1
|
Zhu Y, Zhang KX, Bu QY, Song SX, Chen Y, Zou H, You XY, Zhao GP. Ginsenosides From Panax ginseng Improves Hepatic Lipid Metabolism Disorders in HFD-Fed Rats by Regulating Gut Microbiota and Cholesterol Metabolism Signaling Pathways. Phytother Res 2024. [PMID: 39660634 DOI: 10.1002/ptr.8402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 01/11/2024] [Accepted: 02/27/2024] [Indexed: 12/12/2024]
Abstract
A high-fat diet (HFD) is often associated with hepatic lipid metabolism disorders, leading to dysfunction in multiple body systems. Ginsenosides derived from Panax ginseng have been reported to possess potential effects in ameliorating lipid metabolism disorders; however, their underlying mechanisms remain insufficiently explored. This study aims to investigate the bioactivities of ginsenosides in combating lipid metabolism disorders and obesity, with a focus on their mechanisms involving the cholesterol metabolism signaling pathway and gut microbiota. Our results demonstrated that ginsenoside treatment significantly reduced overall body weight, body weight changes, liver weight, and eWAT weight, as well as alleviated hepatic steatosis and dyslipidemia in HFD-fed rats, without affecting food intake. These effects were dose-dependent. Furthermore, 16S rRNA sequencing revealed that ginsenosides significantly increased the relative abundance of Akkermansia muciniphila, Blautia, Eisenbergiella, Clostridium clusters XI, XVIII, and III, while decreasing the relative abundance of Clostridium subcluster XIVa and Dorea. In addition, ginsenoside treatment significantly regulated the expression of hepatic genes and proteins involved in the cholesterol metabolism signaling pathway (FXR, CYP7A1, CYP7B1, CYP27A1, ABCG5, ABCG8, Insig2, and Dhcr7), potentially inhibiting hepatic cholesterol biosynthesis while promoting cholesterol transport to HDL and its excretion via bile and feces. Notably, levels of 7-dehydrocholesterol (7-DHC) and 27-hydroxycholesterol (27-OHC) were reduced, while 5β,6β-epoxycholesterol (5,6β-epoxy) levels were elevated following ginsenoside treatment, indicating significant modulation of oxysterols by ginsenosides. Moreover, bile acid enterohepatic circulation was regulated through the enhancement of hepatic FXR-CYP7A1 signaling and intestinal FXR-FGF15 signaling in HFD-fed rats treated with ginsenosides, which was closely linked to gut microbiota composition. Collectively, our findings suggest that ginsenosides alleviate hepatic lipid metabolism disorders by modulating gut microbiota and the cholesterol metabolism signaling pathway in HFD-fed rats.
Collapse
Affiliation(s)
- Yue Zhu
- Master Lab for Innovative Application of Nature Products, National Center of Technology Innovation for Synthetic Biology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
| | - Kang-Xi Zhang
- Master Lab for Innovative Application of Nature Products, National Center of Technology Innovation for Synthetic Biology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
- Henan Engineering Research Center of Food Microbiology, College of Food and Bioengineering, Henan University of Science and Technology, Luoyang, China
| | - Qing-Yun Bu
- Master Lab for Innovative Application of Nature Products, National Center of Technology Innovation for Synthetic Biology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
- Henan Engineering Research Center of Food Microbiology, College of Food and Bioengineering, Henan University of Science and Technology, Luoyang, China
- Haihe Laboratory of Synthetic Biology, Tianjin, China
| | - Shu-Xia Song
- Master Lab for Innovative Application of Nature Products, National Center of Technology Innovation for Synthetic Biology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
- Henan Engineering Research Center of Food Microbiology, College of Food and Bioengineering, Henan University of Science and Technology, Luoyang, China
- Haihe Laboratory of Synthetic Biology, Tianjin, China
| | - Yue Chen
- Master Lab for Innovative Application of Nature Products, National Center of Technology Innovation for Synthetic Biology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
| | - Hong Zou
- CAS Engineering Laboratory for Nutrition, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, China
| | - Xiao-Yan You
- Master Lab for Innovative Application of Nature Products, National Center of Technology Innovation for Synthetic Biology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
- Henan Engineering Research Center of Food Microbiology, College of Food and Bioengineering, Henan University of Science and Technology, Luoyang, China
| | - Guo-Ping Zhao
- Master Lab for Innovative Application of Nature Products, National Center of Technology Innovation for Synthetic Biology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
- CAS-Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
| |
Collapse
|
2
|
Geng J, Wu Y, Tian H, Dong J. Alleviation of High-Fat Diet-Induced Hyperlipidemia in Mice by Stachys sieboldii Miq. Huangjiu via the Modulation of Gut Microbiota Composition and Metabolic Function. Foods 2024; 13:2360. [PMID: 39123552 PMCID: PMC11312184 DOI: 10.3390/foods13152360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 07/22/2024] [Accepted: 07/23/2024] [Indexed: 08/12/2024] Open
Abstract
Hyperlipidemia is a chronic disease that is difficult to cure, and long-term pharmacotherapy may have negative consequences. Dietary therapy is a very promising strategy, and Chinese rice wine (Huangjiu) will play an important role because of its many biologically active components. In this work, the alleviating effect of Stachys sieboldii Miq. Huangjiu (CSCHJ) on high-fat diet-induced hyperlipidemia in mice was investigated, which is brewed from the wheat Qu with the addition of Stachys sieboldii Miq. and contains 15.54 g/L of polysaccharides. The experimental results showed that CSCHJ inhibited appetite, reduced body weight and blood sugar levels, and downregulated the serum levels of total cholesterol (TC), triglycerides (TG), and low-density lipoprotein cholesterol (LDL-C) while concurrently upregulating high-density lipoprotein cholesterol (HDL-C) in the high-fat diet-induced hyperlipidemia mice. At the same time, it was discovered that alcohol worsens hyperlipidemia symptoms and related physiological markers, implying that CSCHJ polysaccharides may play a role in hyperlipidemia treatment. Through the assessment of organ indices, liver and kidney function, and tissue staining, CSCHJ demonstrated efficacy in repairing liver, kidney, and colon mucosal damage in hyperlipidemic mice. Furthermore, 16S rDNA sequencing and gas chromatography studies revealed that CSCHJ effectively restored the intestinal microbial structure and enhanced the quantity of fecal short-chain fatty acids (SCFAs) in hyperlipidemic mice. Therefore, the alleviating effect of CSCHJ on hyperlipidemia in mice may be attributed to its regulation of energy metabolism by repairing liver, kidney, and colon mucosal damage and restoring the gut microbiota structure, among other mechanisms. Overall, our findings provide evidence that CSCHJ contains active ingredients capable of alleviating hyperlipidemia, thereby laying a theoretical foundation for the extraction of bioactive substances from Huangjiu for future medical or dietary use.
Collapse
Affiliation(s)
- Jingzhang Geng
- Shaanxi Province Key Laboratory of Bio-Resources, QinLing-Bashan Mountains Bioresources Comprehensive Development C. I. C., Qinba State Key Laboratory of Biological Resources and Ecological Environment, Shaanxi University of Technology, 1 East 1st Ring Road, Hanzhong 723001, China; (J.G.); (Y.W.); (H.T.)
- School of Life Science and Technology, Xi’an Jiaotong University, Xianning West Road, Xi’an 710049, China
| | - Yunxia Wu
- Shaanxi Province Key Laboratory of Bio-Resources, QinLing-Bashan Mountains Bioresources Comprehensive Development C. I. C., Qinba State Key Laboratory of Biological Resources and Ecological Environment, Shaanxi University of Technology, 1 East 1st Ring Road, Hanzhong 723001, China; (J.G.); (Y.W.); (H.T.)
| | - Honglei Tian
- Shaanxi Province Key Laboratory of Bio-Resources, QinLing-Bashan Mountains Bioresources Comprehensive Development C. I. C., Qinba State Key Laboratory of Biological Resources and Ecological Environment, Shaanxi University of Technology, 1 East 1st Ring Road, Hanzhong 723001, China; (J.G.); (Y.W.); (H.T.)
| | - Jianwei Dong
- Shaanxi Province Key Laboratory of Bio-Resources, QinLing-Bashan Mountains Bioresources Comprehensive Development C. I. C., Qinba State Key Laboratory of Biological Resources and Ecological Environment, Shaanxi University of Technology, 1 East 1st Ring Road, Hanzhong 723001, China; (J.G.); (Y.W.); (H.T.)
| |
Collapse
|
3
|
Zang Z, Gong X, Cao L, Ni H, Chang H. Resistant starch from yam: Preparation, nutrition, properties and applications in the food sector. Int J Biol Macromol 2024; 273:133087. [PMID: 38871109 DOI: 10.1016/j.ijbiomac.2024.133087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 06/06/2024] [Accepted: 06/09/2024] [Indexed: 06/15/2024]
Abstract
Yam is a significant staple food and starch source, particularly in tropical and subtropical regions, holding the fourth position among the world's top ten tuber crops. Yam tubers are rich in essential nutrients and a diverse range of beneficial plant compounds, which contribute to their multifaceted beneficial functions. Furthermore, the abundant starch and resistant starch (RS) content in yam can fulfil the market demand for RS. The inherent and modified properties of yam starch and RS make them versatile ingredients for a wide range of food products, with the potential to become one of the most cost-effective raw materials in the food industry. In recent years, research on yam RS has experienced progressive expansion. This article provides a comprehensive summary of the latest research findings on yam starch and its RS, elucidating the feasibility of commercial RS production and the technology's impact on the physical and chemical properties of starch. Yam has emerged as a promising reservoir of tuber starch for sustainable RS production, with thermal, chemical, enzymatic and combination treatments proving to be effective manufacturing procedures for RS. The adaptability of yam RS allows for a wide range of food applications.
