1
|
Ashimori A, Higashijima F, Ogata T, Sakuma A, Hamada W, Sunada J, Aoki R, Mikuni M, Hayashi K, Wakuta M, Yoshimoto T, Minamoto A, Ko JA, Kimura K. HIF-1α-dependent upregulation of angiogenic factors by mechanical stimulation in retinal pigment epithelial cells. Dis Model Mech 2024; 17:dmm050640. [PMID: 38691000 PMCID: PMC11095633 DOI: 10.1242/dmm.050640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 03/22/2024] [Indexed: 05/03/2024] Open
Abstract
Mechanical stimulation as a mimic of drusen formation in the eye increases the expression of angiogenic factors in retinal pigment epithelial (RPE) cells, but the underlying molecular mechanisms remain unclear. We investigated and characterized the effects of mechanical stimulation on the expression of angiogenic factors in RPE cells both in vitro and in a mouse model. Mechanical stimulation increased the expression of vascular endothelial growth factor (VEGF, encoded by VEGFA) and other angiogenesis-related genes in cultured RPE1 cells. The presence of hypoxia-inducible factor 1α (HIF-1α, encoded by HIF1A) was also increased, and both knockdown of HIF-1α and treatment with the HIF-1α inhibitor CAY10585 attenuated the effect of mechanical stimulation on angiogenesis factor gene expression. Signaling by the tyrosine kinase SRC and p38 mitogen-activated protein kinase was involved in HIF-1α activation and consequent angiogenesis-related gene expression induced by mechanical stimulation. Our results suggest that SRC-p38 and HIF-1α signaling are involved in the upregulation of angiogenic factors in RPE cells by mechanical stimulation. Such in vivo suppression of upregulated expression of angiogenesis-related genes by pharmacological inhibitors of HIF-1α suggests a new potential approach to the treatment of age-related macular degeneration.
Collapse
Affiliation(s)
- Atsushige Ashimori
- Department of Ophthalmology, Yamaguchi University Graduate School of Medicine, 1-1-1 Minami-Kogushi, Ube City, Yamaguchi 755-8505, Japan
| | - Fumiaki Higashijima
- Department of Ophthalmology, Yamaguchi University Graduate School of Medicine, 1-1-1 Minami-Kogushi, Ube City, Yamaguchi 755-8505, Japan
| | - Tadahiko Ogata
- Department of Ophthalmology, Yamaguchi University Graduate School of Medicine, 1-1-1 Minami-Kogushi, Ube City, Yamaguchi 755-8505, Japan
| | - Ayano Sakuma
- Department of Ophthalmology, Yamaguchi University Graduate School of Medicine, 1-1-1 Minami-Kogushi, Ube City, Yamaguchi 755-8505, Japan
| | - Waka Hamada
- Department of Ophthalmology, Yamaguchi University Graduate School of Medicine, 1-1-1 Minami-Kogushi, Ube City, Yamaguchi 755-8505, Japan
| | - Junki Sunada
- Department of Ophthalmology, Yamaguchi University Graduate School of Medicine, 1-1-1 Minami-Kogushi, Ube City, Yamaguchi 755-8505, Japan
| | - Ren Aoki
- Department of Ophthalmology, Yamaguchi University Graduate School of Medicine, 1-1-1 Minami-Kogushi, Ube City, Yamaguchi 755-8505, Japan
| | - Masanori Mikuni
- Department of Ophthalmology, Yamaguchi University Graduate School of Medicine, 1-1-1 Minami-Kogushi, Ube City, Yamaguchi 755-8505, Japan
| | - Ken'ichiro Hayashi
- Department of Ophthalmology, Yamaguchi University Graduate School of Medicine, 1-1-1 Minami-Kogushi, Ube City, Yamaguchi 755-8505, Japan
| | - Makiko Wakuta
- Department of Ophthalmology, Yamaguchi University Graduate School of Medicine, 1-1-1 Minami-Kogushi, Ube City, Yamaguchi 755-8505, Japan
| | - Takuya Yoshimoto
- Department of Ophthalmology, Yamaguchi University Graduate School of Medicine, 1-1-1 Minami-Kogushi, Ube City, Yamaguchi 755-8505, Japan
| | - Akira Minamoto
- Department of Ophthalmology and Visual Science, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima 734-8551, Japan
| | - Ji-Ae Ko
- Department of Ophthalmology and Visual Science, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima 734-8551, Japan
| | - Kazuhiro Kimura
- Department of Ophthalmology, Yamaguchi University Graduate School of Medicine, 1-1-1 Minami-Kogushi, Ube City, Yamaguchi 755-8505, Japan
| |
Collapse
|
2
|
Rickabaugh E, Weatherston D, Harris TI, Jones JA, Vargis E. Engineering a Biomimetic In Vitro Model of Bruch's Membrane Using Hagfish Slime Intermediate Filament Proteins. ACS Biomater Sci Eng 2023; 9:5051-5061. [PMID: 37458693 DOI: 10.1021/acsbiomaterials.3c00411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/15/2023]
Abstract
