1
|
Mughal KS, Ikram M, Uddin Z, Rashid A, Rashid U, Khan M, Zehra N, Mughal US, Shah N, Amirzada I. Syringic acid improves cyclophosphamide-induced immunosuppression in a mouse model. Biochem Biophys Res Commun 2024; 734:150777. [PMID: 39383831 DOI: 10.1016/j.bbrc.2024.150777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 09/28/2024] [Accepted: 09/30/2024] [Indexed: 10/11/2024]
Abstract
Syringic acid (SA), a naturally occurring phenolic substance present in many edible plants and fruits, has been shown to have potential in immunoenhancement applications. In this study, we investigated the immunomodulatory effects of SA in mitigating cyclophosphamide (CYP)-induced immunosuppression in BALB/c mice using doxycycline as a positive control. SA administration prevented immune organ atrophy and morphological changes in the thymus, spleen, and bone marrow induced by CYP treatment in mice while also showing a dose-dependent enhancement of thymus and spleen indices compared to mice treated with CYP alone. Furthermore, SA improved thymocyte and splenocyte proliferation and exhibited significant antioxidant activity by reducing the elevated levels of malondialdehyde induced by CYP treatment. SA treatment effectively restored white blood cell (WBC) and lymphocyte counts to normal levels in CYP-treated animals, and the protective effects of CYP on immunological tissues were confirmed through histopathological examination. Moreover, SA treatment upregulated the expression of IL-6, IL-7, IL-15, and FoxN1. Finally, molecular docking studies revealed that binding energy values predicted minor inhibition potential toward IL-6, IL-7, FoxN1, IL-15, STAT3, STAT5, and JAK3. Overall, our findings suggest that SA treatment has the potential to reduce CYP-induced immunosuppression and may have applications as an immunologic adjuvant or functional food additive in chemotherapy.
Collapse
Affiliation(s)
- Khoula Sharif Mughal
- Department of Pharmacy, COMSATS University Islamabad, Abbottabad Campus, Abbottabad, 22060, Khyber Pakhtunkhwa, Pakistan
| | - Muhammad Ikram
- Department of Pharmacy, COMSATS University Islamabad, Abbottabad Campus, Abbottabad, 22060, Khyber Pakhtunkhwa, Pakistan.
| | - Zia Uddin
- Department of Pharmacy, COMSATS University Islamabad, Abbottabad Campus, Abbottabad, 22060, Khyber Pakhtunkhwa, Pakistan
| | - Amna Rashid
- Department of Pharmacy, COMSATS University Islamabad, Abbottabad Campus, Abbottabad, 22060, Khyber Pakhtunkhwa, Pakistan
| | - Umer Rashid
- Department of Chemistry, COMSATS University Islamabad, Abbottabad Campus, Abbottabad, 22060, Khyber Pakhtunkhwa, Pakistan
| | - Momina Khan
- Department of Pharmacy, COMSATS University Islamabad, Abbottabad Campus, Abbottabad, 22060, Khyber Pakhtunkhwa, Pakistan
| | - Naseem Zehra
- Department of Pharmacy, COMSATS University Islamabad, Abbottabad Campus, Abbottabad, 22060, Khyber Pakhtunkhwa, Pakistan
| | - Umair Sharif Mughal
- Department of Medicine, Ayub Teaching Hospital, Abbottabad, 22040, Khyber Pakhtunkhwa, Pakistan
| | - Nabi Shah
- Department of Pharmacy, COMSATS University Islamabad, Abbottabad Campus, Abbottabad, 22060, Khyber Pakhtunkhwa, Pakistan
| | - Imran Amirzada
- Department of Pharmacy, COMSATS University Islamabad, Abbottabad Campus, Abbottabad, 22060, Khyber Pakhtunkhwa, Pakistan
| |
Collapse
|
2
|
Wu J, Yu G, Zhang X, Staiger MP, Gupta TB, Yao H, Wu X. A fructan-type garlic polysaccharide upregulates immune responses in macrophage cells and in immunosuppressive mice. Carbohydr Polym 2024; 344:122530. [PMID: 39218552 DOI: 10.1016/j.carbpol.2024.122530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 07/20/2024] [Accepted: 07/20/2024] [Indexed: 09/04/2024]
Abstract
The anti-inflammatory effects of plant polysaccharides are well known. However, the stimulatory effects of polysaccharides under immunosuppressive conditions and their link with the polysaccharide structure is underexplored. In this work, the immune modulatory effects of a garlic polysaccharide (GP) are investigated via in vitro and vivo methods. It is observed that GP enhance the immune response of macrophages (RAW264.7) as indicated by the elevated levels of nitric oxide, TNF-α and IL-6. The observation that GP are able to stimulate the immune response in vitro was then explored with the use of an immunosuppressed mouse model. Surprisingly, GP exhibited dose-dependent up-regulatory impacts on the cyclophosphamide (CTX) suppressed levels of cytokines such as IFN-γ and IL-6 and immunoglobulins (e.g. IgA and IgG). The GP intervention reversed histopathological damage to the small intestine and spleen and increased fecal short-chain fatty acid levels. Moreover, GP modulates the gut microbiota dysbiosis by increasing the abundance of immunogenic bacteria such as g__norank_f__Erysipelotrichaceae, while inhibiting the over-abundance of g_Bacteroides. Functional predictions indicated that gut biomarkers of GP possessed the functions of glycoside hydrolase family 32 (GH32) and β-fructofuranosidase. It is concluded that GP is a promising immunostimulant for immune-compromised individuals.
Collapse
Affiliation(s)
- Junfeng Wu
- Department of Food Science and Engineering, Jinan University, Guangzhou 510632, China; Department of Mechanical Engineering, University of Canterbury, Private Bag 4800, 8140 Christchurch, New Zealand
| | - Guoxing Yu
- Department of Food Science and Engineering, Jinan University, Guangzhou 510632, China
| | - Xiaosa Zhang
- Department of Food Science and Engineering, Jinan University, Guangzhou 510632, China
| | - Mark P Staiger
- Department of Mechanical Engineering, University of Canterbury, Private Bag 4800, 8140 Christchurch, New Zealand
| | - Tanushree B Gupta
- Food System Integrity Team, Hopkirk Research Institute, AgResearch Ltd, Palmerston North 4474, New Zealand
| | - Hong Yao
- Department of Food Science and Engineering, Jinan University, Guangzhou 510632, China.
| | - Xiyang Wu
- Department of Food Science and Engineering, Jinan University, Guangzhou 510632, China.
| |
Collapse
|
3
|
Saka VP, G V NK, Sanapalli BKR, Goswami A, Roy A, Agrawal A, Gupta P, Verma D, Kaushik S. Unveiling the Immunostimulatory Potential of Rhus Toxicodendron in Immunocompromised Balb/C Mice Induced with Cyclophosphamide. Diseases 2024; 12:178. [PMID: 39195177 DOI: 10.3390/diseases12080178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 07/19/2024] [Accepted: 07/23/2024] [Indexed: 08/29/2024] Open
Abstract
This study investigated how Rhus toxicodendron (RT) (6C, 30C, and 200C) can boost the immune system of BALB/c mice that were given cyclophosphamide (CPM), which is an anticancer drug that weakens the immune system. RT, known for its historical use in traditional homeopathic remedies, has demonstrated immunomodulatory and anti-inflammatory effects in various experimental models. To test the immune-boosting effects of RT, CPM (80 mg/kg) was given intraperitoneally to mice on days 4, 8, and 12 of the study but not to the normal control group. CPM-induced immunosuppression led to significant decreases in red blood cell (RBC), white blood cell (WBC), and hemoglobin (Hb) levels, and reduced spleen and thymus indices. Phagocytic activity, cytokine concentrations, and spleen architecture were also adversely affected. RT treatment, particularly at 200C, significantly ameliorated these effects, improving RBC, WBC, and Hb levels. Furthermore, RT partially prevented CPM-induced atrophy of immune organs. Treatment positively influenced cytokine production at both the protein and mRNA levels, restoring immune balance. Histopathological results confirmed that RT stimulated the immune system. The cells were more stable, and the white pulp in the spleen was arranged in a regular pattern. These findings suggest that RT may serve as an adjunctive immunostimulant therapy for conditions characterized by immunosuppression. However, further investigations in other immunocompromised states must validate these results before considering human clinical trials.
Collapse
Affiliation(s)
- Vara Prasad Saka
- Department of Pharmacology, Drug Standardization, Dr. Anjali Chatterji Regional Research Institute for Homeopathy, Under Central Council for Research in Homeopathy, Ministry of AYUSH, Kolkata 700035, West Bengal, India
| | - Narasimha Kumar G V
- Department of Pharmacology, Drug Standardization, Dr. Anjali Chatterji Regional Research Institute for Homeopathy, Under Central Council for Research in Homeopathy, Ministry of AYUSH, Kolkata 700035, West Bengal, India
| | - Bharat Kumar Reddy Sanapalli
- Department of Pharmacology, School of Pharmacy and Technology Management, SVKM's Narsee Monjee Institute of Management Studies (NMIMS) Deemed-to-be-University, Jadcherla 509301, Hyderabad, India
| | - Abanti Goswami
- Department of Pharmacology, Drug Standardization, Dr. Anjali Chatterji Regional Research Institute for Homeopathy, Under Central Council for Research in Homeopathy, Ministry of AYUSH, Kolkata 700035, West Bengal, India
| | - Anirban Roy
- Virology Laboratory, Dr. Anjali Chatterji Regional Research Institute for Homeopathy, Rajendra Chatterjee Road, Kolkata 700035, West Bengal, India
| | - Anurag Agrawal
- Department of Pharmacology, Ram-Eesh Institute of Vocational and Technical Education, Greater Noida 201310, Uttar Pradesh, India
| | - Pankaj Gupta
- Department of Pharmacology, Drug Standardization, Dr. D P Rastogi Central Research Institute for Homeopathy, Under Central Council for Research in Homeopathy, Ministry of AYUSH, Noida 201301, Uttar Pradesh, India
| | - Digvijay Verma
- Drug Standardization, Central Council for Research in Homeopathy, Ministry of AYUSH, Janakpuri 110058, New Delhi, India
| | - Subhash Kaushik
- Director General, Central Council for Research in Homeopathy, Ministry of AYUSH, Governmentof India, Janakpuri 110058, New Delhi, India
| |
Collapse
|
4
|
Sun X, Jin X, Wang L, Lin Z, Feng H, Zhan C, Liu X, Cheng G. Fraxetin ameliorates symptoms of dextran sulphate sodium-induced colitis in mice. Heliyon 2024; 10:e23295. [PMID: 38163213 PMCID: PMC10755303 DOI: 10.1016/j.heliyon.2023.e23295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 11/22/2023] [Accepted: 11/30/2023] [Indexed: 01/03/2024] Open
Abstract
Ulcerative colitis (UC) is one of the primary inflammatory bowel diseases (IBDs) and causes a serious threat to human public health around the world. Currently, there are no proven safe and effective treatment options to treat UC. Fraxetin (Fxt) is a widely recognized antioxidant and anti-inflammatory legume derived from ash bark. In the present study, we investigated the protective effect and mechanism of Fxt on UC. Our results showed that Fxt significantly attenuated the body weight, colon length reduction, tissue damage, and disease activity index induced by dextran sodium sulphate (DSS). Moreover, the DSS-induced activation of the NF-κB pathway and NLRP3 inflammasomes was inhibited, and the inflammatory response was reduced. Fxt restored gut barrier function by increasing the number of goblet cells and the levels of tight junction proteins (ZO-1 and occludin). In addition, Fxt can alter the intestinal microbiota by enhancing the diversity of the microbiota, increasing the relative abundance of beneficial bacteria and inhibiting the growth of harmful bacteria. These results revealed that Fxt alleviates DSS-induced colitis by modulating the inflammatory response, enhancing epithelial barrier integrity and regulating the gut microbiota. This study may provide a scientific basis for the potential therapeutic effect of Fxt in the prevention of colitis and other related diseases.
