1
|
Wang K, Sun H, Cui Z, Wang J, Hou J, Lu F, Liu Y. Lactoferrin-Chitosan Composite Hydrogels Induced by Microbial Transglutaminase: Potential Delivery Systems for Thermosensitive Bioactive Substances. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:14302-14314. [PMID: 38865607 DOI: 10.1021/acs.jafc.4c01551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2024]
Abstract
In this work, lactoferrin (LF)-chitosan (CS) composite hydrogels with good loading capacity of thermosensitive bioactive substances were successfully obtained by microbial transglutaminase (MTG)-induced cross-linking. We evaluated the rheological, textural, and microstructural characteristics of the composite hydrogels under different conditions. The results demonstrated that the concentrations of LF and CS as well as the amount of MTG could regulate the textural properties, rheological properties, and water holding capability. The results of FTIR and fluorescence spectroscopy indicated that the main interactions within the composite gel were hydrogen and isopeptide bonds. Additionally, in vitro digestion simulation results verified that riboflavin kept stable in stomach due to the protection of LF-CS composite hydrogels and was released in small intestine. These results suggested that thermosensitive bioactive substance could be encapsulated and delivered by the LF-CS composite hydrogel, which could be applied in lots of potential applications in functional food as a new material.
Collapse
Affiliation(s)
- Kangning Wang
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, P. R. China
| | - Hui Sun
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, P. R. China
| | - Zhihan Cui
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, P. R. China
| | - Jiahui Wang
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, P. R. China
| | - Jiayi Hou
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, P. R. China
| | - Fuping Lu
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, P. R. China
| | - Yihan Liu
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, P. R. China
| |
Collapse
|
2
|
Li S, Yan J, Yang J, Chen G, McClements DJ, Ma C, Liu X, Liu F. Modulating peppermint oil flavor release properties of emulsion-filled protein gels: Impact of cross-linking method and matrix composition. Food Res Int 2024; 185:114277. [PMID: 38658069 DOI: 10.1016/j.foodres.2024.114277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 03/21/2024] [Accepted: 03/24/2024] [Indexed: 04/26/2024]
Abstract
For some food applications, it is desirable to control the flavor release profiles of volatile flavor compounds. In this study, the effects of crosslinking method and protein composition on the flavor release properties of emulsion-filled protein hydrogels were explored, using peppermint essential oil as a model volatile compound. Emulsion-filled protein gels with different properties were prepared using different crosslinking methods and gelatin concentrations. Flavor release from the emulsion gels was then monitored using an electronic nose, gas chromatography-mass spectrometry (GC-MS), and sensory evaluation. Enzyme-crosslinked gels had greater hardness and storage modulus than heat-crosslinked ones. The hardness and storage modulus of the gels increased with increasing gelatin concentration. For similar gel compositions, flavor release and sensory perception were faster from the heat-crosslinked gels than the enzyme-crosslinked ones. For the same crosslinking method, flavor release and perception decreased with increasing gelatin concentration, which was attributed to retardation of flavor diffusion through the hydrogel matrix. Overall, this study shows that the release of hydrophobic aromatic substances can be modulated by controlling the composition and crosslinking of protein hydrogels, which may be useful for certain food applications.
Collapse
Affiliation(s)
- Siqi Li
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, PR China
| | - Jun Yan
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, PR China
| | - Junhao Yang
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, PR China
| | - Guipan Chen
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, PR China
| | | | - Cuicui Ma
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, PR China
| | - Xuebo Liu
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, PR China
| | - Fuguo Liu
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, PR China.