Bruch's membrane resides in the subretinal tissue and regulates the flow of nutrients and waste between the retinal pigment epithelial (RPE) and vascular layers of the eye. With age, Bruch's membrane becomes thicker, stiffer, and less permeable, which impedes its function as a boundary layer in the subretina. These changes contribute to pathologies such as age-related macular degeneration (AMD). To better understand how aging in Bruch's membrane affects surrounding tissues and to determine the relationship between aging and disease, an in vitro model of Bruch's membrane is needed. An accurate model of Bruch's membrane must be a proteinaceous, semipermeable, and nonporous biomaterial with similar mechanical properties to in vivo conditions. Additionally, this model must support RPE cell growth. While models of subretinal tissue exist, they typically differ from in vivo Bruch's membrane in one or more of these properties. This study evaluates the capability of membranes created from recombinant hagfish intermediate filament (rHIF) proteins to accurately replicate Bruch's membrane in an in vitro model of the subretinal tissue. The physical characteristics of these rHIF membranes were evaluated using mechanical testing, permeability assays, brightfield microscopy, and scanning electron microscopy. The capacity of the membranes to support RPE cell culture was determined using brightfield and fluorescent microscopy, as well as immunocytochemical staining. This study demonstrates that rHIF protein membranes are an appropriate biomaterial to accurately mimic both healthy and aged Bruch's membrane for in vitro modeling of the subretinal tissue.
Collapse
Affiliation(s)
- Emilee Rickabaugh
- Department of Biological Engineering, Utah State University, 4105 Old Main Hill, Logan, Utah 84322-4105 United States
| | - Dillon Weatherston
- Department of Biological Engineering, Utah State University, 4105 Old Main Hill, Logan, Utah 84322-4105 United States
| | - Thomas I Harris
- Department of Biology, Utah State University, 5305 Old Main Hill, Logan, Utah 84322-5305, United States
| | - Justin A Jones
- Department of Biology, Utah State University, 5305 Old Main Hill, Logan, Utah 84322-5305, United States
| | - Elizabeth Vargis
- Department of Biological Engineering, Utah State University, 4105 Old Main Hill, Logan, Utah 84322-4105 United States
| |
Collapse
|
3
|
Nam U, Lee S, Jeon JS. Generation of a 3D Outer Blood-Retinal Barrier with Advanced Choriocapillaris and Its Application in Diabetic Retinopathy in a Microphysiological System. ACS Biomater Sci Eng 2023; 9:4929-4939. [PMID: 37494673 DOI: 10.1021/acsbiomaterials.3c00326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/28/2023]
Abstract
The outer blood-retinal barrier (oBRB) provides an optimal environment for the function of the photoreceptor by regulating the exchange of molecules between subretinal space and the choriocapillaris, and its dysfunction could impair the photoreceptor's function and vision. The existing in vitro models have limitations in reproducing the barrier function or physiological characteristics of oBRB and choriocapillaris. Here, we engineered a microphysiological system-based oBRB-choriocapillaris model that simultaneously incorporates the desired physiological characteristics and is simple to fabricate. First, we generated microvascular networks to mimic choriocapillaris and investigated the role of fibroblasts in vasculogenesis. By adding retinal pigment epithelial cells to one side of blood vessels formed with endothelial cells and fibroblasts and optimizing their culture medium conditions, we established an oBRB-choriocapillaris model. To verify the physiological similarity of our oBRB-choriocapillaris model, we identified the polarization and expression of the tight junction of the retinal pigment epithelium, Bruch's membrane, and the fenestral diaphragm of choriocapillaris. Finally, we tried to recapitulate the diabetes mellitus environment in our model with hyperglycemia and diabetes-related cytokines. This induced a decrease in tight junction integrity, loss of barrier function, and shrinkage of blood vessels, similar to the in vivo pathological changes observed in the oBRB and choriocapillaris. The oBRB-choriocapillaris model developed using a microphysiological system is expected to offer a valuable in vitro platform for retinal and choroidal vascular diseases in preclinical applications.