Collapse
Affiliation(s)
- Xiuxiu Sun
- Huazhong Agricultural University, Wuhan 430070, China
| | - Xinxin Jin
- Huazhong Agricultural University, Wuhan 430070, China
| | - Lumeng Wang
- Shengming Biological Technology (Zhengzhou) Co., Ltd., Zhengzhou 450000, China
| | - Zhengdan Lin
- Huazhong Agricultural University, Wuhan 430070, China
| | - Helong Feng
- Huazhong Agricultural University, Wuhan 430070, China
| | - Cunlin Zhan
- Huazhong Agricultural University, Wuhan 430070, China
| | - Xi Liu
- Huazhong Agricultural University, Wuhan 430070, China
| | - Guofu Cheng
- Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|
5
|
Wu T, Yu Q, Luo Y, Dai Z, Zhang Y, Wang C, Shen Q, Xue Y. Whole-Grain Highland Barley Attenuates Atherosclerosis Associated with NLRP3 Inflammasome Pathway and Gut Microbiota in ApoE -/- Mice. Nutrients 2023; 15:4186. [PMID: 37836470 PMCID: PMC10574078 DOI: 10.3390/nu15194186] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 09/23/2023] [Accepted: 09/26/2023] [Indexed: 10/15/2023] Open
Abstract
The efficacy and mechanism of highland barley in the treatment of atherosclerosis have received little attention. Herein, we aimed to explore whether highland barley supplementation can prevent atherosclerosis progression and improve gut microbiota disorder in apolipoprotein E knockout (ApoE-/-) mice. Male ApoE-/- mice were fed a high-fat diet with whole-grain highland barley (WHB) or refined highland barley for 18 weeks. WHB substantially inhibited the formation of atherosclerotic plaques, reduced serum tumor necrosis factor-α, and downregulated the expression of NLRP3 in the aorta. Furthermore, the 16S rRNA analysis revealed that highland barley supplementation helped to restore the dysregulation of the gut microbiota, as evidenced by an increase in the relative abundance of specific beneficial bacteria known for their anti-inflammatory properties, such as Lachnospiraceae, Lactobacillus, Muribaculaceae, and Bifidobacterium. Highland barley supplementation might alleviate atherosclerotic plaque formation by modulating the NLRP3 inflammasome pathway and the synthesis of anti-inflammatory metabolites by the gut microbiota.
Collapse
Affiliation(s)
- Tong Wu
- National Engineering and Technology Research Center for Fruits and Vegetables, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; (T.W.); (Q.Y.); (Y.L.); (Z.D.); (C.W.)
- National Center of Technology Innovation (Deep Processing of Highland Barley) in Food Industry, Beijing 100083, China
| | - Qinye Yu
- National Engineering and Technology Research Center for Fruits and Vegetables, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; (T.W.); (Q.Y.); (Y.L.); (Z.D.); (C.W.)
| | - Yingting Luo
- National Engineering and Technology Research Center for Fruits and Vegetables, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; (T.W.); (Q.Y.); (Y.L.); (Z.D.); (C.W.)
| | - Zijian Dai
- National Engineering and Technology Research Center for Fruits and Vegetables, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; (T.W.); (Q.Y.); (Y.L.); (Z.D.); (C.W.)
| | - Yuhong Zhang
- Tibet Academy of Agriculture and Animal Husbandry Sciences, Lhasa 860000, China;
| | - Chao Wang
- National Engineering and Technology Research Center for Fruits and Vegetables, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; (T.W.); (Q.Y.); (Y.L.); (Z.D.); (C.W.)
| | - Qun Shen
- National Engineering and Technology Research Center for Fruits and Vegetables, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; (T.W.); (Q.Y.); (Y.L.); (Z.D.); (C.W.)
- National Center of Technology Innovation (Deep Processing of Highland Barley) in Food Industry, Beijing 100083, China
| | - Yong Xue
- National Engineering and Technology Research Center for Fruits and Vegetables, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; (T.W.); (Q.Y.); (Y.L.); (Z.D.); (C.W.)
| |
Collapse
|
6
|
Choi J, Rod-in W, Jang AY, Park WJ. Arctoscopus japonicus Lipids Enhance Immunity of Mice with Cyclophosphamide-Induced Immunosuppression. Foods 2023; 12:3292. [PMID: 37685225 PMCID: PMC10486990 DOI: 10.3390/foods12173292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 08/23/2023] [Accepted: 08/30/2023] [Indexed: 09/10/2023] Open
Abstract
A lipid extract was obtained from eggs of the sailfin sandfish, Arctoscopus japonicus. Immunostimulatory effects of A. japonicus lipids incorporated with PEG6000 (AJ-PEG) on immunosuppressed mice treated with cyclophosphamide (CY) were investigated. AJ-PEG was administered orally to mice at different concentrations of 25 to 100 mg/kg body weight (BW). CY was injected to mice intraperitoneally at 80 mg/kg BW. Administration of AJ-PEG significantly increased the spleen index of CY-treated mice. AJ-PEG also stimulated the proliferation of splenic lymphocytes and natural killer (NK) activity. Immune-associated cytokines such as IL-1β, IL-2, IL-4, IL-6, TNF-α, and IFN-γ as well as TLR4 were overexpressed in splenic lymphocytes. Furthermore, AJ-PEG significantly increased splenic CD4+ and CD8+ T lymphocytes. In peritoneal macrophages, AJ-PEG administration improved proliferation, nitric oxide (NO) production, and phagocytosis. It also upregulated iNOS, COX-2, IL-1β, IL-6, and TNF-α expression. Taken together, these results suggest that AJ-PEG can be used in animal models with immunosuppressive conditions as a potent immunomodulatory agent.
Collapse
Affiliation(s)
- JeongUn Choi
- Department of Wellness-Bio Industry, Gangneung-Wonju National University, Gangneung 25457, Republic of Korea;
- Department of Marine Food Science and Technology, Gangneung-Wonju National University, Gangneung 25457, Republic of Korea; (W.R.-i.); (A.-y.J.)
| | - Weerawan Rod-in
- Department of Marine Food Science and Technology, Gangneung-Wonju National University, Gangneung 25457, Republic of Korea; (W.R.-i.); (A.-y.J.)
| | - A-yeong Jang
- Department of Marine Food Science and Technology, Gangneung-Wonju National University, Gangneung 25457, Republic of Korea; (W.R.-i.); (A.-y.J.)
| | - Woo Jung Park
- Department of Wellness-Bio Industry, Gangneung-Wonju National University, Gangneung 25457, Republic of Korea;
- Department of Marine Food Science and Technology, Gangneung-Wonju National University, Gangneung 25457, Republic of Korea; (W.R.-i.); (A.-y.J.)
| |
Collapse
|
7
|
Tran THM, Mi XJ, Huh JE, Aditi Mitra P, Kim YJ. Cirsium japonicum var. maackii fermented with Pediococcus pentosaceus induces immunostimulatory activity in RAW 264.7 cells, splenocytes and CTX-immunosuppressed mice. J Funct Foods 2023. [DOI: 10.1016/j.jff.2023.105449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/13/2023] Open
|
8
|
Okeke ES, Feng W, Song C, Mao G, Chen Y, Xu H, Qian X, Luo M, Wu X, Yang L. Transcriptomic profiling reveals the neuroendocrine-disrupting effect and toxicity mechanism of TBBPA-DHEE exposure in zebrafish (Danio rerio) during sexual development. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 858:160089. [PMID: 36370800 DOI: 10.1016/j.scitotenv.2022.160089] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 10/06/2022] [Accepted: 11/05/2022] [Indexed: 06/16/2023]
Abstract
TBBPA bis(2-hydroxyethyl) ether (TBBPA-DHEE) pollution in the environment has raised serious public health concerns due to its potential neuroendocrine-disrupting effects. The neuroendocrine-disrupting effects of TBBPA-DHEE on marine spices, on the other hand, have received little attention. The behavioral, neuroendocrine-disrupting, and possible reproductive toxicity of TBBPA-DHEE were assessed in sexual developing zebrafish treated for 40 days by examining locomotor activity, Gonadotrophin releasing hormone (GnRH), luteinizing hormone (LH), and follicle-stimulating hormone (FSH) levels, and quantifying gene expression. In addition, transcriptome profiling was carried out to explore the possible mechanisms. According to our findings, TBBPA-DHEE treated zebrafish showed altered locomotor activity, a potential neuroendocrine-disrupting effect via the toxic effect on the hypothalamus and pituitary gland, which is evident in decreased levels of GnRH, FSH, and LH, according to our findings. The transcriptomic profiling reveals that a total of 216 DEGs were detected (5 upregulated and 211 down-regulated). Transcriptomic analysis shows that TBBPA-DHEE exposure caused decreased transcript levels of genes (cyp11a1, ccna1, ccnb2, ccnb1, cpeb1b, wee2) involved in cell cycle oocyte meiosis, progesterone mediated oocyte maturation, and ovarian steroidogenesis, which are known reproduction-related pathways. Overall, these findings add to our understanding of the impact of TBBPA-DHEE and biomonitoring in the maritime environment.
