanostructures are strongly coupled to Chl excitons, yielding hybrid light–matter states (plexcitons) that are manifested in splitting of the plasmon band. Modelling of the extinction spectra of these systems using a simple coupled oscillator model indicates that their coupling energies are up to twice as large as those measured for LHCs from plants and bacteria. Coupling energies are correlated with the exciton density in the grafted polymer layer, consistent with the collective nature of strong plasmon–exciton coupling. Steric hindrance in fully-dense PCysMA brushes limits binding of bulky chlorophylls, but the chlorophyll concentration can be increased to ∼2 M, exceeding that in biological light-harvesting complexes, by controlling the grafting density and polymerisation time. Moreover, synthetic plexcitonic antenna complexes display pH- and temperature-responsiveness, facilitating active control of plasmon–exciton coupling. Because of the wide range of compatible polymer chemistries and the mild reaction conditions, plexcitonic antenna complexes may offer a versatile route to programmable molecular photonic materials. Excitons in pigment–polymer antenna complexes formed by attachment of chlorophyll to surface grafted polymers are coupled strongly to plasmon modes, with coupling energies twice those for biological light-harvesting complexes and active control of plasmon–exciton coupling.![]()
Collapse
Affiliation(s)
- Anna Lishchuk
- Department of Chemistry, University of Sheffield Brook Hill Sheffield S3 7HF UK
| | - Evelin Csányi
- Department of Chemistry, University of Sheffield Brook Hill Sheffield S3 7HF UK
| | - Brice Darroch
- Department of Chemistry, University of Sheffield Brook Hill Sheffield S3 7HF UK
| | - Chloe Wilson
- Department of Chemistry, University of Sheffield Brook Hill Sheffield S3 7HF UK
| | - Alexei Nabok
- Materials and Engineering Research Institute, Sheffield Hallam University City Campus Sheffield S1 1WB UK
| | - Graham J Leggett
- Department of Chemistry, University of Sheffield Brook Hill Sheffield S3 7HF UK
| |
Collapse
|
4
|
Analysis of Photosynthetic Systems and Their Applications with Mathematical and Computational Models. APPLIED SCIENCES-BASEL 2020. [DOI: 10.3390/app10196821] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
In biological and life science applications, photosynthesis is an important process that involves the absorption and transformation of sunlight into chemical energy. During the photosynthesis process, the light photons are captured by the green chlorophyll pigments in their photosynthetic antennae and further funneled to the reaction center. One of the most important light harvesting complexes that are highly important in the study of photosynthesis is the membrane-attached Fenna–Matthews–Olson (FMO) complex found in the green sulfur bacteria. In this review, we discuss the mathematical formulations and computational modeling of some of the light harvesting complexes including FMO. The most recent research developments in the photosynthetic light harvesting complexes are thoroughly discussed. The theoretical background related to the spectral density, quantum coherence and density functional theory has been elaborated. Furthermore, details about the transfer and excitation of energy in different sites of the FMO complex along with other vital photosynthetic light harvesting complexes have also been provided. Finally, we conclude this review by providing the current and potential applications in environmental science, energy, health and medicine, where such mathematical and computational studies of the photosynthesis and the light harvesting complexes can be readily integrated.
Collapse
|
5
|
Sutherland GA, Polak D, Swainsbury DJK, Wang S, Spano FC, Auman DB, Bossanyi DG, Pidgeon JP, Hitchcock A, Musser AJ, Anthony JE, Dutton PL, Clark J, Hunter CN. A Thermostable Protein Matrix for Spectroscopic Analysis of Organic Semiconductors. J Am Chem Soc 2020; 142:13898-13907. [PMID: 32672948 DOI: 10.1021/jacs.0c05477] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Advances in protein design and engineering have yielded peptide assemblies with enhanced and non-native functionalities. Here, various molecular organic semiconductors (OSCs), with known excitonic up- and down-conversion properties, are attached to a de novo-designed protein, conferring entirely novel functions on the peptide scaffolds. The protein-OSC complexes form similarly sized, stable, water-soluble nanoparticles that are robust to cryogenic freezing and processing into the solid-state. The peptide matrix enables the formation of protein-OSC-trehalose glasses that fix the proteins in their folded states under oxygen-limited conditions. The encapsulation dramatically enhances the stability of protein-OSC complexes to photodamage, increasing the lifetime of the chromophores from several hours to more than 10 weeks under constant illumination. Comparison of the photophysical properties of astaxanthin aggregates in mixed-solvent systems and proteins shows that the peptide environment does not alter the underlying electronic processes of the incorporated materials, exemplified here by singlet exciton fission followed by separation into weakly bound, localized triplets. This adaptable protein-based approach lays the foundation for spectroscopic assessment of a broad range of molecular OSCs in aqueous solutions and the solid-state, circumventing the laborious procedure of identifying the experimental conditions necessary for aggregate generation or film formation. The non-native protein functions also raise the prospect of future biocompatible devices where peptide assemblies could complex with native and non-native systems to generate novel functional materials.