Collapse
Affiliation(s)
- Ungsig Nam
- Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
| | - Seokhun Lee
- Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
| | - Jessie S Jeon
- Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
- KAIST Institute for Health Science and Technology, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
| |
Collapse
|
4
|
Dow LP, Parmar T, Marchetti MC, Pruitt BL. Engineering tools for quantifying and manipulating forces in epithelia. BIOPHYSICS REVIEWS 2023; 4:021303. [PMID: 38510344 PMCID: PMC10903508 DOI: 10.1063/5.0142537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Accepted: 04/20/2023] [Indexed: 03/22/2024]
Abstract
The integrity of epithelia is maintained within dynamic mechanical environments during tissue development and homeostasis. Understanding how epithelial cells mechanosignal and respond collectively or individually is critical to providing insight into developmental and (patho)physiological processes. Yet, inferring or mimicking mechanical forces and downstream mechanical signaling as they occur in epithelia presents unique challenges. A variety of in vitro approaches have been used to dissect the role of mechanics in regulating epithelia organization. Here, we review approaches and results from research into how epithelial cells communicate through mechanical cues to maintain tissue organization and integrity. We summarize the unique advantages and disadvantages of various reduced-order model systems to guide researchers in choosing appropriate experimental systems. These model systems include 3D, 2D, and 1D micromanipulation methods, single cell studies, and noninvasive force inference and measurement techniques. We also highlight a number of in silico biophysical models that are informed by in vitro and in vivo observations. Together, a combination of theoretical and experimental models will aid future experiment designs and provide predictive insight into mechanically driven behaviors of epithelial dynamics.
Collapse
Affiliation(s)
| | - Toshi Parmar
- Department of Physics, University of California Santa Barbara, Santa Barbara, California 93106, USA
| | | | | |
Collapse
|
5
|
Lee S, Kim S, Jeon JS. Microfluidic outer blood-retinal barrier model for inducing wet age-related macular degeneration by hypoxic stress. LAB ON A CHIP 2022; 22:4359-4368. [PMID: 36254466 DOI: 10.1039/d2lc00672c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Wet age-related macular degeneration (AMD) is a severe ophthalmic disease that develops in the outer blood-retinal barrier (oBRB), involving two types of cells, the retinal pigment epithelium (RPE) and the choriocapillaris endothelium (CCE). Unfortunately, the pathogenesis of AMD is unclear, and the risk of the only effective therapy (Anti-VEGF injection) has been consistently argued. Also, since oBRB is hard to observe in vivo, an in vitro model for the pathological study is necessary. Here, we propose an advanced oBRB model, enhanced in two major ways: fully vascularized CCE and the in vivo analogous distance between RPE and CCE. Our model consists of an RPE (ARPE-19) monolayer with adjacent CCE (HUVEC) embedded fibrin gel in the microfluidic chip and required four days to construct an oBRB. Notably, the intercellular distance was tuned to the in vivo scale (<100 μm) without any extraneous scaffold in between. Thus, the two cell layers can interact freely through the extracellular matrix (ECM) in vivo. This is significant as wet AMD is mainly developed through broken intercellular interaction. Thanks to this in vivo similarity, the model incubated under hypoxic conditions, similar to an oxygen-induced retinopathy animal model, showed upregulated vascularization comparable to the AMD condition. We envisage that our model can be used to assist the investigation of AMD.
Collapse
Affiliation(s)
- Seokhun Lee
- Department of Mechanical Engineering, KAIST, Daejeon 34141, Korea.
| | - Seunggyu Kim
- Department of Mechanical Engineering, KAIST, Daejeon 34141, Korea.
| | - Jessie S Jeon
- Department of Mechanical Engineering, KAIST, Daejeon 34141, Korea.