Collapse
Affiliation(s)
- Ziyan Zang
- College of Food Science, Southwest University, Chongqing 400715, People's Republic of China.
| | - Xiaoxiao Gong
- College of Food Science, Southwest University, Chongqing 400715, People's Republic of China.
| | - Linhai Cao
- College of Food Science, Southwest University, Chongqing 400715, People's Republic of China.
| | - Hongxia Ni
- College of Food Science, Southwest University, Chongqing 400715, People's Republic of China.
| | - Hui Chang
- College of Food Science, Southwest University, Chongqing 400715, People's Republic of China.
| |
Collapse
|
4
|
Feng Q, Lin J, Niu Z, Wu T, Shen Q, Hou D, Zhou S. A Comparative Analysis between Whole Chinese Yam and Peeled Chinese Yam: Their Hypolipidemic Effects via Modulation of Gut Microbiome in High-Fat Diet-Fed Mice. Nutrients 2024; 16:977. [PMID: 38613011 PMCID: PMC11013417 DOI: 10.3390/nu16070977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 03/25/2024] [Accepted: 03/25/2024] [Indexed: 04/14/2024] Open
Abstract
Chinese yam is a "medicine food homology" food with medical properties, but little is known about its health benefits on hyperlipidemia. Furthermore, the effect of peeling processing on the efficacy of Chinese yam is still unclear. In this study, the improvement effects of whole Chinese yam (WY) and peeled Chinese yam (PY) on high-fat-diet (HFD)-induced hyperlipidemic mice were explored by evaluating the changes in physiological, biochemical, and histological parameters, and their modulatory effects on gut microbiota were further illustrated. The results show that both WY and PY could significantly attenuate the HFD-induced obesity phenotype, accompanied by the mitigative effect on epididymis adipose damage and hepatic tissue injury. Except for the ameliorative effect on TG, PY retained the beneficial effects of WY on hyperlipemia. Furthermore, 16S rRNA sequencing revealed that WY and PY reshaped the gut microbiota composition, especially the bloom of several beneficial bacterial strains (Akkermansia, Bifidobacterium, and Faecalibaculum) and the reduction in some HFD-dependent taxa (Mucispirillum, Coriobacteriaceae_UCG-002, and Candidatus_Saccharimonas). PICRUSt analysis showed that WY and PY could significantly regulate lipid transport and metabolism-related pathways. These findings suggest that Chinese yam can alleviate hyperlipidemia via the modulation of the gut microbiome, and peeling treatment had less of an effect on the lipid-lowering efficacy of yam.
Collapse
Affiliation(s)
- Qiqian Feng
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, School of Food and Health, Beijing Technology and Business University, Beijing 100048, China; (Q.F.); (J.L.); (Z.N.); (S.Z.)
- Beijing Engineering and Technology Research Center of Food Additives, School of Food and Health, Beijing Technology and Business University, Beijing 100048, China
- Key Laboratory of Green Manufacturing and Biosynthesis of Food Bioactive Substances, China General Chamber of Commerce, Beijing 100048, China
| | - Jinquan Lin
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, School of Food and Health, Beijing Technology and Business University, Beijing 100048, China; (Q.F.); (J.L.); (Z.N.); (S.Z.)
- Beijing Engineering and Technology Research Center of Food Additives, School of Food and Health, Beijing Technology and Business University, Beijing 100048, China
- Key Laboratory of Green Manufacturing and Biosynthesis of Food Bioactive Substances, China General Chamber of Commerce, Beijing 100048, China
| | - Zhitao Niu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, School of Food and Health, Beijing Technology and Business University, Beijing 100048, China; (Q.F.); (J.L.); (Z.N.); (S.Z.)
- Beijing Engineering and Technology Research Center of Food Additives, School of Food and Health, Beijing Technology and Business University, Beijing 100048, China
- Key Laboratory of Green Manufacturing and Biosynthesis of Food Bioactive Substances, China General Chamber of Commerce, Beijing 100048, China
| | - Tong Wu
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; (T.W.); (Q.S.)
| | - Qun Shen
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; (T.W.); (Q.S.)
| | - Dianzhi Hou
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, School of Food and Health, Beijing Technology and Business University, Beijing 100048, China; (Q.F.); (J.L.); (Z.N.); (S.Z.)
- Beijing Engineering and Technology Research Center of Food Additives, School of Food and Health, Beijing Technology and Business University, Beijing 100048, China
- Key Laboratory of Green Manufacturing and Biosynthesis of Food Bioactive Substances, China General Chamber of Commerce, Beijing 100048, China
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; (T.W.); (Q.S.)
| | - Sumei Zhou
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, School of Food and Health, Beijing Technology and Business University, Beijing 100048, China; (Q.F.); (J.L.); (Z.N.); (S.Z.)
- Beijing Engineering and Technology Research Center of Food Additives, School of Food and Health, Beijing Technology and Business University, Beijing 100048, China
- Key Laboratory of Green Manufacturing and Biosynthesis of Food Bioactive Substances, China General Chamber of Commerce, Beijing 100048, China
| |
Collapse
|
5
|
Jiali L, Wu Z, Liu L, Yang J, Wang L, Li Z, Liu L. The research advance of resistant starch: structural characteristics, modification method, immunomodulatory function, and its delivery systems application. Crit Rev Food Sci Nutr 2023; 64:10885-10902. [PMID: 37409451 DOI: 10.1080/10408398.2023.2230287] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/07/2023]
Abstract
Resistant starch, also known as anti-digestion enzymatic starch, which cannot be digested or absorbed in the human small intestine. It can be fermented in the large intestine into short-chain fatty acids (SCFAs) and metabolites, which are advantageous to the human body. Starches can classify as rapidly digestible starch (RDS), slowly digestible starch (SDS), and resistant starch (RS), which possess high thermal stability, low water holding capacity, and emulsification characteristics. Resistant starch has excellent physiological functions such as stabilizing postprandial blood glucose levels, preventing type II diabetes, preventing intestinal inflammation, and regulating gut microbiota phenotype. It is extensively utilized in food processing, delivery system construction, and Pickering emulsion due to its processing properties. The resistant starches, with their higher resistance to enzymatic hydrolysis, support their suitability as a potential drug carrier. Therefore, this review focuses on resistant starch with structural features, modification characteristics, immunomodulatory functions, and delivery system applications. The objective was to provide theoretical guidance for applying of resistant starch to food health related industries.