Collapse
Affiliation(s)
- George A Sutherland
- Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield S10 2TN, U.K
| | - Daniel Polak
- Department of Physics and Astronomy, University of Sheffield, Sheffield S3 7RH, U.K
| | - David J K Swainsbury
- Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield S10 2TN, U.K
| | - Shuangqing Wang
- Department of Physics and Astronomy, University of Sheffield, Sheffield S3 7RH, U.K
| | - Frank C Spano
- Department of Chemistry, Temple University, Philadelphia, Pennsylvania 19122, United States
| | - Dirk B Auman
- Department of Biochemistry and Biophysics, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - David G Bossanyi
- Department of Physics and Astronomy, University of Sheffield, Sheffield S3 7RH, U.K
| | - James P Pidgeon
- Department of Physics and Astronomy, University of Sheffield, Sheffield S3 7RH, U.K
| | - Andrew Hitchcock
- Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield S10 2TN, U.K
| | - Andrew J Musser
- Department of Physics and Astronomy, University of Sheffield, Sheffield S3 7RH, U.K
| | - John E Anthony
- Department of Chemistry, University of Kentucky, Kentucky 40511, United States
| | - P Leslie Dutton
- Department of Biochemistry and Biophysics, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Jenny Clark
- Department of Physics and Astronomy, University of Sheffield, Sheffield S3 7RH, U.K
| | - C Neil Hunter
- Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield S10 2TN, U.K
| |
Collapse
|
6
|
Craven J, Sultan MA, Sarma R, Wilson S, Meeks N, Kim DY, Hastings JT, Bhattacharyya D. Rhodopseudomonas palustris-based conversion of organic acids to hydrogen using plasmonic nanoparticles and near-infrared light. RSC Adv 2019; 9:41218-41227. [PMID: 35540054 PMCID: PMC9076380 DOI: 10.1039/c9ra08747h] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Accepted: 11/28/2019] [Indexed: 11/21/2022] Open
Abstract
The simultaneous elimination of organic waste and the production of clean fuels will have an immense impact on both the society and the industrial manufacturing sector. The enhanced understanding of the interface between nanoparticles and photo-responsive bacteria will further advance the knowledge of their interactions with biological systems. Although literature shows the production of gases by photobacteria, herein, we demonstrated the integration of photonics, biology, and nanostructured plasmonic materials for hydrogen production with a lower greenhouse CO2 gas content at quantified light energy intensity and wavelength. Phototrophic purple non-sulfur bacteria were able to generate hydrogen as a byproduct of nitrogen fixation using the energy absorbed from visible and near-IR (NIR) light. This type of biological hydrogen production has suffered from low efficiency of converting light energy into hydrogen in part due to light sources that do not exploit the organisms' capacity for NIR absorption. We used NIR light sources and optically resonant gold-silica core-shell nanoparticles to increase the light utilization of the bacteria to convert waste organic acids such as acetic and maleic acids to hydrogen. The batch growth studies for the small cultures (40 mL) of Rhodopseudomonas palustris demonstrated >2.5-fold increase in hydrogen production when grown under an NIR source (167 ± 18 μmol H2) compared to that for a broad-band light source (60 ± 6 μmol H2) at equal light intensity (130 W m-2). The addition of the mPEG-coated optically resonant gold-silica core-shell nanoparticles in the solution further improved the hydrogen production from 167 ± 18 to 398 ± 108 μmol H2 at 130 W m-2. The average hydrogen production rate with the nanoparticles was 127 ± 35 μmol L-1 h-1 at 130 W m-2.
Collapse
Affiliation(s)
- John Craven
- Department of Chemical and Materials Engineering, University of Kentucky 177 FPAT Bldg Lexington KY 40506 USA +1 859 312 7790
| | - Mansoor A Sultan
- Department of Electrical and Computer Engineering, University of Kentucky Lexington KY 40506 USA
| | - Rupam Sarma
- Department of Chemical and Materials Engineering, University of Kentucky 177 FPAT Bldg Lexington KY 40506 USA +1 859 312 7790
| | - Sarah Wilson
- Department of Chemical and Materials Engineering, University of Kentucky 177 FPAT Bldg Lexington KY 40506 USA +1 859 312 7790
| | - Noah Meeks
- Southern Company Services, Inc. Birmingham AL 35203 USA
| | - Doo Young Kim
- Department of Chemistry, University of Kentucky Lexington KY 40506 USA
| | - J Todd Hastings
- Department of Electrical and Computer Engineering, University of Kentucky Lexington KY 40506 USA
| | - Dibakar Bhattacharyya
- Department of Chemical and Materials Engineering, University of Kentucky 177 FPAT Bldg Lexington KY 40506 USA +1 859 312 7790
| |
Collapse
|