| |
Collapse
|
3
|
Jurczak P, Lach S. Hydrogels as Scaffolds in Bone-Related Tissue Engineering and Regeneration. Macromol Biosci 2023; 23:e2300152. [PMID: 37276333 DOI: 10.1002/mabi.202300152] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 05/22/2023] [Indexed: 06/07/2023]
Abstract
Several years have passed since the medical and scientific communities leaned toward tissue engineering as the most promising field to aid bone diseases and defects resulting from degenerative conditions or trauma. Owing to their histocompatibility and non-immunogenicity, bone grafts, precisely autografts, have long been the gold standard in bone tissue therapies. However, due to issues associated with grafting, especially the surgical risks and soaring prices of the procedures, alternatives are being extensively sought and researched. Fibrous and non-fibrous materials, synthetic substitutes, or cell-based products are just a few examples of research directions explored as potential solutions. A very promising subgroup of these replacements involves hydrogels. Biomaterials resembling the bone extracellular matrix and therefore acting as 3D scaffolds, providing the appropriate mechanical support and basis for cell growth and tissue regeneration. Additional possibility of using various stimuli in the form of growth factors, cells, etc., within the hydrogel structure, extends their use as bioactive agent delivery platforms and acts in favor of their further directed development. The aim of this review is to bring the reader closer to the fascinating subject of hydrogel scaffolds and present the potential of these materials, applied in bone and cartilage tissue engineering and regeneration.
Collapse
Affiliation(s)
- Przemyslaw Jurczak
- Laboratory of Molecular and Cellular Nephrology, Mossakowski Medical Research Centre Polish Academy of Sciences, Gdansk, 80-308, Poland
- Department of Biomedical Chemistry, Faculty of Chemistry, University of Gdansk, Wita Stwosza 63, Gdansk, 80-308, Poland
| | - Slawomir Lach
- Department of Biomedical Chemistry, Faculty of Chemistry, University of Gdansk, Wita Stwosza 63, Gdansk, 80-308, Poland
| |
Collapse
|
4
|
Vasić K, Knez Ž, Leitgeb M. Transglutaminase in Foods and Biotechnology. Int J Mol Sci 2023; 24:12402. [PMID: 37569776 PMCID: PMC10419021 DOI: 10.3390/ijms241512402] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 08/01/2023] [Accepted: 08/02/2023] [Indexed: 08/13/2023] Open
Abstract
Stabilization and reusability of enzyme transglutaminase (TGM) are important goals for the enzymatic process since immobilizing TGM plays an important role in different technologies and industries. TGM can be used in many applications. In the food industry, it plays a role as a protein-modifying enzyme, while, in biotechnology and pharmaceutical applications, it is used in mediated bioconjugation due to its extraordinary crosslinking ability. TGMs (EC 2.3.2.13) are enzymes that catalyze the formation of a covalent bond between a free amino group of protein-bound or peptide-bound lysine, which acts as an acyl acceptor, and the γ-carboxamide group of protein-bound or peptide-bound glutamine, which acts as an acyl donor. This results in the modification of proteins through either intramolecular or intermolecular crosslinking, which improves the use of the respective proteins significantly.
Collapse
Affiliation(s)
- Katja Vasić
- Laboratory for Separation Processes and Product Design, Faculty of Chemistry and Chemical Engineering, University of Maribor, Smetanova Ulica 17, SI-2000 Maribor, Slovenia; (K.V.); (Ž.K.)
| | - Željko Knez
- Laboratory for Separation Processes and Product Design, Faculty of Chemistry and Chemical Engineering, University of Maribor, Smetanova Ulica 17, SI-2000 Maribor, Slovenia; (K.V.); (Ž.K.)
- Faculty of Medicine, University of Maribor, Taborska Ulica 8, SI-2000 Maribor, Slovenia
| | - Maja Leitgeb
- Laboratory for Separation Processes and Product Design, Faculty of Chemistry and Chemical Engineering, University of Maribor, Smetanova Ulica 17, SI-2000 Maribor, Slovenia; (K.V.); (Ž.K.)
- Faculty of Medicine, University of Maribor, Taborska Ulica 8, SI-2000 Maribor, Slovenia
| |
Collapse
|
5
|
Li Z, Lu F, Liu Y. A Review of the Mechanism, Properties, and Applications of Hydrogels Prepared by Enzymatic Cross-linking. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023. [PMID: 37390351 DOI: 10.1021/acs.jafc.3c01162] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/02/2023]
Abstract
Hydrogels, as biological materials, are widely used in food, tissue engineering, and biomedical applications. Nevertheless, many issues remain in the preparation of hydrogels by physical and chemical methods, such as low bioaffinity, weak mechanical properties, and unstable structures, which also limit their applications in other fields. However, the enzymatic cross-linking method has the advantages of high catalytic efficiency, mild reaction conditions, and the presence of nontoxic substances. In this review, we evaluated the chemical, physical, and biological methods of preparing hydrogels and introduced three common cross-linking enzymes and their principles for preparing hydrogels. This review introduced the applications and properties of hydrogels prepared by the enzymatic method and also provided some suggestions regarding the current situation and future development of hydrogels prepared by enzymatic cross-linking.