| |
Collapse
|
6
|
Wang VY, Kuo BL, Chen AX, Wang K, Greenlee TE, Conti TF, Singh RP. Fluctuations in macular thickness in patients with diabetic macular oedema treated with anti-vascular endothelial growth factor agents. Eye (Lond) 2022; 36:1461-1467. [PMID: 34234291 PMCID: PMC9232615 DOI: 10.1038/s41433-021-01672-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 06/07/2021] [Accepted: 06/24/2021] [Indexed: 11/09/2022] Open
Abstract
PURPOSE To evaluate retinal thickness fluctuations in patients with diabetic macular oedema (DMO) treated with anti-vascular endothelial growth factor (anti-VEGF) injections. METHODS Visual acuity (VA) and central subfield thickness (CST) were collected at baseline, 3, 6, 9 and 12 months. Retinal thickness fluctuation was quantified by standard deviation (SD) of CST across 12 months. A mixed effects regression model evaluated the relationship between CST SD and VA at 12 months. Multiple linear regression analysis was performed to investigate predictors of CST SD. RESULTS Mean baseline and 12-month VAs were 63.5 ± 15.7 and 69.0 ± 13.8 Early Treatment of Diabetic Retinopathy Study (ETDRS) letters (change = +5.1 ± 16.1 letters, p < 0.001). Mean baseline and 12-month CSTs were 396.9 ± 109.7 and 337.7 ± 100.7 μm (change = -59.2 ± 114.8 μm, p < 0.001). Retinal thickness variability across the first 12 months was 59.4 ± 43.6 μm. Stratification of patient eyes by CST SD demonstrated 9.7 letters difference in 12-month VA between first and fourth quartiles. Significant predictors of CST SD include baseline CST, injection type, laser treatment, and DR stage. CONCLUSIONS Larger retinal thickness fluctuations are associated with poorer visual outcomes in eyes with DMO treated with anti-VEGF injections. Retinal thickness variability may be an important prognostic biomarker for DMO patients.
Collapse
Affiliation(s)
- Victoria Y Wang
- Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Blanche L Kuo
- Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Andrew X Chen
- Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Kevin Wang
- Cole Eye Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Tyler E Greenlee
- Center for Ophthalmic Bioinformatics, Cole Eye Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Thais F Conti
- Center for Ophthalmic Bioinformatics, Cole Eye Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Rishi P Singh
- Center for Ophthalmic Bioinformatics, Cole Eye Institute, Cleveland Clinic, Cleveland, OH, USA.
| |
Collapse
|
7
|
Wu A, Lu R, Lee E. Tissue engineering in age-related macular degeneration: a mini-review. J Biol Eng 2022; 16:11. [PMID: 35578246 PMCID: PMC9109377 DOI: 10.1186/s13036-022-00291-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 04/27/2022] [Indexed: 11/10/2022] Open
Abstract
Age-related macular degeneration (AMD) is a progressive, degenerative disease of the macula, leading to severe visual loss in the elderly population. There are two types of AMD: non-exudative ('dry') AMD and exudative ('wet') AMD. Non-exudative AMD is characterized by drusen formation and macular atrophy, while the blood vessels are not leaky. Exudative AMD is a more advanced form of the disease, featured with abnormal blood vessel growth and vascular leakage. Even though anti-angiogenic therapies have been effective in treating wet AMD by normalizing blood vessels, there is no treatment available to prevent or treat dry AMD. Currently, the mechanisms of drusen formation and macular atrophy in the dry AMD are poorly understood, in part because the currently available in vivo models of AMD could not decouple and isolate the complex biological and biophysical factors in the macular region for a detailed mechanism study, including the complement system, angiogenesis factors, extracellular matrix, etc. In the present review article, we describe the biological background of AMD and the key cells and structures in AMD, including retinal epithelium, photoreceptor, Bruch's membrane, and choriocapillaris. We also discuss pre-clinical animal models of AMD and in vivo tissue-engineered approaches, including cell suspension injection and organoid-derived cell sheet transplantation. We also discuss in vitro tissue-engineered models for AMD research. Specifically, we evaluate and compare currently available two- and three-dimensional AMD tissue-engineered models that mimic key anatomical players in AMD progression, including pathophysiological characteristics in Bruch's membrane, photoreceptor, and choriocapillaris. Finally, we discuss the limitation of current AMD models and future directions.
