1
|
Hisey CL, Rima XY, Doon-Ralls J, Nagaraj CK, Mayone S, Nguyen KT, Wiggins S, Dorayappan KDP, Selvendiran K, Wood D, Hu C, Patel D, Palmer A, Hansford D, Reategui E. Light-induced Extracellular Vesicle Adsorption. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.24.590318. [PMID: 38712200 PMCID: PMC11071350 DOI: 10.1101/2024.04.24.590318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
The role of extracellular vesicles (EVs) in human health and disease has garnered considerable attention over the past two decades. However, while several types of EVs are known to interact dynamically with the extracellular matrix and there is great potential value in producing high-fidelity EV micropatterns, there are currently no label-free, high-resolution, and tunable platform technologies with this capability. We introduce Light-induced Extracellular Vesicle Adsorption (LEVA) as a powerful solution to rapidly advance the study of matrix- and surface-bound EVs and other particles. The versatility of LEVA is demonstrated using commercial GFP-EV standards, EVs from glioblastoma bioreactors, and E. coli outer membrane vesicles (OMVs), with the resulting patterns used for single EV characterization, single cell migration on migrasome-mimetic trails, and OMV-mediated neutrophil swarming. LEVA will enable rapid advancements in the study of matrix- and surface-bound EVs and other particles, and should encourage researchers from many disciplines to create novel diagnostic, biomimetic, immunoengineering, and therapeutic screening assays.
Collapse
|
2
|
Walters N, Zhang J, Rima XY, Nguyen LTH, Germain RN, Lämmermann T, Reátegui E. Analyzing Inter-Leukocyte Communication and Migration In Vitro: Neutrophils Play an Essential Role in Monocyte Activation During Swarming. Front Immunol 2021; 12:671546. [PMID: 34054848 PMCID: PMC8152805 DOI: 10.3389/fimmu.2021.671546] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Accepted: 04/16/2021] [Indexed: 11/13/2022] Open
Abstract
Neutrophils are known to be the first responders to infection or injury. However, as inflammation progresses, other leukocytes become increasingly important in inflammation propagation, tissue reconstruction, and inflammation resolution. In recent years, there has been an increase in publications that analyze neutrophil behavior in vitro, but there remains a gap in the literature for in vitro technologies that enable quantitatively measuring interactions between different types of human leukocytes. Here, we used an in vitro platform that mimics inflammation by inducing neutrophil swarming to analyze the behavior of various leukocytes in a swarming setting. Using human peripheral blood leukocytes isolated directly from whole blood, we found that myeloid cells and lymphoid cells had different migratory behaviors. Myeloid cells, which are predominately neutrophils, exhibited swarming behavior. This behavior was not seen with lymphoid cells. We perturbed the peripheral blood leukocyte system by adding exogenous leukotriene B4 (LTB4) to the medium. Notably, only the myeloid cell compartment was significantly changed by the addition of LTB4. Additionally, LTB4 had no significant impact on myeloid cell migration during the recruitment phase of swarming. To further investigate the myeloid cell compartment, we isolated neutrophils and monocytes to analyze their interaction on the platform. We found that neutrophils increase monocyte migration toward the bioparticle clusters, as measured through speed, chemotactic index, track straightness, and swarm size. These results were confirmed with in vivo mouse experiments, where monocyte accumulation only occurred when neutrophils were present. Additionally, we found that both neutrophils and monocytes release the monocyte chemoattractant proteins CCL2 and CCL3 in the presence of Staphylococcus aureus bioparticles. Furthermore, extracellular vesicles from swarming neutrophils caused monocyte activation. These findings suggest that neutrophils play an essential role in the onset of inflammation not only by sealing off the site of infection or injury, but also by recruiting additional leukocytes to the site.
Collapse
Affiliation(s)
- Nicole Walters
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, OH, United States
| | - Jingjing Zhang
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, OH, United States
| | - Xilal Y Rima
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, OH, United States
| | - Luong T H Nguyen
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, OH, United States
| | - Ronald N Germain
- Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Tim Lämmermann
- Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States.,Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany
| | - Eduardo Reátegui
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, OH, United States.,Comprehensive Cancer Center, The Ohio State University, Columbus, OH, United States
| |
Collapse
|
3
|
Sun M, Han K, Hu R, Liu D, Fu W, Liu W. Advances in Micro/Nanoporous Membranes for Biomedical Engineering. Adv Healthc Mater 2021; 10:e2001545. [PMID: 33511718 DOI: 10.1002/adhm.202001545] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 01/19/2021] [Indexed: 12/11/2022]
Abstract
Porous membrane materials at the micro/nanoscale have exhibited practical and potential value for extensive biological and medical applications associated with filtration and isolation, cell separation and sorting, micro-arrangement, in-vitro tissue reconstruction, high-throughput manipulation and analysis, and real-time sensing. Herein, an overview of technological development of micro/nanoporous membranes (M/N-PMs) is provided. Various membrane types and the progress documented in membrane fabrication techniques, including the electrochemical-etching, laser-based technology, microcontact printing, electron beam lithography, imprinting, capillary force lithography, spin coating, and microfluidic molding are described. Their key features, achievements, and limitations associated with micro/nanoporous membrane (M/N-PM) preparation are discussed. The recently popularized applications of M/N-PMs in biomedical engineering involving the separation of cells and biomolecules, bioparticle operations, biomimicking, micropatterning, bioassay, and biosensing are explored too. Finally, the challenges that need to be overcome for M/N-PM fabrication and future applications are highlighted.