Collapse
Affiliation(s)
- Emmanuel Sunday Okeke
- Institute of Environmental Health and Ecological Security, School of the Environment and Safety, Jiangsu University, 301 Xuefu Rd., 212013 Zhenjiang, Jiangsu, China; Department of Biochemistry, Faculty of Biological Sciences & Natural Science Unit, School of General Studies, University of Nigeria, Nsukka, Enugu State, 410001, Nigeria
| | - Weiwei Feng
- Institute of Environmental Health and Ecological Security, School of the Environment and Safety, Jiangsu University, 301 Xuefu Rd., 212013 Zhenjiang, Jiangsu, China
| | - Chang Song
- Institute of Environmental Health and Ecological Security, School of the Environment and Safety, Jiangsu University, 301 Xuefu Rd., 212013 Zhenjiang, Jiangsu, China
| | - Guanghua Mao
- Institute of Environmental Health and Ecological Security, School of the Environment and Safety, Jiangsu University, 301 Xuefu Rd., 212013 Zhenjiang, Jiangsu, China
| | - Yao Chen
- Institute of Environmental Health and Ecological Security, School of the Environment and Safety, Jiangsu University, 301 Xuefu Rd., 212013 Zhenjiang, Jiangsu, China
| | - Hai Xu
- Institute of Environmental Health and Ecological Security, School of the Environment and Safety, Jiangsu University, 301 Xuefu Rd., 212013 Zhenjiang, Jiangsu, China
| | - Xian Qian
- Institute of Environmental Health and Ecological Security, School of the Environment and Safety, Jiangsu University, 301 Xuefu Rd., 212013 Zhenjiang, Jiangsu, China
| | - Mengna Luo
- Institute of Environmental Health and Ecological Security, School of the Environment and Safety, Jiangsu University, 301 Xuefu Rd., 212013 Zhenjiang, Jiangsu, China
| | - Xiangyang Wu
- Institute of Environmental Health and Ecological Security, School of the Environment and Safety, Jiangsu University, 301 Xuefu Rd., 212013 Zhenjiang, Jiangsu, China.
| | - Liuqing Yang
- School of Chemistry and Chemical Engineering, Jiangsu University, China.
| |
Collapse
|
9
|
Okeke ES, Feng W, Mao G, Chen Y, Qian X, Luo M, Xu H, Qiu X, Wu X, Yang L. A transcriptomic-based analysis predicts the neuroendocrine disrupting effect on adult male and female zebrafish (Danio rerio) following long-term exposure to tetrabromobisphenol A bis(2-hydroxyethyl) ether. Comp Biochem Physiol C Toxicol Pharmacol 2023; 264:109527. [PMID: 36442598 DOI: 10.1016/j.cbpc.2022.109527] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 11/07/2022] [Accepted: 11/21/2022] [Indexed: 11/27/2022]
Abstract
Endocrine-disrupting chemicals (EDCs) are now ubiquitously distributed in the environment. Tetrabromobisphenol A bis(2-hydroxyethyl) ether (TBBPA-DHEE) pollution in environment media poses a significant threat to humans and aquatic organisms as a result of its potential neurotoxicity and endocrine-disrupting effect. The endocrine-disrupting effects of TBBPA-DHEE on aquatic organisms, however, have received limited attention. In this study, the neurotoxicity and reproductive endocrine-disruptive effect of TBBPA-DHEE was evaluated by observing the neurobehavioral changes, vitellogenin (VTG), testosterone, 17β-estradiol and gene expression levels in adult male and female zebrafish exposed to TBBPA-DHEE (0.05, 0.2 and 0.3 mg/L) for 100 days. Furthermore, transcriptomic analysis was conducted to unravel other potential neuroendocrine-disrupting mechanism. Our result showed TBBPA-DHEE significantly (p < 0.05) altered the locomotor behavior and motor coordination abilities in both sexes. Steroid hormone and VTG levels were also altered indicating the neuroendocrine-disrupting effect of TBBPA-DHEE on the hypothalamic-pituitary-gonadal-axis. A total of 1568 genes were upregulated and 542 genes downregulated in males, whereas, 1265 upregulated and 535 downregulated genes were observed in females. The KEGG enrichment analysis showed that cell cycle and p55 signaling pathways were significantly enriched due to TBBPA-DHEE exposure. These pathways and its component genes are potential target of EDCs. The significant upregulation of genes in these pathways could partly explain the neuroendocrine disrupting effect of TBBPA-DHEE. The observed toxic effects of TBBPA-DHEE observed in this study is confirmation of the endocrine-disrupting toxicity of this chemical which would be valuable in biosafety evaluation and biomonitoring of TBBPA-DHEE for public health purposes.
Collapse
Affiliation(s)
- Emmanuel Sunday Okeke
- Institute of Environmental Health and Ecological Security, School of the Environment and Safety, Jiangsu University, 301 Xuefu Rd., 212013 Zhenjiang, Jiangsu, China; Department of Biochemistry, Faculty of Biological Sciences & Natural Science Unit, School of General Studies, University of Nigeria, Nsukka, Enugu State 410001, Nigeria. https://twitter.com/Okeke
| | - Weiwei Feng
- Institute of Environmental Health and Ecological Security, School of the Environment and Safety, Jiangsu University, 301 Xuefu Rd., 212013 Zhenjiang, Jiangsu, China
| | - Guanghua Mao
- Institute of Environmental Health and Ecological Security, School of the Environment and Safety, Jiangsu University, 301 Xuefu Rd., 212013 Zhenjiang, Jiangsu, China
| | - Yao Chen
- Institute of Environmental Health and Ecological Security, School of the Environment and Safety, Jiangsu University, 301 Xuefu Rd., 212013 Zhenjiang, Jiangsu, China
| | - Xian Qian
- Institute of Environmental Health and Ecological Security, School of the Environment and Safety, Jiangsu University, 301 Xuefu Rd., 212013 Zhenjiang, Jiangsu, China
| | - Mengna Luo
- Institute of Environmental Health and Ecological Security, School of the Environment and Safety, Jiangsu University, 301 Xuefu Rd., 212013 Zhenjiang, Jiangsu, China
| | - Hai Xu
- Institute of Environmental Health and Ecological Security, School of the Environment and Safety, Jiangsu University, 301 Xuefu Rd., 212013 Zhenjiang, Jiangsu, China
| | - Xuchun Qiu
- Institute of Environmental Health and Ecological Security, School of the Environment and Safety, Jiangsu University, 301 Xuefu Rd., 212013 Zhenjiang, Jiangsu, China
| | - Xiangyang Wu
- Institute of Environmental Health and Ecological Security, School of the Environment and Safety, Jiangsu University, 301 Xuefu Rd., 212013 Zhenjiang, Jiangsu, China.
| | - Liuqing Yang
- School of Chemistry and Chemical Engineering, Jiangsu University, China
| |
Collapse
|
10
|
Zhang J, Deng H, Bai J, Zhou X, Zhao Y, Zhu Y, McClements DJ, Xiao X, Sun Q. Health-promoting properties of barley: A review of nutrient and nutraceutical composition, functionality, bioprocessing, and health benefits. Crit Rev Food Sci Nutr 2023; 63:1155-1169. [PMID: 36394558 DOI: 10.1080/10408398.2021.1972926] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Barley is one of the world's oldest cereal crops forming an important component of many traditional diets. Barley is rich in a variety of bioactive phytochemicals with potentially health-promoting effects. However, its beneficial nutritional attributes are not being fully realized because of the limited number of foods it is currently utilized in. It is therefore crucial for the food industry to produce novel barley-based foods that are healthy and cater to customers' tastes. This article reviews the nutritional and functional characteristics of barley, with an emphasis on its ability to improve glucose/lipid metabolism. Then, recent trends in barley product development are discussed. Finally, current limitations and future research directions in glucolipid modulation mechanisms and barley bioprocessing are discussed.
Collapse
Affiliation(s)
- Jiayan Zhang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| | - Huan Deng
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| | - Juan Bai
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| | - Xinghua Zhou
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| | - Yansheng Zhao
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| | - Ying Zhu
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| | - David Julian McClements
- Department of Food Science, University of Massachusetts Amherst, Amherst, Massachusetts, USA
- Department of Food Science & Bioengineering, Zhejiang Gongshang University, Hangzhou, Zhejiang, China
| | - Xiang Xiao
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| | - Quancai Sun
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| |
Collapse
|
11
|
Okeke ES, Qian X, Che J, Mao G, Chen Y, Xu H, Ding Y, Zeng Z, Wu X, Feng W. Transcriptomic sequencing reveals the potential molecular mechanism by which Tetrabromobisphenol A bis (2-hydroxyethyl ether) exposure exerts developmental neurotoxicity in developing zebrafish (Danio rerio). Comp Biochem Physiol C Toxicol Pharmacol 2022; 262:109467. [PMID: 36113845 DOI: 10.1016/j.cbpc.2022.109467] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 09/05/2022] [Accepted: 09/08/2022] [Indexed: 11/16/2022]
Abstract
Tetrabromobisphenol A bis (2-hydroxyethyl ether) (TBBPA-DHEE) is a derivative of Tetrabromobisphenol A (TBBPA) used as an intermediate flame retardant in engineering polymers. The mechanism of neurodevelopmental toxicity of TBBPA-DHEE remains unclear due to limited toxicological data. We performed behavioral and transcriptomic analyses to assess the neurodevelopmental effects of TBBPA-DHEE on developing zebrafish and potential toxicity mechanisms. Our result shows that exposure to TBBPA-DHEE significantly increased mortality, deformity rate, and reduction in hatch rate, hatchability, and body length relative to the DMSO control. The behavior analysis indicates that TBBPA-DHEE significantly reduced the spontaneous movement of larva compared to the control. The TSH and GH levels were significantly reduced in all the exposure groups in a concentration-dependent manner relative to the DMSO control. TBBPA-DHEE exhibited a significant reduction in locomotor activity across all the exposure groups in the light/dark locomotion test. The transcriptomic analysis result shows that 579 genes were differentially expressed. KEGG analysis shows the enrichment of complement cascade, JAK-STAT signaling pathway, cytokine-cytokine interaction, and phototransduction pathway resulting in a change in mRNA expression of their genes. These observed changes in developmental endpoints, hormonal level, and alteration in mRNA expression of component genes involved in neurodevelopmental pathways could be part of the possible mechanism of the observed toxic effects of TBBPA-DHEE exposure on zebrafish. This study could reveal the possible neurodevelopmental toxicity of TBBPA-DHEE to aquatic species, which could help uncover the health implications of emerging environmental contaminants.