Collapse
Affiliation(s)
- Ziyuan Li
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, The College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, P. R. China
| | - Fuping Lu
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, The College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, P. R. China
| | - Yihan Liu
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, The College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, P. R. China
| |
Collapse
|
6
|
Shen ML, Ciou JY, Hsieh LS, Hsu CL. Recombinant Streptomyces netropsis transglutaminase expressed in Komagataella phaffii (Pichia pastoris) and applied in plant-based chicken nugget. World J Microbiol Biotechnol 2023; 39:200. [PMID: 37198411 DOI: 10.1007/s11274-023-03644-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Accepted: 05/07/2023] [Indexed: 05/19/2023]
Abstract
Transglutaminase (TG, EC 2.3.2.13) is widely used to modify functional properties in food systems, which can catalyze cross-linking reaction of proteins. In this work, microbial transglutaminase (MTG) from Streptomyces netropsis was heterologously expressed in the methylotrophic yeast Komagataella phaffii (Pichia pastoris). The specific activity of recombinant microbial transglutaminase (RMTG) was 26.17 ± 1.26 U/mg, and the optimum pH and temperature were measured as 7.0 and 50 °C, respectively. Bovine serum albumin (BSA) was used as a substrate to evaluate the effect of cross-linking reaction, and we found that RMTG had significant (p < 0.05) cross-linking effect for more than 30 min reactions. RMTG was further utilized in the investigation of plant-based chicken nuggets. Results showed that the hardness, springiness and chewiness of nuggets increased, and the adhesiveness decreased after RMTG treatment, which can prove that RMTG has the potential to improve the texture properties of plant-based chicken nuggets.
Collapse
Affiliation(s)
- Ming-Li Shen
- Department of Food Science, Tunghai University, Taichung, 407224, Taiwan
| | - Jhih-Ying Ciou
- Department of Food Science, Tunghai University, Taichung, 407224, Taiwan
| | - Lu-Sheng Hsieh
- Department of Food Science, Tunghai University, Taichung, 407224, Taiwan.
| | - Chuan-Liang Hsu
- Department of Food Science, Tunghai University, Taichung, 407224, Taiwan.
| |
Collapse
|
7
|
Hu X, Hu WX, Lu HY, Liu S, Rao SQ, Yang ZQ, Jiao XA. Glycosylated cross-linked ovalbumin by transglutaminase in the presence of oligochitosan: Effect of enzyme action time and enhanced functional properties. Food Hydrocoll 2023. [DOI: 10.1016/j.foodhyd.2023.108462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
8
|
Liu Y, Li X, Liu J, Wei L, Liu Y, Lu F, Wang W, Li Q, Li Y. Focusing on Hofmeister series: Composition, structure and functional properties of pea protein extracted with food-related anions. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2022.107976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
9
|
Wang H, Zhang Y, Yuan Z, Zou X, Ji Y, Hou J, Zhang J, Lu F, Liu Y. Crosslinking Mechanism on a Novel Bacillus cereus Transglutaminase-Mediated Conjugation of Food Proteins. Foods 2022; 11:foods11223722. [PMID: 36429314 PMCID: PMC9689123 DOI: 10.3390/foods11223722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 11/13/2022] [Accepted: 11/14/2022] [Indexed: 11/22/2022] Open
Abstract
Until now, Streptoverticillium mobaraense transglutaminase (TG) is the only commercialized TG, but limited information is known about its selection tendency on crosslinking sites at the protein level, restricting its application in the food industry. Here, four recombinant Bacillus TGs were stable in a broad range of pH (5.0−9.0) and temperatures (<50 °C), exhibiting their maximum activity at 50−60 °C and pH 6.0−7.0. Among them, TG of B. cereus (BCETG) demonstrated the maximal specific activity of 177 U/mg. A structural analysis indicated that the Ala147-Ala156 region in the substrate tunnel of BCETG played a vital role in catalytic activity. Furthermore, bovine serum albumin, as well as nearly all protein ingredients in soy protein isolate and whey protein, could be cross-linked by BCETG, and the internal crosslinking paths of three protein substrates were elucidated. This study demonstrated Bacillus TGs are a candidate for protein crosslinking and provided their crosslinking mechanism at the protein level for applications in food processing.