Collapse
Affiliation(s)
- Li Jiali
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, Key Laboratory of Animal Protein Deep Processing Technology of Zhejiang, School of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, Zhejiang, People's Republic of China
| | - Zufang Wu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, Key Laboratory of Animal Protein Deep Processing Technology of Zhejiang, School of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, Zhejiang, People's Republic of China
| | - Lingyi Liu
- Department of Food Science & Technology, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - Junsi Yang
- Department of Food Science & Technology, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - Lei Wang
- School of Liquor and Food Engineering, Guizhou University, Guiyang, Guizhou, People's Republic of China
| | - Zhaofeng Li
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, People's Republic of China
| | - Lianliang Liu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, Key Laboratory of Animal Protein Deep Processing Technology of Zhejiang, School of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, Zhejiang, People's Republic of China
| |
Collapse
|
6
|
Liu L, Lei S, Lin X, Ji J, Wang Y, Zheng B, Zhang Y, Zeng H. Lotus seed resistant starch and sodium lactate regulate small intestinal microflora and metabolite to reduce blood lipid. Int J Biol Macromol 2023; 233:123553. [PMID: 36740125 DOI: 10.1016/j.ijbiomac.2023.123553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 01/30/2023] [Accepted: 02/01/2023] [Indexed: 02/07/2023]
Affiliation(s)
- Lu Liu
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Fujian Provincial Key Laboratory of Quality Science and Processing Technology in Special Starch, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Suzhen Lei
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Fujian Provincial Key Laboratory of Quality Science and Processing Technology in Special Starch, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Xiaoli Lin
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Fujian Provincial Key Laboratory of Quality Science and Processing Technology in Special Starch, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Junfu Ji
- College of Food Science and Nutritional Engineering, National Engineering Research Center for Fruit and Vegetable Processing, China Agricultural University, Key Lab of Fruit and Vegetable Processing, Ministry of Agriculture and Rural Affairs, Beijing 100083, China
| | - Yanbo Wang
- School of Food and Health, Beijing Technology and Business University, Beijing 100048, China
| | - Baodong Zheng
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Fujian Provincial Key Laboratory of Quality Science and Processing Technology in Special Starch, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Key Laboratory of Marine Biotechnology of Fujian Province, Institute of Oceanology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yi Zhang
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Fujian Provincial Key Laboratory of Quality Science and Processing Technology in Special Starch, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Key Laboratory of Marine Biotechnology of Fujian Province, Institute of Oceanology, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| | - Hongliang Zeng
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Fujian Provincial Key Laboratory of Quality Science and Processing Technology in Special Starch, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Key Laboratory of Marine Biotechnology of Fujian Province, Institute of Oceanology, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| |
Collapse
|
7
|
Wang Z, Zhao S, Tao S, Hou G, Zhao F, Tan S, Meng Q. Dioscorea spp.: Bioactive Compounds and Potential for the Treatment of Inflammatory and Metabolic Diseases. Molecules 2023; 28:molecules28062878. [PMID: 36985850 PMCID: PMC10051580 DOI: 10.3390/molecules28062878] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 03/18/2023] [Accepted: 03/21/2023] [Indexed: 03/30/2023] Open
Abstract
Dioscorea spp. belongs to the Dioscoreaceae family, known as "yams", and contains approximately 600 species with a wide distribution. It is a major food source for millions of people in tropical and subtropical regions. Dioscorea has great medicinal and therapeutic capabilities and is a potential source of bioactive substances for the prevention and treatment of many diseases. In recent years, increasing attention has been paid to the phytochemicals of Dioscorea, such as steroidal saponins, polyphenols, allantoin, and, in particular, polysaccharides and diosgenin. These bioactive compounds possess anti-inflammatory activity and are protective against a variety of inflammatory diseases, such as enteritis, arthritis, dermatitis, acute pancreatitis, and neuroinflammation. In addition, they play an important role in the prevention and treatment of metabolic diseases, including obesity, dyslipidemia, diabetes, and non-alcoholic fatty liver disease. Their mechanisms of action are related to the modulation of a number of key signaling pathways and molecular targets. This review mainly summarizes recent studies on the bioactive compounds of Dioscorea and its treatment of inflammatory and metabolic diseases, and highlights the underlying molecular mechanisms. In conclusion, Dioscorea is a promising source of bioactive components and has the potential to develop novel natural bioactive compounds for the prevention and treatment of inflammatory and metabolic diseases.
Collapse
Affiliation(s)
- Zhen Wang
- Key Laboratory of Molecular Pharmacology and Drug Evaluation, School of Pharmacy, Yantai University, Yantai 264005, China
| | - Shengnan Zhao
- Key Laboratory of Molecular Pharmacology and Drug Evaluation, School of Pharmacy, Yantai University, Yantai 264005, China
| | - Siyu Tao
- Physiology Group, Department of Basic and Applied Medical Sciences, Ghent University, 9000 Ghent, Belgium
| | - Guige Hou
- School of Pharmacy, Binzhou Medical University, Yantai 264003, China
| | - Fenglan Zhao
- Key Laboratory of Molecular Pharmacology and Drug Evaluation, School of Pharmacy, Yantai University, Yantai 264005, China
| | - Shenpeng Tan
- Key Laboratory of Molecular Pharmacology and Drug Evaluation, School of Pharmacy, Yantai University, Yantai 264005, China
| | - Qingguo Meng
- Key Laboratory of Molecular Pharmacology and Drug Evaluation, School of Pharmacy, Yantai University, Yantai 264005, China
| |
Collapse
|
8
|
Li Z, Zhang F, Zhao Y, Liu X, Xie J, Ma X. Effects of different starch diets on growth performance, intestinal health and faecal microbiota of growing pigs. J Anim Physiol Anim Nutr (Berl) 2023. [PMID: 36805671 DOI: 10.1111/jpn.13810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 12/01/2022] [Accepted: 01/30/2023] [Indexed: 02/21/2023]
Abstract
This experiment was conducted to investigate the effects of different starch source diets on growth performance, intestinal health, and, microbiota of growing pigs. Eighteen healthy "Duroc × Landrace × Yorkshire" pigs (50 ± 0.61 kg, Castrated boar) were randomly divided into three groups with six replicates and one pig per replicate. The pigs in the three treatments were fed diets prepared with cassava flour (CF), rice bran (RB) and sorghum flour (SF), respectively, and the nutritional levels of the three treatments were the same. The experiment lasted for 28 days. The results showed that pigs in the RB group had significantly increased average daily gain (ADG, p < 0.05) compared with pigs in CF and SF groups. Compared with pigs in the CF group, the final body weight (FBW) of growing pigs in the RB group was increased and the ratio of feed to gain (F: G) was decreased (p < 0.05). There was no significant difference between FBW and F: G between the SF group and the other two groups. Compared with the CF group, the RB group significantly increased the jejunum amylase activity (p < 0.05), and there was no significant difference between the SF group and the other two groups. Compared with growing pigs in the CF group and SF group, the duodenal villus height and villus height/crypt depth ratio of growing pigs in the RB group were significantly increased (p < 0.05). The concentrations of acetic acid, propionic acid, and total VFA in the colon and caecum of piglets in the SF group were significantly increased (p < 0.05) compared to piglets in CF and RB groups, and there was no significant difference between the CF group and RB group. Compared with the RB group, caecal butyric acid concentration was significantly increased in SF and CF groups (p < 0.05). Seven dominant phyla were identified at the phylum level, among which Firmicutes, Bacteroidota and Spirochaetota were dominant phyla, accounting for 74.18%, 14.87% and 6.56% of the RB group respectively. Cassava flour group accounted for 80.22%, 9.64% and 3.71%; Accounting for 65.33%, 17.34% and 13.07% of the SF group. Through the comparative analysis of microbial differences among the treatment groups, it was found that at the phylum level, compared with the SF group, the abundance of Synergistota in the diet of the CF group and the diet of the RB group was significantly increased (p < 0.05). The abundance decreased significantly (p < 0.05). The quantity of Desulfobacterota in the RB group was significantly higher than that in the CF group (p < 0.05). In conclusion, compared with sorghum starch and cassava starch, RB starch can improve the activity of digestive enzymes and villus height in the small intestine of growing pigs and promote the growth of pigs by protecting the intestinal health of growing pigs.