Collapse
Affiliation(s)
- Andres Wu
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, 14853, USA
- Ann S. Bowers College of Computing and Information Science, Cornell University, Ithaca, NY, 14853, USA
| | - Renhao Lu
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, 14853, USA
| | - Esak Lee
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, 14853, USA.
| |
Collapse
|
8
|
Chen AX, Greenlee TE, Conti TF, Briskin IN, Singh RP. Fluctuations in Macular Thickness in Patients with Retinal Vein Occlusion Treated with Anti-Vascular Endothelial Growth Factor Agents. Ophthalmol Retina 2020; 4:1158-1169. [PMID: 32480014 DOI: 10.1016/j.oret.2020.05.018] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 05/14/2020] [Accepted: 05/22/2020] [Indexed: 06/11/2023]
Abstract
PURPOSE To evaluate macular thickness fluctuations in patients with retinal vein occlusions (RVOs) treated with anti-vascular endothelial growth factor (VEGF) agents and to assess whether patients with larger fluctuations have poorer visual outcomes. DESIGN Retrospective cohort study. PARTICIPANTS Treatment-naive patients with RVO. METHODS Central subfield thickness (CST), cube volume (CV), and cube average thickness (CAT) were collected from OCT images obtained at baseline and 3, 6, 9, and 12 months, and standard deviations (SDs) across 12 months were calculated. Mixed-effects regression was performed to examine the relationship between macular thickness SD and 12-month visual acuity (VA). Standard multiple regression was performed to identify predictors of macular thickness SD. MAIN OUTCOME MEASURES Standard deviations across 12 months for CST, CV, and CAT and VA at 12 months. RESULTS One hundred thirty-four eyes, including 71 with branch RVO (BRVO) and 63 with central RVO (CRVO), were evaluated. Mean baseline and 12-month CST were 488.6 ± 165.0 μm and 334.3 ± 131.9 μm (change, -154.3 ± 210.2 μm; P < 0.001), with CST SD of 114.1 ± 77.0 μm. Baseline and 12-month VA were 52.8 ± 20.9 letters and 65.9 ± 17.3 letters (change, +13.1 ± 20.3 letters; P < 0.001). Central subfield thickness SD was a significant negative predictor of 12-month VA (-5.21 letters/100 μm; 95% confidence interval [CI], -10.21 to -0.22 letters/100 μm; P = 0.041) when adjusting for baseline factors and injections. Baseline CST and number of injections were not predictive (P ≥ 0.101). Stratification by CST SD demonstrated a 10-letter difference in 12-month VA between the first and fourth quartiles. Baseline CST and RVO diagnosis were the only significant predictors of CST SD (CRVO vs. BRVO: +34.64 μm/100 μm [95% CI, 29.33-39.94 μm/100 μm; P < 0.001] and +22.13 μm/100 μm [95% CI, 4.81-39.44 μm/100 μm; P = 0.013]). Associations using CV and CAT were similar. CONCLUSIONS Larger macular thickness fluctuations are associated with poorer visual outcomes in patients with RVO treated with anti-VEGF agents. Macular thickness fluctuations, in addition to absolute macular thickness, may be an important prognostic biomarker in these patients.
Collapse
Affiliation(s)
- Andrew X Chen
- Case Western Reserve University School of Medicine, Cleveland, Ohio; Center for Ophthalmic Bioinformatics, Cole Eye Institute, Cleveland Clinic, Cleveland, Ohio
| | - Tyler E Greenlee
- Center for Ophthalmic Bioinformatics, Cole Eye Institute, Cleveland Clinic, Cleveland, Ohio
| | - Thais F Conti
- Center for Ophthalmic Bioinformatics, Cole Eye Institute, Cleveland Clinic, Cleveland, Ohio
| | - Isaac N Briskin
- Department of Quantitative Health Sciences, Cleveland Clinic, Cleveland, Ohio
| | - Rishi P Singh
- Case Western Reserve University School of Medicine, Cleveland, Ohio; Center for Ophthalmic Bioinformatics, Cole Eye Institute, Cleveland Clinic, Cleveland, Ohio.