Collapse
Affiliation(s)
- Hongbin Wang
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, The College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Yuanfu Zhang
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, The College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Zhaoting Yuan
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, The College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Xiaotong Zou
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, The College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Yuan Ji
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, The College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Jiayi Hou
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, The College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Jinfang Zhang
- Tianjin Key Laboratory of Industrial Microbiology, Tianjin 300457, China
- Correspondence: (J.Z.); (Y.L.); Tel.: +86-022-6060-1958 (J.Z.); +86-022-6060-2949 (Y.L.)
| | - Fuping Lu
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, The College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Yihan Liu
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, The College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China
- Correspondence: (J.Z.); (Y.L.); Tel.: +86-022-6060-1958 (J.Z.); +86-022-6060-2949 (Y.L.)
| |
Collapse
|
10
|
Wang H, Ji Y, Yuan Z, Tian J, Zhang Y, Lu F, Liu Y. Insights into the mechanism on the high-temperature activity of transglutaminase from Bacillus clausii and its crosslinked mode at protein level. Biochem Eng J 2022. [DOI: 10.1016/j.bej.2022.108544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
11
|
Tian X, Yang N, Sun M, Li Y, Wang W. Preparation, physicochemical, and antibacterial properties of bovine serum albumin microspheres loaded with sodium nitrite. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2021.112835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
12
|
Wang H, Wang Y, Yuan Z, Wang Y, Li X, Song P, Lu F, Liu Y. Insight into the cross-linking preferences and characteristics of the transglutaminase from Bacillus subtilis by in vitro RNA display. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.112152] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
13
|
Liu Y, Zhang Y, Guo Z, Wang C, Kang H, Li J, Wang W, Li Y, Lu F, Liu Y. Enhancing the functional characteristics of soy protein isolate via cross-linking catalyzed by Bacillus subtilis transglutaminase. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2021; 101:4154-4160. [PMID: 33368295 DOI: 10.1002/jsfa.11052] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 12/12/2020] [Accepted: 12/26/2020] [Indexed: 06/12/2023]
Abstract
BACKGROUND Although Streptomyces mobaraense transglutaminase (MTG) has been extensively applied to enhance the functional characteristics of soy protein isolate (SPI) through cross-linking, various transglutaminases (TGs) in nature may provide more choice in the food industry. Previous research reported that TG derived from Bacillus subtilis (BTG) exhibited better pH stability and thermostability than MTG. RESULTS An attempt was made to study the influence of BTG induced cross-linking on the properties of SPI. Sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) results indicated that almost all protein constituents (α', α, β, AS, and BS) in SPI could be cross-linked with BTG treatment. The BTG treatment also resulted in a significant increase (*P < 0.05) in SPI mean particle size. Emulsifying activity and stability were improved from 0.11535 m2 g-1 and 48.3% for native SPI to 0.13252 m2 g-1 and 83.9% for SPI treated with BTG at 6 h. Similarly, the modified SPI showed better foam activity (1.32 mL) and stability (87.6%) than the original SPI (0.93 mL and 56.8%). The water-holding capacity of SPI gel was found to increase with time, with a value of 95.43% at 6 h. Furthermore, SPI gel's texture profiles were greatly improved by adding BTG (*P < 0.05). CONCLUSION The results of the present study indicated that BTG could be a promising cross-linking agent for improving the functional characteristics of SPI. As a substitute for MTG, BTG could thus potentially be used for food structure engineering to enhance the functional characteristics of multiple proteins to advance the development of food chemistry. © 2020 Society of Chemical Industry.