Collapse
Affiliation(s)
- Zhiqing Li
- Animal Nutritional Genome and Germplasm Innovation Research Center, College of Animal Science and Technology, Hunan Agricultural University, Changsha, People's Republic China.,National Center of Technology Innovation for Synthetic Biology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
| | - Fan Zhang
- Animal Nutritional Genome and Germplasm Innovation Research Center, College of Animal Science and Technology, Hunan Agricultural University, Changsha, People's Republic China
| | - Yirun Zhao
- Animal Nutritional Genome and Germplasm Innovation Research Center, College of Animal Science and Technology, Hunan Agricultural University, Changsha, People's Republic China
| | - Xiang Liu
- Animal Nutritional Genome and Germplasm Innovation Research Center, College of Animal Science and Technology, Hunan Agricultural University, Changsha, People's Republic China
| | - Junyan Xie
- National Center of Technology Innovation for Synthetic Biology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
| | - Xiaokang Ma
- Animal Nutritional Genome and Germplasm Innovation Research Center, College of Animal Science and Technology, Hunan Agricultural University, Changsha, People's Republic China.,National Center of Technology Innovation for Synthetic Biology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
| |
Collapse
|
9
|
A Status Review on Health-Promoting Properties and Global Regulation of Essential Oils. Molecules 2023; 28:molecules28041809. [PMID: 36838797 PMCID: PMC9968027 DOI: 10.3390/molecules28041809] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 01/31/2023] [Accepted: 02/09/2023] [Indexed: 02/17/2023] Open
Abstract
Since ancient times, essential oils (EOs) have been known for their therapeutic potential against many health issues. Recent studies suggest that EOs may contribute to the regulation and modulation of various biomarkers and cellular pathways responsible for metabolic health as well as the development of many diseases, including cancer, obesity, diabetes, cardiovascular diseases, and bacterial infections. During metabolic dysfunction and even infections, the immune system becomes compromised and releases pro-inflammatory cytokines that lead to serious health consequences. The bioactive compounds present in EOs (especially terpenoids and phenylpropanoids) with different chemical compositions from fruits, vegetables, and medicinal plants confer protection against these metabolic and infectious diseases through anti-inflammatory, antioxidant, anti-cancer, and anti-microbial properties. In this review, we have highlighted some targeted physiological and cellular actions through which EOs may exhibit anti-inflammatory, anti-cancer, and anti-microbial properties. In addition, it has been observed that EOs from specific plant sources may play a significant role in the prevention of obesity, diabetes, hypertension, dyslipidemia, microbial infections, and increasing breast milk production, along with improvements in heart, liver, and brain health. The current status of the bioactive activities of EOs and their therapeutic effects are covered in this review. However, with respect to the health benefits of EOs, it is very important to regulate the dose and usage of EOs to reduce their adverse health effects. Therefore, we specified that some countries have their own regulatory bodies while others follow WHO and FAO standards and legislation for the use of EOs.
Collapse
|
10
|
Liu M, Shi W, Huang Y, Wu Y, Wu K. Intestinal flora: A new target for traditional Chinese medicine to improve lipid metabolism disorders. Front Pharmacol 2023; 14:1134430. [PMID: 36937840 PMCID: PMC10014879 DOI: 10.3389/fphar.2023.1134430] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Accepted: 02/13/2023] [Indexed: 03/05/2023] Open
Abstract
Lipid metabolism disorders (LMD) can cause a series of metabolic diseases, including hyperlipidemia, obesity, non-alcoholic fatty liver disease (NAFLD) and atherosclerosis (AS). Its development is caused by more pathogenic factors, among which intestinal flora dysbiosis is considered to be an important pathogenic mechanism of LMD. In recent years, the research on intestinal flora has made great progress, opening up new perspectives on the occurrence and therapeutic effects of diseases. With its complex composition and wide range of targets, traditional Chinese medicine (TCM) is widely used to prevent and treat LMD. This review takes intestinal flora as a target, elaborates on the scientific connotation of TCM in the treatment of LMD, updates the therapeutic thinking of LMD, and provides a reference for clinical diagnosis and treatment.
Collapse
Affiliation(s)
- Min Liu
- Department of Gynecology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Wei Shi
- Department of Gynecology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Yefang Huang
- Department of Gynecology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Yeke Wu
- Department of Stomatology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Keming Wu
- Department of Gynecology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| |
Collapse
|
11
|
Wang H, Huang X, Tan H, Chen X, Chen C, Nie S. Interaction between dietary fiber and bifidobacteria in promoting intestinal health. Food Chem 2022; 393:133407. [PMID: 35696956 DOI: 10.1016/j.foodchem.2022.133407] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 06/01/2022] [Accepted: 06/03/2022] [Indexed: 01/10/2023]
Abstract
Bifidobacteria are considered as probiotics due to their role in promoting intestinal health, including regulating intestinal flora, controlling glycolipid metabolism, anti-colitis effects. Dietary fiber is considered as prebiotic favoring gut health. It also can be used as carbon source to support the growth and colonization of probiotics like bifidobacteria. However, because of genetic diversity, different bifidobacterial species differ in their ability to utilize dietary fiber. Meanwhile, dietary fiber with different structural properties has different effects on the bifidobacteria proliferation. The interaction between dietary fiber and bifidobacteria will consequently lead to a synergistic or antagonistic function in promoting intestinal health, therefore affecting the application of combined use of dietary fiber and bifidobacteria. In this case, we summarize the biological function of bifidobacteria, and their interaction with different dietary fiber in promoting gut health, and finally provide several strategies about their combined use.
Collapse
Affiliation(s)
- Hui Wang
- State Key Laboratory of Food Science and Technology, China-Canada Joint Lab of Food Science and Technology (Nanchang), Nanchang University, 235 Nanjing East Road, Nanchang 330047, China
| | - Xiaojun Huang
- State Key Laboratory of Food Science and Technology, China-Canada Joint Lab of Food Science and Technology (Nanchang), Nanchang University, 235 Nanjing East Road, Nanchang 330047, China.
| | - Huizi Tan
- State Key Laboratory of Food Science and Technology, China-Canada Joint Lab of Food Science and Technology (Nanchang), Nanchang University, 235 Nanjing East Road, Nanchang 330047, China
| | - Xiaomin Chen
- State Key Laboratory of Food Science and Technology, China-Canada Joint Lab of Food Science and Technology (Nanchang), Nanchang University, 235 Nanjing East Road, Nanchang 330047, China
| | - Chunhua Chen
- State Key Laboratory of Food Science and Technology, China-Canada Joint Lab of Food Science and Technology (Nanchang), Nanchang University, 235 Nanjing East Road, Nanchang 330047, China
| | - Shaoping Nie
- State Key Laboratory of Food Science and Technology, China-Canada Joint Lab of Food Science and Technology (Nanchang), Nanchang University, 235 Nanjing East Road, Nanchang 330047, China
| |
Collapse
|
12
|
Research Progress on Hypoglycemic Mechanisms of Resistant Starch: A Review. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27207111. [PMID: 36296704 PMCID: PMC9610089 DOI: 10.3390/molecules27207111] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 10/18/2022] [Accepted: 10/19/2022] [Indexed: 11/07/2022]
Abstract
In recent years, the prevalence of diabetes is on the rise, globally. Resistant starch (RS) has been known as a kind of promising dietary fiber for the prevention or treatment of diabetes. Therefore, it has become a hot topic to explore the hypoglycemic mechanisms of RS. In this review, the mechanisms have been summarized, according to the relevant studies in the recent 15 years. In general, the blood glucose could be regulated by RS by regulating the intestinal microbiota disorder, resisting digestion, reducing inflammation, regulating the hypoglycemic related enzymes and some other mechanisms. Although the exact mechanisms of the beneficial effects of RS have not been fully verified, it is indicated that RS can be used as a daily dietary intervention to reduce the risk of diabetes in different ways. In addition, further research on hypoglycemic mechanisms of RS impacted by the RS categories, the different experimental animals and various dietary habits of human subjects, have also been discussed in this review.
Collapse
|
13
|
Hu Y, Chen X, Hu M, Zhang D, Yuan S, Li P, Feng L. Medicinal and edible plants in the treatment of dyslipidemia: advances and prospects. Chin Med 2022; 17:113. [PMID: 36175900 PMCID: PMC9522446 DOI: 10.1186/s13020-022-00666-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 08/29/2022] [Indexed: 11/10/2022] Open
Abstract
Dyslipidemia is an independent risk factor of cardiovascular diseases (CVDs), which lead to the high mortality, disability, and medical expenses in the worldwide. Based on the previous researches, the improvement of dyslipidemia could efficiently prevent the occurrence and progress of cardiovascular diseases. Medicinal and edible plants (MEPs) are the characteristics of Chinese medicine, and could be employed for the disease treatment and health care mostly due to their homology of medicine and food. Compared to the lipid-lowering drugs with many adverse effects, such as rhabdomyolysis and impaired liver function, MEPs exhibit the great potential in the treatment of dyslipidemia with high efficiency, good tolerance and commercial value. In this review, we would like to introduce 20 kinds of MEPs with lipid-lowering effect in the following aspects, including the source, function, active component, target and underlying mechanism, which may provide inspiration for the development of new prescription, functional food and complementary therapy for dyslipidemia.
Collapse
Affiliation(s)
- Ying Hu
- China Academy of Chinese Medical Sciences Guang'anmen Hospital, Beijing, 100053, China
- China Academy of Chinese Medical Sciences, Beijing, 100700, China
- Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Xingjuan Chen
- China Academy of Chinese Medical Sciences Guang'anmen Hospital, Beijing, 100053, China
| | - Mu Hu
- China Academy of Chinese Medical Sciences Guang'anmen Hospital, Beijing, 100053, China
- China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Dongwei Zhang
- The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450000, China
| | - Shuo Yuan
- Henan Key Laboratory of Children's Genetics and Metabolic Diseases, Children's Hospital Affiliated to Zhengzhou University, Henan Children's Hospital, Zhengzhou Children's Hospital, Zhengzhou, 450018, China.
| | - Ping Li
- Beijing University of Chinese Medicine, Beijing, 100029, China.