Collapse
Affiliation(s)
- Emmanuel Sunday Okeke
- Institute of Environmental Health and Ecological Security, School of the Environment and Safety Engineering, Jiangsu University, 301 Xuefu Rd., 212013 Zhenjiang, Jiangsu, China; Department of Biochemistry, FBS & Natural Science Unit, SGS, University of Nigeria, Nsukka, Enugu State 410001, Nigeria. https://twitter.com/@ES_Okeke
| | - Xian Qian
- Institute of Environmental Health and Ecological Security, School of the Environment and Safety Engineering, Jiangsu University, 301 Xuefu Rd., 212013 Zhenjiang, Jiangsu, China
| | - Junhao Che
- Institute of Environmental Health and Ecological Security, School of the Environment and Safety Engineering, Jiangsu University, 301 Xuefu Rd., 212013 Zhenjiang, Jiangsu, China
| | - Guanghua Mao
- Institute of Environmental Health and Ecological Security, School of the Environment and Safety Engineering, Jiangsu University, 301 Xuefu Rd., 212013 Zhenjiang, Jiangsu, China
| | - Yao Chen
- Institute of Environmental Health and Ecological Security, School of the Environment and Safety Engineering, Jiangsu University, 301 Xuefu Rd., 212013 Zhenjiang, Jiangsu, China
| | - Hai Xu
- Institute of Environmental Health and Ecological Security, School of the Environment and Safety Engineering, Jiangsu University, 301 Xuefu Rd., 212013 Zhenjiang, Jiangsu, China
| | - Yangyang Ding
- Institute of Environmental Health and Ecological Security, School of the Environment and Safety Engineering, Jiangsu University, 301 Xuefu Rd., 212013 Zhenjiang, Jiangsu, China
| | - Zhengjia Zeng
- Institute of Environmental Health and Ecological Security, School of the Environment and Safety Engineering, Jiangsu University, 301 Xuefu Rd., 212013 Zhenjiang, Jiangsu, China
| | - Xiangyang Wu
- Institute of Environmental Health and Ecological Security, School of the Environment and Safety Engineering, Jiangsu University, 301 Xuefu Rd., 212013 Zhenjiang, Jiangsu, China.
| | - Weiwei Feng
- Institute of Environmental Health and Ecological Security, School of the Environment and Safety Engineering, Jiangsu University, 301 Xuefu Rd., 212013 Zhenjiang, Jiangsu, China.
| |
Collapse
|
12
|
Han X, Luo R, Ye N, Hu Y, Fu C, Gao R, Fu S, Gao F. Research progress on natural β-glucan in intestinal diseases. Int J Biol Macromol 2022; 219:1244-1260. [PMID: 36063888 DOI: 10.1016/j.ijbiomac.2022.08.173] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 08/18/2022] [Accepted: 08/25/2022] [Indexed: 12/20/2022]
Abstract
β-Glucan, an essential natural polysaccharide widely distributed in cereals and microorganisms, exhibits extensive biological activities, including immunoregulation, anti-inflammatory, antioxidant, antitumor properties, and flora regulation. Recently, increasing evidence has shown that β-glucan has activities that may be useful for treating intestinal diseases, such as inflammatory bowel disease (IBD), and colorectal cancer. The advantages of β-glucan, which include its multiple roles, safety, abundant sources, good encapsulation capacity, economic development costs, and clinical evidence, indicate that β-glucan is a promising polysaccharide that could be developed as a health product or medicine for the treatment of intestinal disease. Unfortunately, few reports have summarized the progress of studies investigating natural β-glucan in intestinal diseases. This review comprehensively summarizes the structure-activity relationship of β-glucan, its pharmacological mechanism in IBD and colorectal cancer, its absorption and transportation mechanisms, and its application in food, medicine, and drug delivery, which will be beneficial to further understand the role of β-glucan in intestinal diseases.
Collapse
Affiliation(s)
- Xiaoqin Han
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy School, Chengdu University of Traditional Chinese Medicine, Chengdu 611130, China
| | - Ruifeng Luo
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy School, Chengdu University of Traditional Chinese Medicine, Chengdu 611130, China
| | - Naijing Ye
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610072, China
| | - Yichen Hu
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture, Chengdu University, Chengdu 610106, China
| | - Chaomei Fu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy School, Chengdu University of Traditional Chinese Medicine, Chengdu 611130, China
| | - Ru Gao
- Department of Nursing, Chengdu Wenjiang People's Hospital, Chengdu, Sichuan 611100, China.
| | - Shu Fu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy School, Chengdu University of Traditional Chinese Medicine, Chengdu 611130, China.
| | - Fei Gao
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy School, Chengdu University of Traditional Chinese Medicine, Chengdu 611130, China.
| |
Collapse
|
13
|
A Water-Soluble Polysaccharide from the Fibrous Root of Anemarrhena asphodeloides Bge. and Its Immune Enhancement Effect in Vivo and in Vitro. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:8723119. [PMID: 36124017 PMCID: PMC9482487 DOI: 10.1155/2022/8723119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 07/08/2022] [Accepted: 08/04/2022] [Indexed: 11/29/2022]
Abstract
Background The fibrous roots of Anemarrhena asphodeloides Bge. (FRAAB) are byproducts of the rhizome of Anemarrhena asphodeloides. Some studies have revealed secondary metabolic small molecules in FRAAB, but there are few reports on the polysaccharides of FRAAB (PFRAAB). Aim of the Study. The present study aimed to investigate the preliminary characterization and underlying mechanism of immune stimulation of PFRAAB. Materials and Methods The crude polysaccharide of FRAAB was obtained by hot water extraction and alcohol precipitation, and PFRAAB was purified by a diethylaminoethyl-52 (DEAE-52) cellulose chromatographic column and graphene dialysis membrane. The preliminary characterization of PFRAAB was studied by ultraviolet (UV) scanning and Fourier Transform Infrared Reflection (FTIR). The molecular weight and composition of PFRAAB were analysed by high-performance gel permeation chromatography (HPGPC) and high-performance liquid chromatography (HPLC), respectively. The immune stimulation of PFRAAB was investigated by using cyclophosphamide- (CCP-) treated mice and RAW264.7 cells. Results A water-soluble PFRAAB was obtained with a molecular weight of 115 kDa and was mainly composed of arabinose (ara), galactose (gal), glucose (glc), and mannose (man). Compared with CCP-induced mice, PFRAAB significantly (p < 0.05 or p < 0.01) increased the spleen and thymus index, ameliorated injury to the spleen and thymus, and evaluated immunoglobulin levels. In addition, PFRAAB also increased the secretion of nitric oxide (NO), interleukin-1β (IL-1β), tumour necrosis factor-α (TNF-α), and IL-6 in RAW264.7 cells and upregulated the expression of toll-like receptor 4 (TLR4), Myd88, nuclear factor kappa-B (NF-κB) P65, p–NF–κB P65, IKB-α, and p-IKB-α. Conclusion PFRAAB possesses immune stimulation activity and can be used as a potential resource for immune-enhancing drugs. Our present study provides a scientific basis for the comprehensive development of Anemarrhena asphodeloides medicinal plant resources.
Collapse
|
14
|
Yang P, Jin J, Ma Y, Wang F, Li Y, Duan B, Zhang Y, Liu Y. Structure Characterization, Immunological Activity, and Mechanism of a Polysaccharide From the Rhizome of Menispermum dauricum DC. Front Nutr 2022; 9:922569. [PMID: 35782915 PMCID: PMC9240474 DOI: 10.3389/fnut.2022.922569] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Accepted: 05/12/2022] [Indexed: 11/13/2022] Open
Abstract
The purpose of this study was to investigate the structural characterization and immunological activity in vitro and in vivo of a polysaccharide from the rhizome of Menispermum dauricum. A new polysaccharide named MDP was isolated from the rhizome of Menispermum dauricum by hot water extraction, ethanol precipitation, anion-exchange, and gel-filtration chromatography. MDP was homogeneous and had a molecular weight of 6.16 ×103 Da, and it was an α-D-glucan containing a (1 → 6)-linked backbone, with a glucosyl residue at the C-3 position along the main chain. MDP exhibited immunological activity in vitro, which could significantly promote the proliferation and phagocytosis of RAW264.7 cells and the release of TNF-α and IL-6 factors. For immunological activity in vivo. MDP could significantly increase the thymus and spleen indices, enhance the macrophage function, increase the level of cytokine (IL-6 and TNF-α) and immunoglobulin IgM in the serum and regulate T lymphocyte subsets. Furthermore, MDP elevated the expression of the critical nodes in the TLR4-MyD88 signaling pathways in vivo. These results support the concept that MDP may exhibit immunological activity through TLR4-MyD88 signaling pathway in vivo.
Collapse
Affiliation(s)
- Pei Yang
- School of Pharmaceutical Sciences, Collaborative Innovation Center for Quality Control and Construction of the Whole Industrial Chain of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Juan Jin
- School of Pharmaceutical Sciences, Collaborative Innovation Center for Quality Control and Construction of the Whole Industrial Chain of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yan Ma
- School of Pharmaceutical Sciences, Collaborative Innovation Center for Quality Control and Construction of the Whole Industrial Chain of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Fengshan Wang
- National Medical Products Administration Key Laboratory for Quality Research and Evaluation of Carbohydrate-Based Medicine, Jinan, China
| | - Yaying Li
- Experimental Center, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Baoguo Duan
- Sishui Siheyuan Culture and Tourism Development Company, Ltd., Sisui, China
| | - Yongqing Zhang
- School of Pharmaceutical Sciences, Collaborative Innovation Center for Quality Control and Construction of the Whole Industrial Chain of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
- Yongqing Zhang
| | - Yuhong Liu
- School of Pharmaceutical Sciences, Collaborative Innovation Center for Quality Control and Construction of the Whole Industrial Chain of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
- *Correspondence: Yuhong Liu
| |
Collapse
|
15
|
Tang Y, Pu Q, Zhao Q, Zhou Y, Jiang X, Han T. Effects of Fucoidan Isolated From Laminaria japonica on Immune Response and Gut Microbiota in Cyclophosphamide-Treated Mice. Front Immunol 2022; 13:916618. [PMID: 35664002 PMCID: PMC9160524 DOI: 10.3389/fimmu.2022.916618] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Accepted: 04/25/2022] [Indexed: 11/24/2022] Open
Abstract
The effects of Laminaria japonica fucoidan (LF) on immune regulation and intestinal microflora in cyclophosphamide (CTX)-treated mice were investigated in this work. Results indicated that LF significantly enhanced the spleen and thymus indices, promoted spleen lymphocyte and peritoneal macrophages proliferation, and increased the immune-related cytokines production in serum. Moreover, LF could regulate intestinal flora composition, increasing the abundance of Lactobacillaceae and Alistipes, and inhibiting Erysipelotrichia, Turicibacter, Romboutsia, Peptostreptococcaceae, and Faecalibaculum. These results were positively correlated with immune characteristics. Overall, LF could be useful as a new potential strategy to mitigate CTX immunosuppression and intestinal microbiota disorders.