Collapse
Affiliation(s)
- Yexue Liu
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, The College of Biotechnology, Tianjin University of Science and Technology, Tianjin, P. R. China
| | - Yuanfu Zhang
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, The College of Biotechnology, Tianjin University of Science and Technology, Tianjin, P. R. China
| | - Zehui Guo
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, The College of Biotechnology, Tianjin University of Science and Technology, Tianjin, P. R. China
| | - Chen Wang
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, The College of Biotechnology, Tianjin University of Science and Technology, Tianjin, P. R. China
| | - Hongwei Kang
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, The College of Biotechnology, Tianjin University of Science and Technology, Tianjin, P. R. China
| | - Jingwen Li
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, The College of Biotechnology, Tianjin University of Science and Technology, Tianjin, P. R. China
| | - Wenhang Wang
- State Key Laboratory of Food Nutrition and Safety, Tianjin, P. R. China
- Key Laboratory of Food Nutrition and Safety, Ministry of Education, College of Food Engineering and Biotechnology, Tianjin University of Science and Technology, Tianjin, P. R. China
| | - Yu Li
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, The College of Biotechnology, Tianjin University of Science and Technology, Tianjin, P. R. China
- State Key Laboratory of Food Nutrition and Safety, Tianjin, P. R. China
| | - Fuping Lu
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, The College of Biotechnology, Tianjin University of Science and Technology, Tianjin, P. R. China
- State Key Laboratory of Food Nutrition and Safety, Tianjin, P. R. China
| | - Yihan Liu
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, The College of Biotechnology, Tianjin University of Science and Technology, Tianjin, P. R. China
- State Key Laboratory of Food Nutrition and Safety, Tianjin, P. R. China
| |
Collapse
|
14
|
Duarte LS, Matte CR, Dall Cortivo PR, Nunes JES, Barsé LQ, Bizarro CV, Ayub MAZ. Expression of Bacillus amyloliquefaciens transglutaminase in recombinant E. coli under the control of a bicistronic plasmid system in DO-stat fed-batch bioreactor cultivations. Braz J Microbiol 2021; 52:1225-1233. [PMID: 34008152 DOI: 10.1007/s42770-021-00521-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Accepted: 05/04/2021] [Indexed: 11/29/2022] Open
Abstract
We studied the expression of Bacillus amyloliquefaciens transglutaminase cloned in Escherichia coli BL21(DE3)pLysS harboring the plasmid pBAD/3C/bTGase, a bicistronic expression system, in bioreactor cultivation. Batch and fed-batch controlled as DO-stat strategies were employed for the production of the recombinant enzyme. In 30 h-batch cultivations using Terrific broth (TB), 6 g/L of biomass and 3.12 U/mgprotein of transglutaminase activity were obtained. DO-stat fed-batch cultivations under the control of oxygen concentration (DO-stat) using TB as medium but fed with glucose allowed the increment in biomass formation (17.5 g/L) and enzyme activity (6.43 U/mgprotein). DO-stat fed-batch using mineral medium (M9) and fed with glucose under the same conditions produced even higher enzymatic activity (9.14 U/mgprotein). The pH effect was investigated, and the best enzymatic activity could be observed at pH 8. In all cultivations, the bicistronic system remained stable, with 100% of plasmid-bearing cells. These results show that E. coli bearing bicistronic plasmid constructs to express recombinant TGase could be cultivated in bioreactors under DO-stat fed-batch using mineral medium and it is a promising strategy in future optimizations to produce this important enzyme.