- Beijing University of Chinese Medicine Third Affiliated Hospital, Beijing, 100029, China.
| | - Ling Feng
- China Academy of Chinese Medical Sciences Guang'anmen Hospital, Beijing, 100053, China.
- China Academy of Chinese Medical Sciences, Beijing, 100700, China.
| |
Collapse
|
14
|
Chang D, Hu X, Ma Z. Pea-Resistant Starch with Different Multi-scale Structural Features Attenuates the Obesity-Related Physiological Changes in High-Fat Diet Mice. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:11377-11390. [PMID: 36026466 DOI: 10.1021/acs.jafc.2c03289] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The present study compared the modulatory effects of different resistant starches (RSs) isolated from native (NP-RS), acid-hydrolyzed (AHP-RS), and pullulanase debranched (PDP-RS) pea starches on the corresponding in vivo metabolic responses in high fat (HF)-diet-induced obese mice. The biochemical studies on serum lipid profile and antioxidant enzyme activities were supported by histological and gene expression analyses, which suggested a potential therapeutic role for RS in regulating obesity, possibly through the production of short-chain fatty acids and the proliferation of some beneficial colonic bacteria, including Allobaculum, Bifidobacterium, Odoribacter, Clostridium, and Prevotella. Particularly, a more pronounced effect of AHP-RS with a higher proportion of the crystalline region and a more ordered double-helical alignment on improving the hyperlipidemic symptoms in obese mice induced by a HF diet was observed. Our analysis revealed that the RS3 samples seemed to be more effective than RS2 in terms of attenuating obesity in mice that were fed a HF diet.
Collapse
Affiliation(s)
- Danni Chang
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710062, Shaanxi, China
| | - Xinzhong Hu
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710062, Shaanxi, China
| | - Zhen Ma
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710062, Shaanxi, China
| |
Collapse
|
15
|
Zhu W, Zhou Y, Tsao R, Dong H, Zhang H. Amelioratory Effect of Resistant Starch on Non-alcoholic Fatty Liver Disease via the Gut-Liver Axis. Front Nutr 2022; 9:861854. [PMID: 35662935 PMCID: PMC9159374 DOI: 10.3389/fnut.2022.861854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 04/19/2022] [Indexed: 11/13/2022] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is a hepatic manifestation of metabolic syndrome with a global prevalence. Impaired gut barrier function caused by an unhealthy diet plays a key role in disrupting the immune-metabolic homeostasis of the gut-liver axis (GLA), leading to NAFLD. Therefore, dietary interventions have been studied as feasible alternative therapeutic approaches to ameliorate NAFLD. Resistant starches (RSs) are prebiotics that reduce systemic inflammation in patients with metabolic syndrome. The present review aimed to elucidate the mechanisms of the GLA in alleviating NAFLD and provide insights into how dietary RSs counteract diet-induced inflammation in the GLA. Emerging evidence suggests that RS intake alters gut microbiota structure, enhances mucosal immune tolerance, and promotes the production of microbial metabolites such as short-chain fatty acids (SCFAs) and secondary bile acids. These metabolites directly stimulate the growth of intestinal epithelial cells and elicit GPR41/GPR43, FXR, and TGR5 signaling cascades to sustain immune-metabolic homeostasis in the GLA. The literature also revealed the dietary-immune-metabolic interplay by which RSs exert their regulatory effect on the immune-metabolic crosstalk of the GLA and the related molecular basis, suggesting that dietary intervention with RSs may be a promising alternative therapeutic strategy against diet-induced dysfunction of the GLA and, ultimately, the risk of developing NAFLD.
Collapse
Affiliation(s)
- Weifeng Zhu
- Department of Food Nutrition and Safety, College of Pharmacy, Jiangxi University of Traditional Chinese Medicine, Nanchang, China
| | - Ying Zhou
- Department of Food Nutrition and Safety, College of Pharmacy, Jiangxi University of Traditional Chinese Medicine, Nanchang, China
| | - Rong Tsao
- Guelph Research and Development Centre, Agriculture and Agri-Food Canada, Guelph, ON, Canada
| | - Huanhuan Dong
- Department of Food Nutrition and Safety, College of Pharmacy, Jiangxi University of Traditional Chinese Medicine, Nanchang, China
- *Correspondence: Huanhuan Dong,
| | - Hua Zhang
- Department of Food Nutrition and Safety, College of Pharmacy, Jiangxi University of Traditional Chinese Medicine, Nanchang, China
- Hua Zhang, ;
| |
Collapse
|
16
|
Zhao M, Cui W, Hu X, Ma Z. Anti-hyperlipidemic and ameliorative effects of chickpea starch and resistant starch in mice with high fat diet induced obesity are associated with their multi-scale structural characteristics. Food Funct 2022; 13:5135-5152. [PMID: 35416192 DOI: 10.1039/d1fo04354d] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Chickpea starches were isolated from both untreated (UC-S) and conventionally cooked seeds (CC-S), and their multi-scale structural characteristics and in vivo physiological effects on controlling hyperlipidemia in high fat diet induced obese mice were compared with their corresponding resistant starch (RS) fractions obtained by an in vitro enzymatic isolation method (UC-RS and CC-RS). The degree of order/degree of double helix in Fourier transform infrared spectroscopy was in the following order: CC-RS > UC-RS > CC-S > UC-S, which was consistent with the trend observed for relative crystallinity and double helix contents monitored by X-ray diffractometer and solid-state 13C cross-polarization and magic angle spinning NMR analyses. The influence of different types of chickpea starch and their corresponding resistant starch fractions on regulating the serum lipid profile, antioxidant status, and histopathological changes in liver, colon and cecal tissues, and gene expressions associated with lipid metabolism, gut microbiota, as well as short-chain fatty acid metabolites in mice with high fat diet induced obesity was investigated. The results showed that the chickpea RS diet group exhibited overall better anti-hyperlipidemic and ameliorative effects than those of the starch group, and such effects were most pronounced in the CC-RS intervention group. After a six-week period of administration with chickpea starch and RS diets, mice in the UC-RS and CC-RS groups tended to have relatively significantly higher levels (P < 0.05) of butyric acid in their fecal contents. The 16S rRNA sequencing results revealed that mice fed with CC-RS showed the greatest abundance of Akkermansia and Lactobacillus compared with the other groups.
Collapse
Affiliation(s)
- Mengliu Zhao
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an, Shaanxi, 710062, China.
| | - Wenxin Cui
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an, Shaanxi, 710062, China.
| | - Xinzhong Hu
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an, Shaanxi, 710062, China.
| | - Zhen Ma
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an, Shaanxi, 710062, China.
| |
Collapse
|
17
|
Beneficial Effect of Kidney Bean Resistant Starch on Hyperlipidemia-Induced Acute Pancreatitis and Related Intestinal Barrier Damage in Rats. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27092783. [PMID: 35566136 PMCID: PMC9100041 DOI: 10.3390/molecules27092783] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 04/22/2022] [Accepted: 04/26/2022] [Indexed: 12/12/2022]
Abstract
Accumulating attention has been focused on resistant starch (RS) due to its blood-lipid-lowering activities. However, reports on the potential bioactivities of RS for preventing hyperlipidemia acute pancreatitis (HLAP) are limited. Therefore, in this study, an acute pancreatitis model was set up by feeding a hyperlipidemia diet to rats, and subsequently evaluating the anti-HLAP effect of RS in kidney beans. The results show that the IL-6, IL-1β, and TNF-α of serum in each RS group were decreased by 18.67-50.00%, 7.92-22.89%, and 8.06-34.04%, respectively, compared with the model group (MOD). In addition, the mRNA expression of tight junction protein ZO-1, occludin, and antibacterial peptides CRAMP and DEFB1 of rats in each RS group increased by 26.43-60.07%, 229.98-279.90%, 75.80-111.20%, and 77.86-109.07%, respectively. The height of the villi in the small intestine and the thickness of the muscle layer of rats were also increased, while the depth of the crypt decreased. The present study indicates that RS relieves intestinal inflammation, inhibits oxidative stress, and prevents related intestinal barrier damage. These results support the supplementation of RS as an effective nutritional intervention for HLAP and associated intestinal injury.