Collapse
Affiliation(s)
- Meilin Sun
- School of Basic Medical Science Central South University Changsha Hunan 410013 China
| | - Kai Han
- School of Basic Medical Science Central South University Changsha Hunan 410013 China
| | - Rui Hu
- School of Basic Medical Science Central South University Changsha Hunan 410013 China
| | - Dan Liu
- School of Basic Medical Science Central South University Changsha Hunan 410013 China
| | - Wenzhu Fu
- School of Basic Medical Science Central South University Changsha Hunan 410013 China
| | - Wenming Liu
- School of Basic Medical Science Central South University Changsha Hunan 410013 China
| |
Collapse
|
4
|
Outer Membrane Structural Defects in Salmonella enterica Serovar Typhimurium Affect Neutrophil Chemokinesis but Not Chemotaxis. mSphere 2021; 6:6/1/e01012-20. [PMID: 33627508 PMCID: PMC8544890 DOI: 10.1128/msphere.01012-20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Neutrophils, the first line of defense against pathogens, are critical in the host response to acute and chronic infections. In Gram-negative pathogens, the bacterial outer membrane (OM) is a key mediator of pathogen detection; nonetheless, the effects of variations in its molecular structure on the neutrophil migratory response to bacteria remain largely unknown. Here, we developed a quantitative microfluidic assay that precludes physical contact between bacteria and neutrophils while maintaining chemical communication, thus allowing investigation of both transient and steady-state responses of neutrophils to a library of Salmonella enterica serovar Typhimurium OM-related mutants at single-cell resolution. Using single-cell quantitative metrics, we found that transient neutrophil chemokinesis is highly gradated based upon OM structure, while transient and steady-state chemotaxis responses differ little between mutants. Based on our finding of a lack of correlation between chemokinesis and chemotaxis, we define "stimulation score" as a metric that comprehensively describes the neutrophil response to pathogens. Complemented with a killing assay, our results provide insight into how OM modifications affect neutrophil recruitment and pathogen survival. Altogether, our platform enables the discovery of transient and steady-state migratory responses and provides a new path for quantitative interrogation of cell decision-making processes in a variety of host-pathogen interactions.IMPORTANCE Our findings provide insights into the previously unexplored effects of Salmonella envelope defects on fundamental innate immune cell behavior, which advance the knowledge in pathogen-host cell biology and potentially inspire the rational design of attenuated strains for vaccines or immunotherapeutic strains for cancer therapy. Furthermore, the microfluidic assay platform and analytical tools reported herein enable high-throughput, sensitive, and quantitative screening of microbial strains' immunogenicity in vitro This approach could be particularly beneficial for rapid in vitro screening of engineered microbial strains (e.g., vaccine candidates) as the quantitative ranking of the overall strength of the neutrophil response, reported by "stimulation score," agrees with in vivo cytokine response trends reported in the literature.
Collapse
|
5
|
Tong W, Yao X, Duan S, Yu B, Ding X, Ding X, Xu FJ. Gradient Functionalization of Various Quaternized Polyethylenimines on Microfluidic Chips for the Rapid Appraisal of Antibacterial Potencies. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:354-361. [PMID: 31826611 DOI: 10.1021/acs.langmuir.9b02747] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The ability to appraise antibacterial potencies of surface-immobilized bactericidal polymers is still a major challenge in the engineering of antibacterial surfaces to combat hospital-acquired (nosocomial) infections. In this work, we fabricated a microfluidic platform with gradiently immobilized bactericidal polymers to enable the rapid appraisal of antibacterial potencies by in situ live/dead staining of bacteria. To this end, a variety of synthetic quaternary polymers, named QPEI-C1, QPEI-C6, QPEI-C8, and QPEI-C10, were gradiently immobilized in microfluidic channels, and their surface densities at different distances along the channels were quantified by using fluorescein-labeled polymers. We found that the surface densities of quaternary polymers could be well-tuned, and the length of the channel, resulting in a 50% reduction of live bacteria (L50), can be used to appraise the antibacterial potency of each bactericidal polymer. For instance, the L50 values of QPEI-C6-, QPEI-C8-, and QPEI-C10-modified channels against Escherichia coli were 35.5, 44.7, and 49.2 mm, respectively, indicating that QPEI-C10 exerted the most potent antibacterial efficacy. More importantly, this microfluidic platform enabled the rapid discrimination of antibacterial potencies of polymers (e.g., QPEI-C8, and QPEI-C10) while the conventional live/dead staining method found no significant difference. This work provides a powerful toolkit by combining advances of microfluidic systems and polymer science for the rapid screening of antibacterial coatings, which would find applications in surface modification of medical devices to combat bacterial infections.