Collapse
Affiliation(s)
- Lovaine Silva Duarte
- Biotechnology, Bioprocess, and Biocatalysis Group, Food Science and Technology Institute, Federal University of Rio Grande Do Sul, Av. Bento Gonçalves 9500, PO Box 15090, Porto Alegre, RS, ZC 91501-970, Brazil
| | - Carla Roberta Matte
- Biotechnology, Bioprocess, and Biocatalysis Group, Food Science and Technology Institute, Federal University of Rio Grande Do Sul, Av. Bento Gonçalves 9500, PO Box 15090, Porto Alegre, RS, ZC 91501-970, Brazil
| | - Paulo Roberto Dall Cortivo
- Biotechnology, Bioprocess, and Biocatalysis Group, Food Science and Technology Institute, Federal University of Rio Grande Do Sul, Av. Bento Gonçalves 9500, PO Box 15090, Porto Alegre, RS, ZC 91501-970, Brazil
| | - José Eduardo Sacconi Nunes
- Centro de Pesquisas Em Biologia Molecular E Funcional (CPBMF), Pontifícia Universidade Católica Do Rio Grande Do Sul (PUCRS), 92A TECNOPUC Building, 4592 Av. Bento Gonçalves, Porto Alegre, ZC 90650-001, Brazil
| | - Laisa Quadros Barsé
- Centro de Pesquisas Em Biologia Molecular E Funcional (CPBMF), Pontifícia Universidade Católica Do Rio Grande Do Sul (PUCRS), 92A TECNOPUC Building, 4592 Av. Bento Gonçalves, Porto Alegre, ZC 90650-001, Brazil
| | - Cristiano Valim Bizarro
- Centro de Pesquisas Em Biologia Molecular E Funcional (CPBMF), Pontifícia Universidade Católica Do Rio Grande Do Sul (PUCRS), 92A TECNOPUC Building, 4592 Av. Bento Gonçalves, Porto Alegre, ZC 90650-001, Brazil
| | - Marco Antônio Záchia Ayub
- Biotechnology, Bioprocess, and Biocatalysis Group, Food Science and Technology Institute, Federal University of Rio Grande Do Sul, Av. Bento Gonçalves 9500, PO Box 15090, Porto Alegre, RS, ZC 91501-970, Brazil.
| |
Collapse
|
15
|
Qi C, Jin Y, Chen Y, Li W, Li Y, Liang K, Li Y, Zhang Y, Du Y. TGase-mediated cell membrane modification and targeted cell delivery to inflammatory endothelium. Biomaterials 2020; 269:120276. [PMID: 32797997 DOI: 10.1016/j.biomaterials.2020.120276] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 07/19/2020] [Accepted: 07/31/2020] [Indexed: 10/23/2022]
Abstract
Targeted cell delivery to lesion sites via minimally invasive approach remains an unmet need in regenerative medicine to endow controlled cell distribution and minimized side-effects. Current cell modification approaches to improve cell delivery tend to have adverse effects on cellular phenotype and functionality. Here, we rationally developed a facile and mild cell modification and targeted delivery strategy leveraging endogenous tissue transglutaminase (TGase) expressed on the surface of MSCs (Mesenchymal Stem Cells) and inflammatory endothelial cells (ECs). Cell modification by functional peptides was accomplished simply via TGase catalyzed cross-linking with naturally-expressed MSCs membrane proteins (e.g. Annexin II), without detectable disturbance of cellular viability and functionality. The modified functional peptides could facilitate adhesion of MSCs to inflammatory ECs (with up-regulated TGase expression compared with normal ECs) in vitro, as demonstrated by a one-fold increase of the MSC-EC adhesion force measured by atomic force microscopy (AFM) and by targeted delivery of modified MSC to inflammatory ECs in a flow chamber assay. When transplanted in vivo, modified MSCs demonstrated a dramatic increase in targeted efficiency to inflammatory endothelium compared with non-modified MSCs in both mice ear inflammation and acute/chronic liver injury models. The cell membrane modification strategy and targeted cell delivery mechanism described here can be readily extended for empowering cell engineering and cell therapy with multifaceted functionalities to combat refractory diseases.
Collapse
Affiliation(s)
- Chunxiao Qi
- Department of Biomedical Engineering, School of Medicine, Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing, 100084, China; Key Laboratory of Bioactive Materials for Ministry of Education, College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Yuhong Jin
- Department of Biomedical Engineering, School of Medicine, Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Yuyang Chen
- Department of Biomedical Engineering, School of Medicine, Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Wenjing Li
- Department of Biomedical Engineering, School of Medicine, Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Yaqian Li
- Central Laboratories, Department of Scientific Research, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Kai Liang
- Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Chaoyang District, Beijing, 100101, China
| | - Yan Li
- Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Chaoyang District, Beijing, 100101, China
| | - Yonghui Zhang
- School of Pharmaceutical Sciences, MOE Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Tsinghua University, Beijing, 100084, China
| | - Yanan Du
- Department of Biomedical Engineering, School of Medicine, Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing, 100084, China.