Collapse
Affiliation(s)
- Yunping Tang
- Zhejiang Provincial Engineering Technology Research Center of Marine Biomedical Products, School of Food and Pharmacy, Zhejiang Ocean University, Zhoushan, China
| | - Qiuyan Pu
- Zhejiang Provincial Engineering Technology Research Center of Marine Biomedical Products, School of Food and Pharmacy, Zhejiang Ocean University, Zhoushan, China
| | - Qiaoling Zhao
- Zhoushan Institute for Food and Drug Control, Zhoushan, China
| | - Yafeng Zhou
- Zhejiang Provincial Engineering Technology Research Center of Marine Biomedical Products, School of Food and Pharmacy, Zhejiang Ocean University, Zhoushan, China
| | - Xiaoxia Jiang
- Zhejiang Provincial Engineering Technology Research Center of Marine Biomedical Products, School of Food and Pharmacy, Zhejiang Ocean University, Zhoushan, China
| | - Tao Han
- Department of Aquaculture, Zhejiang Ocean University, Zhoushan, China
| |
Collapse
|
16
|
Han NR, Kim KC, Kim JS, Ko SG, Park HJ, Moon PD. A mixture of Panax ginseng and Scrophularia buergeriana improves immune function in an immunosuppressed murine model. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 99:153984. [PMID: 35189478 DOI: 10.1016/j.phymed.2022.153984] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 02/06/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND Immunomodulatory drugs are currently used for immunosuppressed individuals, but adverse side effects have been reported. Although Panax ginseng and Scrophularia buergeriana are known to have respective pharmacological properties, the potential of a mixture of Panax ginseng and Scrophularia buergeriana (Isam-Tang, IST) as an immunomodulatory drug has not yet been studied. PURPOSE The present study was designed to assess the immunomodulatory activity of IST and p-coumaric acid (pCA), an active compound of IST, in the immune system. METHODS The levels of immunostimulatory cytokines, nitrite, inducible nitric oxide synthase (iNOS), NF-kB activation, and proliferation were examined in RAW264.7 cells, primary splenocytes and splenic NK cells isolated from normal mouse spleen, and in cyclophosphamide-induced immunosuppressed mice using ELISA, quantitative real-time PCR, Western blotting, and immunofluorescence staining. RESULTS IST or pCA treatment increased the production of immunostimulatory cytokines and nitrite and the expression of iNOS in RAW264.7 cells and splenocytes. IST or pCA also induced NF-κB signaling activation and promoted the phagocytic activity of RAW264.7 cells. In addition, the splenocyte proliferation and splenic NK activity were enhanced by IST or pCA. IST or pCA increased the levels of immunostimulatory cytokines in immunosuppressed mice and ameliorated splenic tissue damage. CONCLUSION These findings suggest that IST supplementation may be used to enhance immune function.
Collapse
Affiliation(s)
- Na-Ra Han
- College of Korean Medicine, Kyung Hee University, Seoul, South Korea; Korean Medicine-Based Drug Repositioning Cancer Research Center, College of Korean Medicine, Kyung Hee University, Seoul, South Korea
| | - Kyeoung-Cheol Kim
- Majors in Plant Resource and Environment, College of Agriculture & Life Sciences, SARI, Jeju National University, Jeju 63243, South Korea
| | - Ju-Sung Kim
- Majors in Plant Resource and Environment, College of Agriculture & Life Sciences, SARI, Jeju National University, Jeju 63243, South Korea
| | - Seong-Gyu Ko
- Korean Medicine-Based Drug Repositioning Cancer Research Center, College of Korean Medicine, Kyung Hee University, Seoul, South Korea; Department of Preventive Medicine, College of Korean Medicine, Kyung Hee University, Seoul, South Korea
| | - Hi-Joon Park
- Department of Anatomy & Information Sciences, College of Korean Medicine, Kyung Hee University, Seoul, South Korea
| | - Phil-Dong Moon
- Center for Converging Humanities, Kyung Hee University, Seoul, South Korea.
| |
Collapse
|
17
|
Lemieszek MK, Komaniecka I, Chojnacki M, Choma A, Rzeski W. Immunomodulatory Properties of Polysaccharide-Rich Young Green Barley ( Hordeum vulgare) Extract and Its Structural Characterization. Molecules 2022; 27:1742. [PMID: 35268844 PMCID: PMC8911554 DOI: 10.3390/molecules27051742] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 03/03/2022] [Accepted: 03/04/2022] [Indexed: 12/19/2022] Open
Abstract
Young green barley (YGB) water extract has revealed a beneficial impact on natural killer (NK) cells' ability to recognize and eliminate human colon cancer cells, without any side effects for normal colon epithelial cells. The direct anticancer effect of the tested compounds has been also shown. The mixture of oligosaccharides found in this extract was characterized by chemical analyses and via FT-IR spectroscopy and MALDI-TOF MS techniques. The YGB preparation contained 26.9% of proteins and 64.2% of sugars, mostly glucose (54.7%) and fructose (42.7%), with a small amount of mannose (2.6%) and galactose (less than 0.5%). Mass spectrometry analysis of YGB has shown that fructose oligomers contained from 3 to 19 sugar units. The number of fructans was estimated to be about 10.2% of the dry weight basis of YGB. The presented results suggest the beneficial effect of the consumption of preparations based on young barley on the human body, in the field of colon cancer prevention.
Collapse
Affiliation(s)
- Marta Kinga Lemieszek
- Department of Medical Biology, Institute of Rural Health, Jaczewskiego 2, 20-090 Lublin, Poland; (M.C.); (W.R.)
| | - Iwona Komaniecka
- Department of Genetics and Microbiology, Institute of Biological Sciences, Maria Curie-Skłodowska University, Akademicka 19, 20-033 Lublin, Poland; (I.K.); (A.C.)
| | - Michał Chojnacki
- Department of Medical Biology, Institute of Rural Health, Jaczewskiego 2, 20-090 Lublin, Poland; (M.C.); (W.R.)
| | - Adam Choma
- Department of Genetics and Microbiology, Institute of Biological Sciences, Maria Curie-Skłodowska University, Akademicka 19, 20-033 Lublin, Poland; (I.K.); (A.C.)
| | - Wojciech Rzeski
- Department of Medical Biology, Institute of Rural Health, Jaczewskiego 2, 20-090 Lublin, Poland; (M.C.); (W.R.)
- Department of Functional Anatomy and Cytobiology, Institute of Biological Sciences, Maria Curie-Skłodowska University, Akademicka 19, 20-033 Lublin, Poland
| |
Collapse
|
18
|
Han NR, Kim KC, Kim JS, Ko SG, Park HJ, Moon PD. The immune-enhancing effects of a mixture of Astragalus membranaceus (Fisch.) Bunge, Angelica gigas Nakai, and Trichosanthes Kirilowii (Maxim.) or its active constituent nodakenin. JOURNAL OF ETHNOPHARMACOLOGY 2022; 285:114893. [PMID: 34875347 DOI: 10.1016/j.jep.2021.114893] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 11/16/2021] [Accepted: 12/01/2021] [Indexed: 06/13/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE A mixture (SH003) of Astragalus membranaceus (Fisch.) Bunge, Angelica gigas Nakai, and Trichosanthes Kirilowii (Maxim.) has beneficial effects against several carcinomas. There have been few reports on an immune-enhancing activity of SH003 and its active constituent nodakenin. AIM OF THE STUDY This study aimed at identifying the immune-enhancing effect of SH003 and nodakenin. MATERIALS AND METHODS The immune-enhancing effect was evaluated using RAW264.7 macrophages, mouse primary splenocytes, and a cyclophosphamide (CP)-induced immunosuppression murine model. RESULTS The results show that SH003 or nodakenin stimulated the production levels of granulocyte colony-stimulating factor, IL-12, IL-2, IL-6, TNF-α, and nitric oxide (NO) and the expression levels of iNOS in RAW264.7 macrophages. SH003 or nodakenin also enhanced NF-κB p65 activation in RAW264.7 macrophages. SH003 or nodakenin stimulated the production levels of IFN-γ, IL-12, IL-2, TNF-α, and NO and the expression levels of iNOS in splenocytes. SH003 or nodakenin increased the splenic lymphocyte proliferation and splenic NK cell activity. In addition, SH003 or nodakenin increased the levels of IFN-γ, IL-12, IL-2, IL-6, and TNF-α in the serum and spleen of CP-treated mice, alleviating CP-induced immunosuppression. CONCLUSION Taken together, the results of this study show that SH003 improved immunosuppression through the activation of macrophages, splenocytes, and NK cells. These findings suggest that SH003 could be applied as a potential immunostimulatory agent for a variety of diseases caused or exacerbated by immunodeficiency.