Collapse
|
18
|
Cui S, Guo W, Chen C, Tang X, Zhao J, Mao B, Zhang H. Metagenomic Analysis of the Effects of Lactiplantibacillus plantarum and Fructooligosaccharides (FOS) on the Fecal Microbiota Structure in Mice. Foods 2022; 11:foods11091187. [PMID: 35563910 PMCID: PMC9102988 DOI: 10.3390/foods11091187] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Revised: 04/16/2022] [Accepted: 04/18/2022] [Indexed: 02/04/2023] Open
Abstract
Understanding the association between food composition and intestinal microbiota in the context of individual health is a critical problem in personalized nutrition. The objective of the present research was to elucidate the influence of Lactiplantibacillus plantarum ST-III and fructooligosaccharides (FOS) on the intestinal microbiota structure. We found that L. plantarum ST-III and FOS interventions remarkably enhanced the levels of cecal short-chain fatty acids (SCFAs), especially acetic, butyric, and valeric acids. Moreover, L. plantarum ST-III and/or FOS intervention obviously altered the intestinal microbiota structure. At the genus level, L. plantarum ST-III and/or FOS intervention remarkably elevated the proportion of Sutterella, Pediococcus, Proteus, Parabacteroides, Prevotella and Desulfovibrio. Correlation analysis further uncovered that the specific compositional features of intestinal microbiota were strongly related to the concentration of cecal SCFAs. Our results offered scientific evidence to understanding the association between food composition and intestinal microbiota.
Collapse
Affiliation(s)
- Shumao Cui
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; (S.C.); (W.G.); (C.C.); (X.T.); (J.Z.); (H.Z.)
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Weiling Guo
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; (S.C.); (W.G.); (C.C.); (X.T.); (J.Z.); (H.Z.)
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Cailing Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; (S.C.); (W.G.); (C.C.); (X.T.); (J.Z.); (H.Z.)
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Xin Tang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; (S.C.); (W.G.); (C.C.); (X.T.); (J.Z.); (H.Z.)
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Jianxin Zhao
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; (S.C.); (W.G.); (C.C.); (X.T.); (J.Z.); (H.Z.)
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Bingyong Mao
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; (S.C.); (W.G.); (C.C.); (X.T.); (J.Z.); (H.Z.)
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- Correspondence:
| | - Hao Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; (S.C.); (W.G.); (C.C.); (X.T.); (J.Z.); (H.Z.)
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
19
|
Lei L, Zhao N, Zhang L, Chen J, Liu X, Piao S. Gut microbiota is a potential goalkeeper of dyslipidemia. Front Endocrinol (Lausanne) 2022; 13:950826. [PMID: 36176475 PMCID: PMC9513062 DOI: 10.3389/fendo.2022.950826] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 08/26/2022] [Indexed: 11/30/2022] Open
Abstract
Dyslipidemia, as a common metabolic disease, could cause atherosclerosis, coronary heart disease, stroke and other cardio-cerebrovascular diseases. It is mainly caused by the interaction of genetic and environmental factors and its incidence has increased for several years. A large number of studies have shown that gut microbiota disorder is related to the development of dyslipidemia closely. Especially its metabolites such as short-chain fatty acids, bile acids and trimethylamine N-oxide affect dyslipidemia by regulating cholesterol balance. In this paper, we systematically reviewed the literature and used knowledge graphs to analyze the research trends and characteristics of dyslipidemia mediated by gut microbiota, revealing that the interaction between diet and gut microbiota leads to dyslipidemia as one of the main factors. In addition, starting from the destruction of the dynamic balance between gut microbiota and host caused by dyslipidemia, we systematically summarize the molecular mechanism of gut microbiota regulating dyslipidemia and provide a theoretical basis for the treatment of dyslipidemia by targeting the gut microbiota.
Collapse
Affiliation(s)
- Lirong Lei
- Institute of Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, China
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Guangdong Pharmaceutical University, Guangzhou, China
- Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, Guangzhou, China
| | - Ning Zhao
- Institute of Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, China
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Guangdong Pharmaceutical University, Guangzhou, China
- Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, Guangzhou, China
| | - Lei Zhang
- Institute of Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, China
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Guangdong Pharmaceutical University, Guangzhou, China
- Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, Guangzhou, China
| | - Jiamei Chen
- Institute of Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, China
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Guangdong Pharmaceutical University, Guangzhou, China
- Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, Guangzhou, China
| | - Xiaomin Liu
- Institute of Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, China
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Guangdong Pharmaceutical University, Guangzhou, China
- Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, Guangzhou, China
| | - Shenghua Piao
- Institute of Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, China
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Guangdong Pharmaceutical University, Guangzhou, China
- Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, Guangzhou, China
- *Correspondence: Shenghua Piao,
| |
Collapse
|
20
|
Prebiotic effects of resistant starch nanoparticles on growth and proliferation of the probiotic Lactiplantibacillus plantarum subsp. plantarum. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2021.112572] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
21
|
Jia X, Wang X, Liu Y, Sun Y, Ma B, Li Z, Xu C. Structural characterization of an alkali-extracted polysaccharide from Dioscorea opposita Thunb. with initial studies on its anti-inflammatory activity. J Carbohydr Chem 2021. [DOI: 10.1080/07328303.2021.2009503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Xuewei Jia
- College of Food and Biological Engineering, Zhengzhou University of Light Industry, Zhengzhou, China
- Collaborative Innovation Center of Food Production and Safety, Zhengzhou, China
| | - Xuanjing Wang
- College of Food and Biological Engineering, Zhengzhou University of Light Industry, Zhengzhou, China
| | - Yuanshang Liu
- Technical Center of Hebei China Tobacco Industry Co, Ltd, Shijiazhuang, China
| | - Yiyan Sun
- College of Food and Biological Engineering, Zhengzhou University of Light Industry, Zhengzhou, China
| | - Bingjie Ma
- College of Food and Biological Engineering, Zhengzhou University of Light Industry, Zhengzhou, China
| | - Zhenjie Li
- Yunnan Key Laboratory of Tobacco Chemistry, R&D Center of China Tobacco Yunnan Industrial Co., Ltd., Kunming, China
| | - Chunping Xu
- College of Food and Biological Engineering, Zhengzhou University of Light Industry, Zhengzhou, China
- Collaborative Innovation Center of Food Production and Safety, Zhengzhou, China
| |
Collapse
|
22
|
Liu L, Lin Y, Lei S, Zhang Y, Zeng H. Synergistic Effects of Lotus Seed Resistant Starch and Sodium Lactate on Hypolipidemic Function and Serum Nontargeted Metabolites in Hyperlipidemic Rats. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:14580-14592. [PMID: 34735157 DOI: 10.1021/acs.jafc.1c05993] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The synergistic effects of lotus seed resistant starch (LRS3) and sodium lactate (SL; a postbiotics of RS3) on hypolipidemic function and serum nontargeted metabolites of hyperlipidemia rats were investegated. Rats fed a high-fat diet were orally administered with LRS3 (HLRS group) or SL (HSL group) either alone or in combination (HLRSSL group) for consecutive 4 weeks. HLRSSL was found to control weight gain, regulate blood lipid levels, reduce accumulation of fat in liver cells, and improve lesions in rat cardiac arteries, liver, small intestine, and colon tissues more effectively compared to HLRS or HSL group alone. Compared to the high-fat control group (HMC), l-phenylalanine and LysoPC(22:6(4Z,7Z,10Z,13Z,16Z,19Z)) in serum were upregulated in HLRSSL rats, while aconitic acid and suberic acid were decreased. Correlation analysis showed that SM(d18:0/16:1(9Z)), taurochenodeoxycholic acid, LysoPC(22:6(4Z,7Z,10Z,13Z,16Z,19Z)), oleic acid, and retinol were negatively correlated with total cholesterol (TCHO), triglyceride (TG), and low-density lipoprotein cholesterol (LDL-C) and positively correlated with high-density lipoprotein cholesterol (HDL-C). Moreover, glutamic acid and serine showed a significant positive correlation with LDL-C and negative correlation with HDL-C. These differential metabolites were associated with reducing serum lipid levels in hyperlipidemia rats potentially through metabolic pathways such as linoleic acid, glutamine and glutamate, pyruvate, citric acid cycle, and glycerophospholipid.