| |
Collapse
|
9
|
Farjood F, Ahmadpour A, Ostvar S, Vargis E. Acute mechanical stress in primary porcine RPE cells induces angiogenic factor expression and in vitro angiogenesis. J Biol Eng 2020; 14:13. [PMID: 32355505 PMCID: PMC7183714 DOI: 10.1186/s13036-020-00235-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Accepted: 03/24/2020] [Indexed: 12/21/2022] Open
Abstract
Background Choroidal neovascularization (CNV) is a major cause of blindness in patients with age-related macular degeneration. CNV is characterized by new blood vessel growth and subretinal fluid accumulation, which results in mechanical pressure on retinal pigment epithelial (RPE) cells. The overexpression of RPE-derived angiogenic factors plays an important role in inducing CNV. In this work, we investigated the effect of mechanical stress on the expression of angiogenic factors in porcine RPE cells and determined the impact of conditioned medium on in-vitro angiogenesis. Results The goal of this study was to determine whether low levels of acute mechanical stress during early CNV can induce the expression of angiogenic factors in RPE cells and accelerate angiogenesis. Using a novel device, acute mechanical stress was applied to primary porcine RPE cells and the resulting changes in the expression of major angiogenic factors, VEGF, ANG2, HIF-1α, IL6, IL8 and TNF-α, were examined using immunocytochemistry, qRT-PCR, and ELISA. An in vitro tube formation assay was used to determine the effect of secreted angiogenic proteins due to mechanical stress on endothelial tube formation by human umbilical vein endothelial cells (HUVECs). Our results showed an increase in the expression of VEGF, ANG2, IL-6 and IL-8 in response to mechanical stress, resulting in increased in vitro angiogenesis. Abnormal epithelial-mesenchymal transition (EMT) in RPE cells is also associated with CNV and further retinal degeneration. Our qRT-PCR results verified an increase in the expression of EMT genes, CDH2, VIM and FN1, in RPE cells. Conclusions In conclusion, we showed that acute mechanical stress induces the expression of major angiogenic and EMT factors and promotes in vitro angiogenesis, suggesting that mechanical stress plays a role in promoting aberrant angiogenesis in AMD.
Collapse
Affiliation(s)
- Farhad Farjood
- 1Department of Biological Engineering, Utah State University, 4105 Old Main Hill, Logan, UT 84322 USA.,2Present address: Neural Stem Cell Institute, Rensselaer, NY 12144 USA
| | - Amir Ahmadpour
- 1Department of Biological Engineering, Utah State University, 4105 Old Main Hill, Logan, UT 84322 USA.,3Present address: Department of Animal Sciences, Yasouj University, Yasouj, 75918-74934 Iran
| | - Sassan Ostvar
- 4Division of General Medicine, Columbia University Medical Center, New York, NY 10032 USA
| | - Elizabeth Vargis
- 1Department of Biological Engineering, Utah State University, 4105 Old Main Hill, Logan, UT 84322 USA
| |
Collapse
|
10
|
Bai J, Wang C. Organoids and Microphysiological Systems: New Tools for Ophthalmic Drug Discovery. Front Pharmacol 2020; 11:407. [PMID: 32317971 PMCID: PMC7147294 DOI: 10.3389/fphar.2020.00407] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2019] [Accepted: 03/18/2020] [Indexed: 12/13/2022] Open
Abstract
Organoids are adept at preserving the inherent complexity of a given cellular environment and when integrated with engineered micro-physiological systems (MPS) present distinct advantages for simulating a precisely controlled geometrical, physical, and biochemical micro-environment. This then allows for real-time monitoring of cell-cell interactions. As a result, the two aforementioned technologies hold significant promise and potential in studying ocular physiology and diseases by replicating specific eye tissue microstructures in vitro. This miniaturized review begins with defining the science behind organoids/MPS and subsequently introducing methods for generating organoids and engineering MPS. Furthermore, we will discuss the current state of organoids and MPS models in retina, cornea surrogates, and other ocular tissue, in regards to physiological/disease conditions. Finally, future prospective on organoid/MPS will be covered here. Organoids and MPS technologies closely recapture the in vivo microenvironment and thusly will continue to provide new understandings in organ functions and novel approaches to drug development.
Collapse
Affiliation(s)
- Jing Bai
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA, United States
| | - Chunming Wang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macau
| |
Collapse
|
11
|
Wang C, Ma J, Xu M, Gao J, Zhao W, Yao Y, Shang Q. mTORC1 signaling pathway regulates macrophages in choroidal neovascularization. Mol Immunol 2020; 121:72-80. [PMID: 32172027 DOI: 10.1016/j.molimm.2020.03.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Revised: 02/25/2020] [Accepted: 03/03/2020] [Indexed: 02/07/2023]
Abstract
Macrophages are involved in choroidal neovascularization (CNV). The mechanistic target of rapamycin complex 1 (mTORC1) is a central cell regulator, but mTORC1 function in macrophages in CNV is not fully understood. We explored the effect of mTORC1 pathway regulation on macrophages in CNV. A laser-induced murine CNV model was performed. Expression of phospho-S6 and F4/80 in CNV lesions was analyzed by immunofluorescence. Macrophages in CNV lesions were found at 1 day after laser treatment, reached a peak at 5 days, and decreased at 7 and 14 days. mTORC1 activity of cells in CNV lesions was increased from 3 to 7 days, and deceased at 14 days. Most infiltrating macrophages in CNV lesions had strong mTORC1 activity at 3 and 5 days that subsequently decreased. In vitro, THP-1 macrophages were polarized to M1 or M2 with rapamycin or siRNA treatment. The human retinal pigment epithelium (RPE) cell line ARPE-19 was co-cultured with macrophages. Cytokine expression of macrophages and ARPE-19 cells was detected by quantitative PCR. Inhibiting mTORC1 activity of macrophages reduced M1 and strengthened M2, which was reversed by mTORC1 hyperactivation. Both M1 and M2 macrophages induced RPE cells to express less PEDF and more MMP9, IL-1β and MCP-1. Inhibiting or enhancing mTORC1 activity of macrophages changed cytokine expression of RPE cells. Together, we demonstrated that macrophage functions in CNV were regulated partly by the mTORC1 pathway, and mTORC1 activity of macrophages influenced the expression of cytokines that are associated with CNV development in RPE cells. This study provides more understanding about the regulatory mechanism of macrophages in CNV.