Collapse
Affiliation(s)
- Na-Ra Han
- College of Korean Medicine, Kyung Hee University, Seoul, 02447, Republic of Korea; Korean Medicine-Based Drug Repositioning Cancer Research Center, College of Korean Medicine, Kyung Hee University, Seoul, 02447, Republic of Korea.
| | - Kyeoung-Cheol Kim
- Majors in Plant Resource and Environment, College of Agriculture & Life Sciences, SARI, Jeju National University, Jeju, 63243, Republic of Korea.
| | - Ju-Sung Kim
- Majors in Plant Resource and Environment, College of Agriculture & Life Sciences, SARI, Jeju National University, Jeju, 63243, Republic of Korea.
| | - Seong-Gyu Ko
- Korean Medicine-Based Drug Repositioning Cancer Research Center, College of Korean Medicine, Kyung Hee University, Seoul, 02447, Republic of Korea; Department of Preventive Medicine, College of Korean Medicine, Kyung Hee University, Seoul, 02447, Republic of Korea.
| | - Hi-Joon Park
- Department of Anatomy & Information Sciences, College of Korean Medicine, Kyung Hee University, Seoul, 02447, Republic of Korea.
| | - Phil-Dong Moon
- Center for Converging Humanities, Kyung Hee University, Seoul, 02447, Republic of Korea.
| |
Collapse
|
19
|
Sun Y, Wang F, Liu Y, An Y, Chang D, Wang J, Xia F, Liu N, Chen X, Cao Y. Comparison of water- and alkali-extracted polysaccharides from Fuzhuan brick tea and their immunomodulatory effects in vitro and in vivo. Food Funct 2022; 13:806-824. [PMID: 34985061 DOI: 10.1039/d1fo02944d] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
In the present study, the purpose is to compare the effect of water extraction and alkali-assisted extraction on the structural characteristics and immunomodulatory activity of polysaccharides from Fuzhuan brick tea (FBTPs). The results indicated that water-extracted FBTPs (W-FBTPs) and alkali-extracted FBTPs (A-FBTPs) had similar molecular weights but different monosaccharide compositions, of which A-FBTPs had a higher yield and uronic acid groups corresponding to galacturonic acid (GalA). Moreover, A-FBTPs had stronger ability to promote phagocytic capacity, acid phosphatase activity and nitric oxide (NO) secretion in macrophages in vitro. In the in vivo study, A-FBTPs exhibited a promising effect to adjust the immune imbalance by enhancing the body features, antioxidant activities, immune response and intestinal mucosal barrier in cytoxan (CTX)-induced immunosuppressive mice. Besides, A-FBTP supplementation effectively improved CTX-induced gut microbiota dysbiosis, including promoting the abundance of beneficial bacteria (e.g., Lactobacillus) and short chain fatty acid (SCFA)-producing bacteria (e.g., Lachnospiraceae, Prevotellaceae and Ruminococcaceae), along with reducing the growth of potentially pathogenic microbes (e.g., Desulfovibrionaceae and Helicobacter). These findings suggested that alkaline extraction might be a promising way to obtain high-quality acidic polysaccharides from Fuzhuan brick tea (FBT), and A-FBTPs could be developed as novel potential prebiotics and immunomodulators for further application in food formulations.
Collapse
Affiliation(s)
- Yujiao Sun
- Natural Food Macromolecule Research Center, School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an 710021, P. R. China.
| | - Fan Wang
- Natural Food Macromolecule Research Center, School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an 710021, P. R. China.
| | - Yang Liu
- Shaanxi Academy of Traditional Chinese Medicine, Xi'an 710003, China
| | - Yuye An
- Shaanxi Academy of Traditional Chinese Medicine, Xi'an 710003, China
| | - Dawei Chang
- Natural Food Macromolecule Research Center, School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an 710021, P. R. China.
| | - Jiankang Wang
- Natural Food Macromolecule Research Center, School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an 710021, P. R. China.
| | - Fei Xia
- Natural Food Macromolecule Research Center, School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an 710021, P. R. China.
| | - Ning Liu
- Natural Food Macromolecule Research Center, School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an 710021, P. R. China.
| | - Xuefeng Chen
- Natural Food Macromolecule Research Center, School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an 710021, P. R. China.
| | - Yungang Cao
- Natural Food Macromolecule Research Center, School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an 710021, P. R. China.
| |
Collapse
|
20
|
|
21
|
Román‐Gutiérrez AD, Barrera‐Barrera DI, Morales‐Sánchez E, Castro‐Rosas J, Gómez‐Aldapa CA, Falfán‐Cortés RN, Rodríguez‐Marín ML, Guzmán‐Ortiz FA. Modelling and optimization of the extrusion process in a snack of barley/corn and nutritional evaluation of the optimized product. Cereal Chem 2021. [DOI: 10.1002/cche.10518] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Alma Delia Román‐Gutiérrez
- Área Académica de Química Universidad Autónoma del Estado de Hidalgo Mineral de la Reforma Hidalgo México
| | | | - Eduardo Morales‐Sánchez
- Instituto Politécnico Nacional. CICATA‐IPN Unidad Querétaro Col. Colinas del Cimatario Santiago de Querétaro México
| | - Javier Castro‐Rosas
- Área Académica de Química Universidad Autónoma del Estado de Hidalgo Mineral de la Reforma Hidalgo México
| | | | - Reyna Nallely Falfán‐Cortés
- Área Académica de Química Universidad Autónoma del Estado de Hidalgo Mineral de la Reforma Hidalgo México
- CONACYT Universidad Autónoma del Estado de Hidalgo Mineral de la Reforma Hidalgo México
| | - Maria Luisa Rodríguez‐Marín
- Área Académica de Química Universidad Autónoma del Estado de Hidalgo Mineral de la Reforma Hidalgo México
- CONACYT Universidad Autónoma del Estado de Hidalgo Mineral de la Reforma Hidalgo México
| | - Fabiola Araceli Guzmán‐Ortiz
- Área Académica de Química Universidad Autónoma del Estado de Hidalgo Mineral de la Reforma Hidalgo México
- CONACYT Universidad Autónoma del Estado de Hidalgo Mineral de la Reforma Hidalgo México
| |
Collapse
|
22
|
Sulfated modification enhances the immunomodulatory effect of Cyclocarya paliurus polysaccharide on cyclophosphamide-induced immunosuppressed mice through MyD88-dependent MAPK/NF-κB and PI3K-Akt signaling pathways. Food Res Int 2021; 150:110756. [PMID: 34865774 DOI: 10.1016/j.foodres.2021.110756] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 09/10/2021] [Accepted: 10/09/2021] [Indexed: 01/16/2023]
Abstract
The present study investigated the effect of sulfation on the immunomodulatory effect of Cyclocarya paliurus polysaccharide (CP) through a Cyclophosphamide (CTX)-induced immunosuppression mice model. The results showed that sulfated Cyclocarya paliurus polysaccharide (SCP3) had stronger immunomodulatory ability than CP. Administration of SCP3 alleviated immune organ atrophy and restored hematopoiesis in immunosuppressed mice, enhanced splenocyte proliferation, and promoted cytokines and nitric oxide (NO) production in splenocyte supernatants, as well as the number of CD3+, CD4+ and CD8+ T lymphocytes. Meantime, SCP3 significantly improved oxidative stress via increasing the activities of antioxidant enzymes and decreasing the levels of malondialdehyde (MDA) in liver. In addition, SCP3 significantly upregulated the phosphorylation expression of JNK, Erk 1/2, p38 of MAPKs signaling pathway at a dose of 50 mg/kg and accordingly showed increased phosphorylation of Akt, NF-κB (p65), IκB-α, and promoted the degradation of IkB-α. Furthermore, SCP3 significantly increased the expression of the upstream signaling molecule MyD88. All results demonstrated that sulfation can be an effective way to enhance the immunomodulatory effect of polysaccharides. SCP3 has high potential to be a functional food supplement candidate for alleviating chemotherapy drug-induced immunosuppression.
Collapse
|
23
|
Li Y, Pan X, Yin M, Li C, Han L. Preventive Effect of Lycopene in Dextran Sulfate Sodium-Induced Ulcerative Colitis Mice through the Regulation of TLR4/TRIF/NF-κB Signaling Pathway and Tight Junctions. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:13500-13509. [PMID: 34729976 DOI: 10.1021/acs.jafc.1c05128] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
The preventive effect and molecular mechanism of lycopene (LP) in dextran sulfate sodium (DSS)-induced ulcerative colitis (UC) in mice were evaluated. Compared to the DSS group, the LP prevention groups not only significantly inhibited the DSS-induced weight loss, decreased the disease activity index (DAI) score, increased the colon length, and improved inflammation in the colon but also significantly increased the levels of superoxide dismutase (SOD),catalase (CAT), glutathione peroxidase (GSH-Px), and glutathione (GSH) in the colon and reduced inflammatory cytokine, myeloperoxidase (MPO), and malondialdehyde (MDA) levels. Notably, when compared to the DSS group, the protein expression levels of TLR4, TRIF, and p-NF-κB p65 in the mice colon tissue were downregulated and those of tight junction-related proteins were upregulated in the LP + DSS group, with the most significant effect observed in the 10 mg/kg LP + DSS group. These results confirmed that the upregulation of tight junction-related protein expression after blocking the TLR4/TRIF/NF-κB signaling pathway may be one of the mechanisms through which LP prevents UC.
Collapse
Affiliation(s)
- Yaping Li
- Key Laboratory of Public Health Safety of Hebei Province, Ministry of Education & College of Public Health, Hebei University, Baoding 071002, China
| | - Xiao Pan
- Key Laboratory of Public Health Safety of Hebei Province, Ministry of Education & College of Public Health, Hebei University, Baoding 071002, China
| | - Mingyuan Yin
- Key Laboratory of Public Health Safety of Hebei Province, Ministry of Education & College of Public Health, Hebei University, Baoding 071002, China
| | - Cuiping Li
- Key Laboratory of Public Health Safety of Hebei Province, Ministry of Education & College of Public Health, Hebei University, Baoding 071002, China
| | - Lirong Han
- Key Laboratory of Public Health Safety of Hebei Province, Ministry of Education & College of Public Health, Hebei University, Baoding 071002, China
| |
Collapse
|
24
|
Zhang J, Gao S, Li H, Cao M, Li W, Liu X. Immunomodulatory effects of selenium-enriched peptides from soybean in cyclophosphamide-induced immunosuppressed mice. Food Sci Nutr 2021; 9:6322-6334. [PMID: 34760262 PMCID: PMC8565224 DOI: 10.1002/fsn3.2594] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 09/09/2021] [Accepted: 09/12/2021] [Indexed: 12/31/2022] Open
Abstract
In this study, selenium-enriched soybean peptides (<3 kDa, named Se-SPep) was isolated and purified from the selenium-enriched soybean protein (Se-SPro) hydrolysate by ultrafiltration. The in-vivo immunomodulatory effects of Se-SPep were investigated in cyclophosphamide-induced immunosuppressed mice. Se-SPep treatment could alleviate the atrophy of immune organs and weight loss observed in immunosuppressive mice. Besides, Se-SPep administration could dramatically improve total protein, albumin, white blood cell, immunoglobulin (Ig) M, IgG, and IgA levels in blood. Moreover, Se-SPep strongly stimulated interleukin-2 (IL-2), interferon-gamma (IFN-γ), nitric oxide (NO), and cyclic guanosine monophosphate productions by up-regulating mRNA expressions of IL-2, IFN-γ, and inducible NO synthase in spleen tissue. Furthermore, Se-SPep exhibits more effective immunomodulatory activity compared to Se-SPro and SPep. In conclusion, Se-SPep could effectively enhance the immune capacity of immunosuppressive mice. These findings confirm Se-SPep is an effective immunomodulator with potential application in functional foods or dietary supplements.