Collapse
Affiliation(s)
- Lu Liu
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou350002, China
- Fujian Provincial Key Laboratory of Quality Science and Processing Technology in Special Starch, Fujian Agriculture and Forestry University, Fuzhou350002, China
| | - Yongjie Lin
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou350002, China
- Fujian Provincial Key Laboratory of Quality Science and Processing Technology in Special Starch, Fujian Agriculture and Forestry University, Fuzhou350002, China
| | - Suzhen Lei
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou350002, China
- Fujian Provincial Key Laboratory of Quality Science and Processing Technology in Special Starch, Fujian Agriculture and Forestry University, Fuzhou350002, China
| | - Yi Zhang
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou350002, China
- Fujian Provincial Key Laboratory of Quality Science and Processing Technology in Special Starch, Fujian Agriculture and Forestry University, Fuzhou350002, China
- China-Ireland International Cooperation Centre for Food Material Science and Structure Design, Fujian Agriculture and Forestry University, Fuzhou350002, China
| | - Hongliang Zeng
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou350002, China
- Fujian Provincial Key Laboratory of Quality Science and Processing Technology in Special Starch, Fujian Agriculture and Forestry University, Fuzhou350002, China
- China-Ireland International Cooperation Centre for Food Material Science and Structure Design, Fujian Agriculture and Forestry University, Fuzhou350002, China
| |
Collapse
|
23
|
Guan ZW, Yu EZ, Feng Q. Soluble Dietary Fiber, One of the Most Important Nutrients for the Gut Microbiota. Molecules 2021; 26:molecules26226802. [PMID: 34833893 PMCID: PMC8624670 DOI: 10.3390/molecules26226802] [Citation(s) in RCA: 116] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 10/30/2021] [Accepted: 11/02/2021] [Indexed: 12/12/2022] Open
Abstract
Dietary fiber is a widely recognized nutrient for human health. Previous studies proved that dietary fiber has significant implications for gastrointestinal health by regulating the gut microbiota. Moreover, mechanistic research showed that the physiological functions of different dietary fibers depend to a great extent on their physicochemical characteristics, one of which is solubility. Compared with insoluble dietary fiber, soluble dietary fiber can be easily accessed and metabolized by fiber-degrading microorganisms in the intestine and produce a series of beneficial and functional metabolites. In this review, we outlined the structures, characteristics, and physiological functions of soluble dietary fibers as important nutrients. We particularly focused on the effects of soluble dietary fiber on human health via regulating the gut microbiota and reviewed their effects on dietary and clinical interventions.
Collapse
Affiliation(s)
- Zhi-Wei Guan
- Shandong Provincial Key Laboratory of Oral Tissue Regeneration, Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Department of Human Microbiome, School of Stomatology, Shandong University, Jinan 250012, China; (Z.-W.G.); (E.-Z.Y.)
- School of Life Science, Qi Lu Normal University, Jinan 250200, China
| | - En-Ze Yu
- Shandong Provincial Key Laboratory of Oral Tissue Regeneration, Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Department of Human Microbiome, School of Stomatology, Shandong University, Jinan 250012, China; (Z.-W.G.); (E.-Z.Y.)
| | - Qiang Feng
- Shandong Provincial Key Laboratory of Oral Tissue Regeneration, Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Department of Human Microbiome, School of Stomatology, Shandong University, Jinan 250012, China; (Z.-W.G.); (E.-Z.Y.)
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China
- Correspondence:
| |
Collapse
|
24
|
Cudrania tricuspidata Combined with Lacticaseibacillus rhamnosus Modulate Gut Microbiota and Alleviate Obesity-Associated Metabolic Parameters in Obese Mice. Microorganisms 2021; 9:microorganisms9091908. [PMID: 34576802 PMCID: PMC8468176 DOI: 10.3390/microorganisms9091908] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 08/26/2021] [Accepted: 09/03/2021] [Indexed: 01/09/2023] Open
Abstract
The aim of the presented study was to investigate the synbiotic effects of L. rhamnosus 4B15 and C. tricuspidata extract administration on the gut microbiota and obesity-associated metabolic parameters in diet-induced obese mice. Thirty-one 6-week-old male C57BL/N6 mice were divided into five diet groups: normal diet (ND, n = 7) group; high-fat diet (HFD, n = 6) group; probiotic (PRO, n = 5) group; prebiotic (PRE, n = 7) group; and synbiotic (SYN, n = 6) group. After 10 weeks, the percent of fat mass, serum triglyceride, and ALT levels were significantly reduced in SYN-fed obese mice, compared with other treatments. SYN treatment also modulated the abundance of Desulfovibrio, Dorea, Adlercreutzia, Allobaculum, Coprococcus, unclassified Clostridiaceae, Lactobacillus, Helicobacter, Flexispira, Odoribacter, Ruminococcus, unclassified Erysipelotrichaceae, and unclassified Desulfovibrionaceae. These taxa showed a strong correlation with obesity-associated indices. Lastly, the SYN-supplemented diet upregulated metabolic pathways known to improve metabolic health. Further investigations are needed to understand the mechanisms driving the synbiotic effect of C. tricuspidata and L. rhamnosus 4B15.
Collapse
|
25
|
Xue Z, Cao Z, Jin M, Zhang X, Wang X, Dou J, Zhu Y, Ito Y, Guo Z. New steroid saponins from Dioscorea zingiberensis yam and their medicinal use against I/R via anti-inflammatory effect. Food Funct 2021; 12:8314-8325. [PMID: 34312628 DOI: 10.1039/d1fo01301g] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Steroid saponins are the medicinal compounds and nutrition ingredients of medicine food homology (MFH) Dioscorea zingiberensis C. H. Wright (D. zingiberensis) yam. Our phytochemical investigation of the edible rhizomes resulted in 9 new furostanol steroid saponins named dioscins A-I (1-9), together with 11 known steroid saponins. Their chemical structures were elucidated based on spectroscopic and chemical analyses. The new dioscins were evaluated for their anti-inflammatory and beneficial effects against cerebral ischemia reperfusion (I/R) injury on RAW264.7 and PC12 cells in vitro, respectively. Dioscins A, B, and G revealed considerable anti-I/R effect through an anti-inflammatory mechanism based on the decreasing concentration of pro-inflammatory (TNF-α and IL-6) and down-regulating the NF-κB expression. The present research demonstrated that daily consumption of this yam plant probably prevented the I/R occurrence via the anti-inflammatory property of steroid saponins, and it also enriched the steroid saponin library, providing the possibility to develop MFH-containing steroid saponins into functional foods for maintenance of human health or drugs for the treatment of I/R disease.
Collapse
Affiliation(s)
- Zhaowei Xue
- Institute of Targeted Drugs, Western China Science and Technology Innovation Harbour, Xi'an Jiaotong University, Xi'an, China.
| | - Zhen Cao
- Institute of Targeted Drugs, Western China Science and Technology Innovation Harbour, Xi'an Jiaotong University, Xi'an, China.
| | - Ming Jin
- Institute of Targeted Drugs, Western China Science and Technology Innovation Harbour, Xi'an Jiaotong University, Xi'an, China.
| | - Xinxin Zhang
- Institute of Targeted Drugs, Western China Science and Technology Innovation Harbour, Xi'an Jiaotong University, Xi'an, China. and Key Laboratory of Tibetan Medicine Research, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, Qinghai, China
| | | | - Jianwei Dou
- Institute of Targeted Drugs, Western China Science and Technology Innovation Harbour, Xi'an Jiaotong University, Xi'an, China.
| | - Yuhong Zhu
- Institute of Targeted Drugs, Western China Science and Technology Innovation Harbour, Xi'an Jiaotong University, Xi'an, China.
| | - Yoichiro Ito
- Laboratory of Bio-separation Technologies, Biochemistry and Biophysics Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Zengjun Guo
- Institute of Targeted Drugs, Western China Science and Technology Innovation Harbour, Xi'an Jiaotong University, Xi'an, China.
| |
Collapse
|
26
|
Intestinal Microbiota and Liver Diseases: Insights into Therapeutic Use of Traditional Chinese Medicine. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2021; 2021:6682581. [PMID: 33976705 PMCID: PMC8087485 DOI: 10.1155/2021/6682581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 03/01/2021] [Accepted: 04/10/2021] [Indexed: 11/18/2022]
Abstract
Liver disease is a leading cause of global morbidity and mortality, for which inflammation, alcohol use, lipid metabolic disorders, disturbance to bile acid metabolism, and endotoxins are common risk factors. Traditional Chinese Medicine (TCM) with its "holistic approach" is widely used throughout the world as a complementary, alternative therapy, due to its clinical efficacy and reduced side effects compared with conventional medicines. However, due to a lack of reliable scientific evidence, the role of TCM in the prevention and treatment of liver disease remains unclear. Over recent years, with the rapid development of high-throughput sequencing, 16S rRNA detection, and bioinformatics methodology, it has been gradually recognized that the regulation of intestinal microbiota by TCM can play a substantial role in the treatment of liver disease. To better understand how TCM regulates the intestinal microbiota and suppresses liver disease, we have reviewed and analyzed the results of existing studies and summarized the relationship and risk factors between intestinal microbiota and liver disease. The present review summarizes the related mechanisms by which TCM affects the composition and metabolites of the intestinal microbiome.