| |
Collapse
|
16
|
Duarte LS, Barsé LQ, Dalberto PF, da Silva WTS, Rodrigues RC, Machado P, Basso LA, Bizarro CV, Ayub MAZ. Cloning and expression of the Bacillus amyloliquefaciens transglutaminase gene in E. coli using a bicistronic vector construction. Enzyme Microb Technol 2020; 134:109468. [DOI: 10.1016/j.enzmictec.2019.109468] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Revised: 11/11/2019] [Accepted: 11/12/2019] [Indexed: 12/14/2022]
|
17
|
Xue T, Zheng X, Su X, Chen D, Liu K, Yuan X, Lin R, Huang L, He W, Zhu J, Chen Y. Directed evolution of the transglutaminase from Streptomyces mobaraensis and its enhanced expression in Escherichia coli. FOOD BIOTECHNOL 2020. [DOI: 10.1080/08905436.2019.1711112] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Affiliation(s)
- Ting Xue
- The Public Service Platform for Industrialization Development Technology of Marine Biological Medicine and Product of State Oceanic Administration, Southern Institute of Oceanography, College of Life Sciences, Fujian Normal University, Fuzhou, P. R. China
| | - Xuehai Zheng
- The Public Service Platform for Industrialization Development Technology of Marine Biological Medicine and Product of State Oceanic Administration, Southern Institute of Oceanography, College of Life Sciences, Fujian Normal University, Fuzhou, P. R. China
| | - Xiaomei Su
- The Public Service Platform for Industrialization Development Technology of Marine Biological Medicine and Product of State Oceanic Administration, Southern Institute of Oceanography, College of Life Sciences, Fujian Normal University, Fuzhou, P. R. China
| | - Duo Chen
- The Public Service Platform for Industrialization Development Technology of Marine Biological Medicine and Product of State Oceanic Administration, Southern Institute of Oceanography, College of Life Sciences, Fujian Normal University, Fuzhou, P. R. China
| | - Kui Liu
- The Public Service Platform for Industrialization Development Technology of Marine Biological Medicine and Product of State Oceanic Administration, Southern Institute of Oceanography, College of Life Sciences, Fujian Normal University, Fuzhou, P. R. China
| | - Xue Yuan
- The Public Service Platform for Industrialization Development Technology of Marine Biological Medicine and Product of State Oceanic Administration, Southern Institute of Oceanography, College of Life Sciences, Fujian Normal University, Fuzhou, P. R. China
| | - Ronghua Lin
- The Public Service Platform for Industrialization Development Technology of Marine Biological Medicine and Product of State Oceanic Administration, Southern Institute of Oceanography, College of Life Sciences, Fujian Normal University, Fuzhou, P. R. China
| | - Luqiang Huang
- The Public Service Platform for Industrialization Development Technology of Marine Biological Medicine and Product of State Oceanic Administration, Southern Institute of Oceanography, College of Life Sciences, Fujian Normal University, Fuzhou, P. R. China
| | - Wenjin He
- The Public Service Platform for Industrialization Development Technology of Marine Biological Medicine and Product of State Oceanic Administration, Southern Institute of Oceanography, College of Life Sciences, Fujian Normal University, Fuzhou, P. R. China
| | - Jinmao Zhu
- The Public Service Platform for Industrialization Development Technology of Marine Biological Medicine and Product of State Oceanic Administration, Southern Institute of Oceanography, College of Life Sciences, Fujian Normal University, Fuzhou, P. R. China
| | - Youqiang Chen
- The Public Service Platform for Industrialization Development Technology of Marine Biological Medicine and Product of State Oceanic Administration, Southern Institute of Oceanography, College of Life Sciences, Fujian Normal University, Fuzhou, P. R. China
| |
Collapse
|
18
|
Liu Y, Liu Y, Xu Z, Shan M, Ge X, Zhang Y, Shao S, Huang L, Wang W, Lu F. Effects of Bacillus subtilis transglutaminase treatment on the functional properties of whey protein. Lebensm Wiss Technol 2019. [DOI: 10.1016/j.lwt.2019.108559] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
19
|
Liu Y, Huang L, Shan M, Sang J, Li Y, Jia L, Wang N, Wang S, Shao S, Liu F, Lu F. Enhancing the activity and thermostability of Streptomyces mobaraensis transglutaminase by directed evolution and molecular dynamics simulation. Biochem Eng J 2019. [DOI: 10.1016/j.bej.2019.107333] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|