Collapse
Affiliation(s)
- Caixia Wang
- Department of Ophthalmology, Second Hospital of Hebei Medical University, Shijiazhuang, 050000, Hebei, China
| | - Jingxue Ma
- Department of Ophthalmology, Second Hospital of Hebei Medical University, Shijiazhuang, 050000, Hebei, China
| | - Man Xu
- Department of Ophthalmology, Second Hospital of Hebei Medical University, Shijiazhuang, 050000, Hebei, China
| | - Jian Gao
- Department of Biotechnology Drug, North China Pharmaceutical Group New Drug R&D Co., Ltd., Shijiazhuang, 052260, Hebei, China
| | - Wei Zhao
- Department of Biotechnology Drug, North China Pharmaceutical Group New Drug R&D Co., Ltd., Shijiazhuang, 052260, Hebei, China
| | - Yimin Yao
- Department of Ophthalmology, Second Hospital of Hebei Medical University, Shijiazhuang, 050000, Hebei, China
| | - Qingli Shang
- Department of Ophthalmology, Second Hospital of Hebei Medical University, Shijiazhuang, 050000, Hebei, China.
| |
Collapse
|
12
|
Murphy AR, Truong YB, O'Brien CM, Glattauer V. Bio-inspired human in vitro outer retinal models: Bruch's membrane and its cellular interactions. Acta Biomater 2020; 104:1-16. [PMID: 31945506 DOI: 10.1016/j.actbio.2020.01.013] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Revised: 01/07/2020] [Accepted: 01/09/2020] [Indexed: 12/17/2022]
Abstract
Retinal degenerative disorders, such as age-related macular degeneration (AMD), are one of the leading causes of blindness worldwide, however, treatments to completely stop the progression of these debilitating conditions are non-existent. Researchers require sophisticated models that can accurately represent the native structure of human retinal tissue to study these disorders. Current in vitro models used to study the retina are limited in their ability to fully recapitulate the structure and function of the retina, Bruch's membrane and the underlying choroid. Recent developments in the field of induced pluripotent stem cell technology has demonstrated the capability of retinal pigment epithelial cells to recapitulate AMD-like pathology. However, such studies utilise unsophisticated, bio-inert membranes to act as Bruch's membrane and support iPSC-derived retinal cells. This review presents a concise summary of the properties and function of the Bruch's membrane-retinal pigment epithelium complex, the initial pathogenic site of AMD as well as the current status for materials and fabrication approaches used to generate in vitro models of this complex tissue. Finally, this review explores required advances in the field of in vitro retinal modelling. STATEMENT OF SIGNIFICANCE: Retinal degenerative disorders such as age-related macular degeneration are worldwide leading causes of blindness. Previous attempts to model the Bruch's membrane-retinal pigment epithelial complex, the initial pathogenic site of age-related macular degeneration, have lacked the sophistication to elucidate valuable insights into disease mechanisms. Here we provide a detailed account of the morphological, physical and chemical properties of Bruch's membrane which may aid the fabrication of more sophisticated and physiologically accurate in vitro models of the retina, as well as various fabrication techniques to recreate this structure. This review also further highlights some recent advances in some additional challenging aspects of retinal tissue modelling including integrated fluid flow and photoreceptor alignment.