Collapse
|
27
|
Yang XY, Zhong DY, Wang GL, Zhang RG, Zhang YL. Effect of Walnut Meal Peptides on Hyperlipidemia and Hepatic Lipid Metabolism in Rats Fed a High-Fat Diet. Nutrients 2021; 13:1410. [PMID: 33922242 PMCID: PMC8146006 DOI: 10.3390/nu13051410] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 04/15/2021] [Accepted: 04/17/2021] [Indexed: 12/24/2022] Open
Abstract
As a natural active substance that can effectively improve blood lipid balance in the body, hypolipidemic active peptides have attracted the attention of scholars. In this study, the effect of walnut meal peptides (WMP) on lipid metabolism was investigated in rats fed a high-fat diet (HFD). The experimental results show that feeding walnut meal peptides counteracted the high-fat diet-induced increase in body, liver and epididymal fat weight, and reduce the serum concentrations of total cholesterol, triglycerides, and LDL-cholesterol and hepatic cholesterol and triglyceride content. Walnut meal peptides also resulted in increased HDL-cholesterol while reducing the atherosclerosis index (AI). Additionally, the stained pathological sections of the liver showed that the walnut meal peptides reduced hepatic steatosis and damage caused by HFD. Furthermore, walnut meal peptide supplementation was associated with normalization of elevated apolipoprotein (Apo)-B and reduced Apo-A1 induced by the high-fat diet and with favorable changes in the expression of genes related to lipid metabolism (LCAT, CYP7A1, HMGR, FAS). The results indicate that walnut meal peptides can effectively prevent the harmful effects of a high-fat diet on body weight, lipid metabolism and liver fat content in rats, and provide, and provide a reference for the further development of walnut meal functional foods.
Collapse
Affiliation(s)
| | | | | | | | - You-Lin Zhang
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi’an 710119, China; (X.-Y.Y.); (D.-Y.Z.); (G.-L.W.); (R.-G.Z.)
| |
Collapse
|
28
|
Zhao D, Gao F, Zhu H, Qian Z, Mao W, Yin Y, Chen D. Selenium-enriched Bifidobacterium longum DD98 relieves metabolic alterations and liver injuries associated with obesity in high-fat diet-fed mice. J Funct Foods 2020. [DOI: 10.1016/j.jff.2020.104051] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
|
29
|
Gong X, Li X, Xia Y, Xu J, Li Q, Zhang C, Li M. Effects of phytochemicals from plant-based functional foods on hyperlipidemia and their underpinning mechanisms. Trends Food Sci Technol 2020. [DOI: 10.1016/j.tifs.2020.07.026] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
30
|
Silva EK, Bargas MA, Arruda HS, Vardanega R, Pastore GM, Meireles MAA. Supercritical CO 2 Processing of a Functional Beverage Containing Apple Juice and Aqueous Extract of Pfaffia glomerata Roots: Fructooligosaccharides Chemical Stability after Non-Thermal and Thermal Treatments. Molecules 2020; 25:molecules25173911. [PMID: 32867210 PMCID: PMC7504353 DOI: 10.3390/molecules25173911] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 08/18/2020] [Accepted: 08/24/2020] [Indexed: 12/23/2022] Open
Abstract
The effects of supercritical CO2 processing on the chemical stability of fructooligosaccharides (FOS) and other functional and nutritional compounds were evaluated employing non-thermal and thermal approaches. Apple juice was enriched with Pfaffia glomerata roots aqueous extract due to its high content of short-chain FOS and then subjected to different levels of temperature (40 and 60 °C), pressure (8 and 21 MPa), and CO2 volume ratio (20 and 50%). The percentage of CO2 volume was evaluated concerning the total volume of the high-pressure reactor. Also, the functional beverage was thermally treated at 105 °C for 10 min. Physicochemical properties (pH and soluble solid content), beta-ecdysone, sugars (glucose, fructose, and sucrose), and FOS (1-kestose, nystose, and fructofuranosylnystose) content were determined. The pH and soluble solid content did not modify after all treatments. The pressure and CO2 volume ratio did not influence the FOS content and their chemical profile, however, the temperature increase from 40 to 60 °C increased the nystose and fructofuranosylnystose content. High-temperature thermal processing favored the hydrolysis of 1-kestose and reduced the sucrose content. Regarding beta-ecdysone, its content remained constant after all stabilization treatments demonstrating thus its high chemical stability. Our results demonstrated that supercritical CO2 technology is a promising technique for the stabilization of FOS-rich beverages since the molecular structures of these fructans were preserved, thus maintaining their prebiotic functionality.
Collapse
Affiliation(s)
- Eric Keven Silva
- LASEFI, Department of Food Engineering, School of Food Engineering, University of Campinas, Campinas 13083-862, Brazil; (E.K.S.); (M.A.B.); (R.V.)
| | - Matheus A. Bargas
- LASEFI, Department of Food Engineering, School of Food Engineering, University of Campinas, Campinas 13083-862, Brazil; (E.K.S.); (M.A.B.); (R.V.)
| | - Henrique S. Arruda
- Bioflavors and Bioactive Compounds Laboratory, Department of Food Science, School of Food Engineering, University of Campinas, Campinas 13083-862, Brazil; (H.S.A.); (G.M.P.)
| | - Renata Vardanega
- LASEFI, Department of Food Engineering, School of Food Engineering, University of Campinas, Campinas 13083-862, Brazil; (E.K.S.); (M.A.B.); (R.V.)
| | - Glaucia M. Pastore
- Bioflavors and Bioactive Compounds Laboratory, Department of Food Science, School of Food Engineering, University of Campinas, Campinas 13083-862, Brazil; (H.S.A.); (G.M.P.)
| | - M. Angela A. Meireles
- LASEFI, Department of Food Engineering, School of Food Engineering, University of Campinas, Campinas 13083-862, Brazil; (E.K.S.); (M.A.B.); (R.V.)
- Correspondence: ; Tel.: +55-19-98184-1414; Fax: +55-19-3521-4027
| |
Collapse
|
31
|
Gao S, Hu G, Li D, Sun M, Mou D. Anti-hyperlipidemia effect of sea buckthorn fruit oil extract through the AMPK and Akt signaling pathway in hamsters. J Funct Foods 2020. [DOI: 10.1016/j.jff.2020.103837] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
|
32
|
Petropoulos SA, Sampaio SL, Di Gioia F, Tzortzakis N, Rouphael Y, Kyriacou MC, Ferreira I. Grown to be Blue-Antioxidant Properties and Health Effects of Colored Vegetables. Part I: Root Vegetables. Antioxidants (Basel) 2019; 8:E617. [PMID: 31817206 PMCID: PMC6943509 DOI: 10.3390/antiox8120617] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2019] [Revised: 11/30/2019] [Accepted: 12/03/2019] [Indexed: 01/03/2023] Open
Abstract
During the last few decades, the food and beverage industry faced increasing demand for the design of new functional food products free of synthetic compounds and artificial additives. Anthocyanins are widely used as natural colorants in various food products to replenish blue color losses during processing and to add blue color to colorless products, while other compounds such as carotenoids and betalains are considered as good sources of other shades. Root vegetables are well known for their broad palette of colors, and some species, such as black carrot and beet root, are already widely used as sources of natural colorants in the food and drug industry. Ongoing research aims at identifying alternative vegetable sources with diverse functional and structural features imparting beneficial effects onto human health. The current review provides a systematic description of colored root vegetables based on their belowground edible parts, and it highlights species and/or cultivars that present atypical colors, especially those containing pigment compounds responsible for hues of blue color. Finally, the main health effects and antioxidant properties associated with the presence of coloring compounds are presented, as well as the effects that processing treatments may have on chemical composition and coloring compounds in particular.
Collapse
Affiliation(s)
- Spyridon A. Petropoulos
- Crop Production and Rural Environment, Department of Agriculture, University of Thessaly, 38446 Nea Ionia, Greece
| | - Shirley L. Sampaio
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal;
| | - Francesco Di Gioia
- Department of Plant Science, The Pennsylvania State University, University Park, PA 16802, USA;
| | - Nikos Tzortzakis
- Department of Agricultural Sciences, Biotechnology and Food Science, Cyprus University of Technology, 3603 Limassol, Cyprus;
| | - Youssef Rouphael
- Department of Agricultural Sciences, University of Naples Federico II, 80055 Portici, Italy;
| | - Marios C. Kyriacou
- Department of Vegetable Crops, Agricultural Research Institute, 1516 Nicosia, Cyprus;
| | - Isabel Ferreira
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal;
| |
Collapse
|