Collapse
Affiliation(s)
- Jian Zhang
- National Soybean Processing Industry Technology Innovation CenterBeijing Advanced Innovation Center for Food Nutrition and Human HealthBeijing Engineering and Technology Research Center of Food AdditivesBeijing Technology and Business UniversityBeijingChina
| | - Siwei Gao
- National Soybean Processing Industry Technology Innovation CenterBeijing Advanced Innovation Center for Food Nutrition and Human HealthBeijing Engineering and Technology Research Center of Food AdditivesBeijing Technology and Business UniversityBeijingChina
| | - He Li
- National Soybean Processing Industry Technology Innovation CenterBeijing Advanced Innovation Center for Food Nutrition and Human HealthBeijing Engineering and Technology Research Center of Food AdditivesBeijing Technology and Business UniversityBeijingChina
| | - Mengdi Cao
- Chinese Academy of Inspection and QuarantineBeijingChina
| | - Wenhui Li
- National Soybean Processing Industry Technology Innovation CenterBeijing Advanced Innovation Center for Food Nutrition and Human HealthBeijing Engineering and Technology Research Center of Food AdditivesBeijing Technology and Business UniversityBeijingChina
| | - Xinqi Liu
- National Soybean Processing Industry Technology Innovation CenterBeijing Advanced Innovation Center for Food Nutrition and Human HealthBeijing Engineering and Technology Research Center of Food AdditivesBeijing Technology and Business UniversityBeijingChina
| |
Collapse
|
25
|
Radiation Synthesis of Selenium Nanoparticles Capped with β-Glucan and Its Immunostimulant Activity in Cytoxan-Induced Immunosuppressed Mice. NANOMATERIALS 2021; 11:nano11092439. [PMID: 34578754 PMCID: PMC8469400 DOI: 10.3390/nano11092439] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 09/07/2021] [Accepted: 09/16/2021] [Indexed: 11/25/2022]
Abstract
Selenium nanoparticles (SeNPs) with diameters from 64.8 to 110.1 nm were successfully synthesized by γ-irradiation of solutions containing Se4+ and water-soluble yeast β-glucan. The size and size distribution of SeNPs were analyzed by dynamic light scattering (DLS). Analytical X-ray diffraction (XRD) pattern results confirmed the crystal structure of the Se nanoparticles and Fourier transform infrared (FTIR) spectroscopy revealed that β-glucan could interact with SeNPs through steric (Se…O) linkages leading to a homogeneous and translucent solution state for 60 days without any precipitates. In vivo tests in cytoxan-induced immunosuppressed mice revealed that the daily supplementation of SeNPs/β-glucan at concentrations of 6 mg per kg body weight of tested mice significantly stimulated the generation of cellular immune factors (white blood cells, neutrophil, lymphocyte, B cells, CD4+ cells, CD34+ cells and natural killer cells) and humoral immune indexes (IgM, IgG, TNF-α, IFN-γ and IL-2) in peripheral blood, bone marrow and spleen of the immunosuppressed mice. The obtained results indicated that radiation-synthesized SeNPs/β-glucan may be a candidate for further evaluation as an agent for the prevention of immunosuppression in chemotherapy.
Collapse
|
26
|
Mulberry leaf-derived polysaccharide modulates the immune response and gut microbiota composition in immunosuppressed mice. J Funct Foods 2021. [DOI: 10.1016/j.jff.2021.104545] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
|
27
|
Development of Broad-Spectrum Antiviral Agents-Inspiration from Immunomodulatory Natural Products. Viruses 2021; 13:v13071257. [PMID: 34203182 PMCID: PMC8310077 DOI: 10.3390/v13071257] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 06/20/2021] [Accepted: 06/23/2021] [Indexed: 01/04/2023] Open
Abstract
Developing broad-spectrum antiviral drugs remains an important issue as viral infections continue to threaten public health. Host-directed therapy is a method that focuses on potential targets in host cells or the body, instead of viral proteins. Its antiviral effects are achieved by disturbing the life cycles of pathogens or modulating immunity. In this review, we focus on the development of broad-spectrum antiviral drugs that enhance the immune response. Some natural products present antiviral effects mediated by enhancing immunity, and their structures and mechanisms are summarized here. Natural products with immunomodulatory effects are also discussed, although their antiviral effects remain unknown. Given the power of immunity and the feasibility of host-directed therapy, we argue that both of these categories of natural products provide clues that may be beneficial for the discovery of broad-spectrum antiviral drugs.
Collapse
|
28
|
Study of the immunoregulatory effect of Lactobacillus rhamnosus 1.0320 in immunosuppressed mice. J Funct Foods 2021. [DOI: 10.1016/j.jff.2021.104423] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
|
29
|
Chakraborty S, Dutta K, Gupta P, Das A, Das A, Ghosh SK, Patro BS. Targeting RECQL5 Functions, by a Small Molecule, Selectively Kills Breast Cancer in Vitro and in Vivo. J Med Chem 2021; 64:1524-1544. [PMID: 33529023 DOI: 10.1021/acs.jmedchem.0c01692] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/09/2022]
Abstract
Clinical and preclinical data reveal that RECQL5 protein overexpression in breast cancer was strongly correlated with poor prognosis, survival, and therapeutic resistance. In the current investigation, we report design, synthesis, and specificity of a small molecule, 4a, which can preferentially kill RECQL5-expressing breast cancers but not RECQL5 knockout. Our stringent analysis showed that compound 4a specifically sensitizes RECQL5-expressing cancers, while it did not have any effect on other members of DNA RECQL-helicases. Integrated approaches of organic synthesis, biochemical, in silico molecular simulation, knockouts, functional mutation, and rescue experiments showed that 4a potently inhibits RECQL5-helicase activity and stabilizes RECQL5-RAD51 physical interaction, leading to impaired HRR and preferential killing of RECQL5-expressing breast cancer. Moreover, 4a treatment led to the efficient sensitization of cisplatin-resistant breast cancers but not normal mammary epithelial cells. Pharmacologically, compound 4a was orally effective in reducing the growth of RECQL5-expressing breast tumors (human xenograft) in NUDE-mice with no appreciable toxicity to the vital organs.
Collapse
Affiliation(s)
- Saikat Chakraborty
- Bio-Organic Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085, India.,Homi Bhabha National Institute, Anushaktinagar, Mumbai 400094, India
| | - Kartik Dutta
- Bio-Organic Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085, India.,Homi Bhabha National Institute, Anushaktinagar, Mumbai 400094, India
| | - Pooja Gupta
- Bio-Organic Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085, India.,Homi Bhabha National Institute, Anushaktinagar, Mumbai 400094, India
| | - Anubrata Das
- Bio-Organic Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085, India.,Homi Bhabha National Institute, Anushaktinagar, Mumbai 400094, India
| | - Amit Das
- Homi Bhabha National Institute, Anushaktinagar, Mumbai 400094, India.,Radiation Biology & Health Sciences Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085, India
| | - Sunil Kumar Ghosh
- Bio-Organic Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085, India.,Homi Bhabha National Institute, Anushaktinagar, Mumbai 400094, India
| | - Birija Sankar Patro
- Bio-Organic Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085, India.,Homi Bhabha National Institute, Anushaktinagar, Mumbai 400094, India
| |
Collapse
|
30
|
Obadi M, Sun J, Xu B. Highland barley: Chemical composition, bioactive compounds, health effects, and applications. Food Res Int 2021; 140:110065. [DOI: 10.1016/j.foodres.2020.110065] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Revised: 12/16/2020] [Accepted: 12/21/2020] [Indexed: 12/15/2022]
|
31
|
Sulfated Mesona chinensis Benth polysaccharide enhance the immunomodulatory activities of cyclophosphamide-treated mice. J Funct Foods 2021. [DOI: 10.1016/j.jff.2020.104321] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
|
32
|
Xiang X, Cao N, Chen F, Qian L, Wang Y, Huang Y, Tian Y, Xu D, Li W. Polysaccharide of Atractylodes macrocephala Koidz (PAMK) Alleviates Cyclophosphamide-induced Immunosuppression in Mice by Upregulating CD28/IP3R/PLCγ-1/AP-1/NFAT Signal Pathway. Front Pharmacol 2020; 11:529657. [PMID: 33363462 PMCID: PMC7753208 DOI: 10.3389/fphar.2020.529657] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Accepted: 10/23/2020] [Indexed: 12/24/2022] Open
Abstract
The polysaccharide of Atractylodes macrocephala Koidz (PAMK) is recognized as an immune enhancer, with anti-cancer, anti-tumour, lymphocyte-activating and lymphocytes proliferation-inducing effects. For investigating the mechanism that PAMK alleviates the decline in T cell activation induced by CTX, 24 6-week-old BALB/c female mice were randomly divided into four groups (C, PAMK, CTX, PAMK + CTX). The spleen index, splenocytes morphology and death, cytokine concentration, T cell activating factors (CD25, CD69, CD71), mRNA expression levels related to the CD28 signal pathway were detected. Furthermore, the lymphocytes of mice was isolated and cultured, and then the Th1/Th2 ratio, activating factors, mRNA levels related to the CD28 signal pathway were detected. The results showed that PAMK significantly improved the spleen index, alleviated abnormal splenocytes morphology and death, maintained the balance of Th1/Th2 cells, increased the levels of IL-2, IL-6, TNF-α, and IFN-γ, and increased the mRNA levels of CD28, PLCγ-1, IP3R, NFAT, and AP-1. In conclusion, PAMK increased cytokines levels and alleviated the decline in activation level of lymphocytes induced by CTX through CD28/IP3R/PLCγ-1/AP-1/NFAT signal pathway.