Collapse
Affiliation(s)
- Wei Tong
- State Key Laboratory of Chemical Resource Engineering, Beijing Laboratory of Biomedical Materials, Beijing Advanced Innovation Center for Soft Matter Science and Engineering and Key Lab of Biomedical Materials of Natural Macromolecules, Ministry of Education , Beijing University of Chemical Technology , Beijing 100029 , China
| | - Xin Yao
- State Key Laboratory of Chemical Resource Engineering, Beijing Laboratory of Biomedical Materials, Beijing Advanced Innovation Center for Soft Matter Science and Engineering and Key Lab of Biomedical Materials of Natural Macromolecules, Ministry of Education , Beijing University of Chemical Technology , Beijing 100029 , China
| | - Shun Duan
- State Key Laboratory of Chemical Resource Engineering, Beijing Laboratory of Biomedical Materials, Beijing Advanced Innovation Center for Soft Matter Science and Engineering and Key Lab of Biomedical Materials of Natural Macromolecules, Ministry of Education , Beijing University of Chemical Technology , Beijing 100029 , China
| | - Bingran Yu
- State Key Laboratory of Chemical Resource Engineering, Beijing Laboratory of Biomedical Materials, Beijing Advanced Innovation Center for Soft Matter Science and Engineering and Key Lab of Biomedical Materials of Natural Macromolecules, Ministry of Education , Beijing University of Chemical Technology , Beijing 100029 , China
| | - Xiaokang Ding
- State Key Laboratory of Chemical Resource Engineering, Beijing Laboratory of Biomedical Materials, Beijing Advanced Innovation Center for Soft Matter Science and Engineering and Key Lab of Biomedical Materials of Natural Macromolecules, Ministry of Education , Beijing University of Chemical Technology , Beijing 100029 , China
| | - Xuejia Ding
- State Key Laboratory of Chemical Resource Engineering, Beijing Laboratory of Biomedical Materials, Beijing Advanced Innovation Center for Soft Matter Science and Engineering and Key Lab of Biomedical Materials of Natural Macromolecules, Ministry of Education , Beijing University of Chemical Technology , Beijing 100029 , China
| | - Fu-Jian Xu
- State Key Laboratory of Chemical Resource Engineering, Beijing Laboratory of Biomedical Materials, Beijing Advanced Innovation Center for Soft Matter Science and Engineering and Key Lab of Biomedical Materials of Natural Macromolecules, Ministry of Education , Beijing University of Chemical Technology , Beijing 100029 , China
| |
Collapse
|
6
|
Rima XY, Walters N, Nguyen LTH, Reátegui E. Surface engineering within a microchannel for hydrodynamic and self-assembled cell patterning. BIOMICROFLUIDICS 2020; 14:014104. [PMID: 31933714 PMCID: PMC6941948 DOI: 10.1063/1.5126608] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Accepted: 12/18/2019] [Indexed: 05/27/2023]
Abstract
The applications of cell patterning are widespread due to the high-throughput testing and different resolutions offered by these platforms. Cell patterning has aided in deconvoluting in vivo experiments to better characterize cellular mechanisms and increase therapeutic output. Here, we present a technique for engineering an artificial surface via surface chemistry to form large-scale arrays of cells within a microchannel by employing microstamping. By changing the approach in surface chemistry, H1568 cells were patterned hydrodynamically using immunoaffinity, and neutrophils were patterned through self-assembly via chemotaxis. The high patterning efficiencies (93% for hydrodynamic patterning and 68% for self-assembled patterning) and the lack of secondary adhesion demonstrate the reproducibility of the platform. The interaction between H1568 and neutrophils was visualized and quantified to determine the capability of the platform to encourage cell-cell interaction. With the introduction of H1568 cells into the self-assembled patterning platform, a significant hindrance in the neutrophils' ability to swarm was observed, indicating the important roles of inflammatory mediators within the nonsmall cell lung cancer tumor microenvironment.
Collapse
Affiliation(s)
- Xilal Y. Rima
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, Ohio 43210, USA
| | - Nicole Walters
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, Ohio 43210, USA
| | - Luong T. H. Nguyen
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, Ohio 43210, USA
| | | |
Collapse
|
7
|
Rose MA, Bowen JJ, Morin SA. Emergent Soft Lithographic Tools for the Fabrication of Functional Polymeric Microstructures. Chemphyschem 2019; 20:909-925. [DOI: 10.1002/cphc.201801140] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Revised: 02/15/2019] [Indexed: 12/17/2022]
Affiliation(s)
- Mark A. Rose
- Department of Chemistry University of Nebraska-Lincoln Lincoln, NE 68588 USA
| | - John J. Bowen
- Department of Chemistry University of Nebraska-Lincoln Lincoln, NE 68588 USA
| | - Stephen A. Morin
- Department of Chemistry University of Nebraska-Lincoln Lincoln, NE 68588 USA
- Nebraska Center for Materials and Nanoscience University of Nebraska-Lincoln Lincoln, NE 68588 USA
| |
Collapse
|