Collapse
Affiliation(s)
- Xuelian Xiang
- Guangdong Province Key Laboratory of Waterfowl Healthy Breeding, College of Animal Science and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| | - Nan Cao
- Guangdong Province Key Laboratory of Waterfowl Healthy Breeding, College of Animal Science and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| | - Feiyue Chen
- Guangdong Province Key Laboratory of Waterfowl Healthy Breeding, College of Animal Science and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| | - Long Qian
- Guangdong Province Key Laboratory of Waterfowl Healthy Breeding, College of Animal Science and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| | - Yifei Wang
- Guangdong Province Key Laboratory of Waterfowl Healthy Breeding, College of Animal Science and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| | - Yunmao Huang
- Guangdong Province Key Laboratory of Waterfowl Healthy Breeding, College of Animal Science and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| | - Yunbo Tian
- Guangdong Province Key Laboratory of Waterfowl Healthy Breeding, College of Animal Science and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| | - Danning Xu
- Guangdong Province Key Laboratory of Waterfowl Healthy Breeding, College of Animal Science and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| | - Wanyan Li
- Guangdong Province Key Laboratory of Waterfowl Healthy Breeding, College of Animal Science and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| |
Collapse
|
33
|
Guo T, Horvath C, Chen L, Chen J, Zheng B. Understanding the nutrient composition and nutritional functions of highland barley (Qingke): A review. Trends Food Sci Technol 2020. [DOI: 10.1016/j.tifs.2020.07.011] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
34
|
Shang J, Wan F, Zhao L, Meng X, Li B. Potential Immunomodulatory Activity of a Selected Strain Bifidobacterium bifidum H3-R2 as Evidenced in vitro and in Immunosuppressed Mice. Front Microbiol 2020; 11:2089. [PMID: 32983062 PMCID: PMC7491056 DOI: 10.3389/fmicb.2020.02089] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Accepted: 08/08/2020] [Indexed: 12/30/2022] Open
Abstract
The microbiota is directly involved in the development and modulation of the intestinal immune system. In particular, members of the genus Bifidobacterium play a primary role in immune regulation. In the present study, Bifidobacterium bifidum H3-R2 was screened from 15 bifidobacterium strains by in vitro experiment, showing a positive tolerance to digestive tract conditions, adhesion ability to intestinal epithelial cells and a regulatory effect on immune cell activity. Immunostimulatory activity of B. bifidum H3-R2 was also elucidated in vivo in cytoxan (CTX)-treated mice. The results showed that the administration of B. bifidum H3-R2 ameliorated the CTX-induced bodyweight loss and imbalanced expression of inflammatory cytokines, enhanced the production of secretory immunoglobulin A (SIgA), and promoted splenic lymphocyte proliferation, natural killer (NK) cell activity and phagocytosis of macrophages in immunosuppressed mice. In addition, B. bifidum H3-R2 restored injured intestinal mucosal, and increased the villus length and crypt depth in CTX-treated mice. The results could be helpful for understanding the functions of B. bifidum H3-R2, supporting its potential as a novel probiotic for immunoregulation.
Collapse
Affiliation(s)
- Jiacui Shang
- Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, Harbin, China
| | - Feng Wan
- Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, Harbin, China
| | - Le Zhao
- Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, Harbin, China
| | - Xiangchen Meng
- Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, Harbin, China.,School of Food Science, Northeast Agricultural University, Harbin, China
| | - Bailiang Li
- Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, Harbin, China.,School of Food Science, Northeast Agricultural University, Harbin, China
| |
Collapse
|
35
|
Zhang WN, Gong LL, Liu Y, Zhou ZB, Wan CX, Xu JJ, Wu QX, Chen L, Lu YM, Chen Y. Immunoenhancement effect of crude polysaccharides of Helvella leucopus on cyclophosphamide-induced immunosuppressive mice. J Funct Foods 2020. [DOI: 10.1016/j.jff.2020.103942] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
|
36
|
Molecular Mechanism of Functional Ingredients in Barley to Combat Human Chronic Diseases. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:3836172. [PMID: 32318238 PMCID: PMC7149453 DOI: 10.1155/2020/3836172] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/26/2019] [Accepted: 03/10/2020] [Indexed: 12/18/2022]
Abstract
Barley plays an important role in health and civilization of human migration from Africa to Asia, later to Eurasia. We demonstrated the systematic mechanism of functional ingredients in barley to combat chronic diseases, based on PubMed, CNKI, and ISI Web of Science databases from 2004 to 2020. Barley and its extracts are rich in 30 ingredients to combat more than 20 chronic diseases, which include the 14 similar and 9 different chronic diseases between grains and grass, due to the major molecular mechanism of six functional ingredients of barley grass (GABA, flavonoids, SOD, K-Ca, vitamins, and tryptophan) and grains (β-glucans, polyphenols, arabinoxylan, phytosterols, tocols, and resistant starch). The antioxidant activity of barley grass and grain has the same and different functional components. These results support findings that barley grain and its grass are the best functional food, promoting ancient Babylonian and Egyptian civilizations, and further show the depending functional ingredients for diet from Pliocene hominids in Africa and Neanderthals in Europe to modern humans in the world. This review paper not only reveals the formation and action mechanism of barley diet overcoming human chronic diseases, but also provides scientific basis for the development of health products and drugs for the prevention and treatment of human chronic diseases.
Collapse
|
37
|
Anti-tumor mechanism of eicosapentaenoic acid (EPA) on ovarian tumor model by improving the immunomodulatory activity in F344 rats. J Funct Foods 2020. [DOI: 10.1016/j.jff.2019.103739] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
|
38
|
Polysaccharides from the flowers of tea (Camellia sinensis L.) modulate gut health and ameliorate cyclophosphamide-induced immunosuppression. J Funct Foods 2019. [DOI: 10.1016/j.jff.2019.103470] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
|
39
|
Yang Q, Huang M, Cai X, Jia L, Wang S. Investigation on activation in RAW264.7 macrophage cells and protection in cyclophosphamide-treated mice of Pseudostellaria heterophylla protein hydrolysate. Food Chem Toxicol 2019; 134:110816. [PMID: 31518602 DOI: 10.1016/j.fct.2019.110816] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2019] [Revised: 09/02/2019] [Accepted: 09/09/2019] [Indexed: 01/07/2023]
Abstract
Our previous study has demonstrated that Pseudostellaria heterophylla protein hydrolysate (PPH) has immunomodulatory activity on murine spleen lymphocytes. The aim of this study was to investigate the excitation of PPH in RAW264.7 macrophage cells and the protective effect in cyclophosphamide (CTX)-treated mice. The results showed PPH of 50 μg/mL could stimulate macrophages resulting in significant promotions of nitric oxide (NO) production, endocytosis and reactive oxygen species formation. Meanwhile, enzyme-linked immunosorbent assay (ELISA) revealed that the levels of tumor necrosis factor-α and interleukin-10 were significantly upregulated by PPH. Furthermore, 50 mg/kg per day PPH restored the T lymphocyte proliferation and natural killer cell activity, and increased NO production and pinocytosis of peritoneal macrophages in CTX-treated mice. These findings indicate PPH plays a crucial role in RAW264.7 macrophage cells activation and in the protection against immunosuppression in CTX-treated mice and could be used as a potential immunostimulant agent.
Collapse
Affiliation(s)
- Qian Yang
- College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350108, China; College of Biological Science and Technology, Fuzhou University, Fuzhou, Fujian, 350108, China
| | - Muchen Huang
- College of Biological Science and Technology, Fuzhou University, Fuzhou, Fujian, 350108, China
| | - Xixi Cai
- College of Biological Science and Technology, Fuzhou University, Fuzhou, Fujian, 350108, China
| | - Lee Jia
- College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350108, China
| | - Shaoyun Wang
- College of Biological Science and Technology, Fuzhou University, Fuzhou, Fujian, 350108, China.
| |
Collapse
|
40
|
Chai Y, Kan L, Zhao M. Enzymatic extraction optimization, anti-HBV and antioxidant activities of polysaccharides from Viscum coloratum (Kom.) Nakai. Int J Biol Macromol 2019; 134:588-594. [DOI: 10.1016/j.ijbiomac.2019.04.173] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2019] [Revised: 04/15/2019] [Accepted: 04/24/2019] [Indexed: 12/13/2022]
|
41
|
Guo MZ, Meng M, Feng CC, Wang X, Wang CL. A novel polysaccharide obtained from Craterellus cornucopioides enhances immunomodulatory activity in immunosuppressive mice models via regulation of the TLR4-NF-κB pathway. Food Funct 2019; 10:4792-4801. [PMID: 31314026 DOI: 10.1039/c9fo00201d] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The immunoregulatory effect of a novel Craterellus cornucopioides polysaccharide (CCP) with a triple-helix structure on immunosuppressive BALB/c mice models was investigated; moreover, the immune response of BALB/c mice models in the preventive and therapeutic treatment groups treated with CCP was explored, and its molecular mechanism was elucidated. It was found that the BALB/c mice models in the preventive groups treated with CCP (120 and 240 mg kg-1 d-1) had better immunoregulatory activity. The spleen and thymus weight indices of the BALB/c mice models were significantly increased, and the histopathological analysis indicated a protective function of CCP against the immunosuppression induced by cyclophosphamide (CTX). Moreover, CCP displayed definite and clear synergistic effects on the T- or B-lymphocyte proliferation induced by ConA or LPS, respectively, promoted the natural killer (NK) cell activity and significantly increased phagocytic activity to activate peritoneal macrophages in immunosuppressive mice. The western blot and quantitative real-time polymerase chain reaction (qRT-PCR) results provided comprehensive evidence that CCP could upregulate the protein expression of the G-protein-coupled cell membrane receptor TLR4 and the production of its downstream protein kinases (TRAF6, TK1, p-IKKα/β and NF-κB p50); this, in turn, enhanced the production of cytokines (IL-2, IL-6, TNF-α and IFN-α) through both preventive and therapeutic treatments via regulation of the TLR4-NFκB pathway in the peritoneal macrophage of immunosuppressive mice.
Collapse
Affiliation(s)
- M-Z Guo
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Food Nutrition and Safety, Ministry of Education, College of Food Engineering and Biotechnology, Tianjin University of Science and Technology, Tianjin, 300457, China.
| | | | | | | | | |
Collapse
|
42
|
Sun Y, Liu Y, Ai C, Song S, Chen X. Caulerpa lentilliferapolysaccharides enhance the immunostimulatory activity in immunosuppressed mice in correlation with modulating gut microbiota. Food Funct 2019; 10:4315-4329. [DOI: 10.1039/c9fo00713j] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Caulerpa lentilliferapolysaccharides could serve as novel prebiotics and immunostimulators, since they improve the immune-related factors and modulate the gut microbiota in cytoxan-induced immunosuppressed mice.
Collapse
Affiliation(s)
- Yujiao Sun
- Natural Food Macromolecule Research Center
- School of Food and Biological Engineering
- Shaanxi University of Science and Technology
- Xi'an 710021
- P. R. China
| | - Yang Liu
- Shaanxi Academy of Traditional Chinese Medicine
- Xi'an 710003
- China
| | - Chunqing Ai
- School of Food Science and Technology
- National Engineering Research Center of Seafood
- Dalian Polytechnic University
- Dalian 116034
- China
| | - Shuang Song
- School of Food Science and Technology
- National Engineering Research Center of Seafood
- Dalian Polytechnic University
- Dalian 116034
- China
| | - Xuefeng Chen
- Natural Food Macromolecule Research Center
- School of Food and Biological Engineering
- Shaanxi University of Science and Technology
- Xi'an 710021
- P. R. China
| |
Collapse
|