Collapse
Affiliation(s)
- Ashley R Murphy
- CSIRO Manufacturing, Research Way, Clayton, VIC 3168, Australia.
| | - Yen B Truong
- CSIRO Manufacturing, Research Way, Clayton, VIC 3168, Australia
| | - Carmel M O'Brien
- CSIRO Manufacturing, Research Way, Clayton, VIC 3168, Australia; Australian Regenerative Medicine Institute, Science, Technology, Research and Innovation Precinct (STRIP), Monash University, Clayton Campus, Wellington Road, Clayton, VIC 3800, Australia
| | | |
Collapse
|
13
|
Masaeli E, Forster V, Picaud S, Karamali F, Nasr-Esfahani MH, Marquette C. Tissue engineering of retina through high resolution 3-dimensional inkjet bioprinting. Biofabrication 2020; 12:025006. [PMID: 31578006 DOI: 10.1088/1758-5090/ab4a20] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The mammalian retina contains multiple cellular layers, each carrying out a specific task. Such a controlled organization should be considered as a crucial factor for designing retinal therapies. The maintenance of retinal layered complexity through the use of scaffold-free techniques has recently emerged as a promising approach for clinical ocular tissue engineering. In an attempt to fabricate such layered retinal model, we are proposing herein a unique inkjet bioprinting system applied to the deposition of a photoreceptor cells (PRs) layer on top of a bioprinted retinal pigment epithelium (RPE), in a precise arrangement and without any carrier material. The results showed that, after bioprinting, both RPE and PRs were well positioned in a layered structure and expressed their structural markers, which was further demonstrated by ZO1, MITF, rhodopsin, opsin B, opsin R/G and PNA immunostaining, three days after bioprinting. We also showed that considerable amounts of human vascular endothelial growth factors (hVEGF) were released from the RPE printed layer, which confirmed the formation of a functional RPE monolayer after bioprinting. Microstructures of bioprinted cells as well as phagocytosis of photoreceptor outer segments by apical RPE microvilli were finally established through transmission electron microscopy (TEM) imaging. In summary, using this carrier-free bioprinting method, it was possible to develop a reasonable in vitro retina model for studying some sight-threatening diseases, such as age-related macular degeneration (AMD) and retinitis pigmentosa (RP).
Collapse
Affiliation(s)
- Elahe Masaeli
- Department of Cellular Biotechnology, Cell Science Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran. 3d.FAB, Univ Lyon, Université Lyon1, CNRS, INSA, CPE-Lyon, ICBMS, UMR 5246, Bat. Lederer, 1 rue Victor Grignard, 69100 Villeurbanne, France
| | | | | | | | | | | |
Collapse
|
14
|
Cao Q, Deji QZ, Liu YJ, Ye W, Zhaba WD, Jiang Q, Yan F. The role of mechanical stretch and TGF-β2 in epithelial-mesenchymal transition of retinal pigment epithelial cells. Int J Ophthalmol 2019; 12:1832-1838. [PMID: 31850164 DOI: 10.18240/ijo.2019.12.03] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Accepted: 11/06/2019] [Indexed: 12/17/2022] Open
Abstract
AIM To explore the effects and mechanisms of mechanical stress and transforming growth factor-beta2 (TGF-β2) on epithelial-mesenchymal transition (EMT) in cultured human retinal pigment epithelial (RPE) cells. METHODS Human RPE cells were inoculated on BioFex 6-well plates and RPE cells received 0, 1, 2, 3, or 4 mild stretch injuries delivered 3h apart after 24h of culture. The device of mechanical stress parameters were set to sine wave, frequency 1 Hz, stretch strength 20%. For treatment with TGF-β2, when the inoculated RPE cells in 6-well plates were around 60% confluent, serum was reduced to 0 for 12h and recombinant human TGF-β2 (0, 1, 5, 10 ng/mL) was added for 48h. α-SMA, Vimentin and N-Cadherin, fibronectin proteins expressions were detected by Western blotting, confocal cell immunofluorescence and quantitative real-time polymerase chain reaction (qRT-PCR). Then we detected the change of miRNA-29b and ascertained the changes of phosphatidylinositol 3-kinase-serine threonine protein kinase (PI3K/Akt) pathway after RPE cells were stretched by the device of mechanical stress and induced by TGF-β2 by Western blotting, confocal cell immunofluorescence and qRT-PCR. RESULTS Mechanical stress induce EMT and activate the PI3K/Akt pathway in ways that lead to the EMT process. TGF-β2 induce RPE cells EMT and in a certain range and TGF-β2 decrease the miRNA-29b expression in RPE cells, and the inhibitory effect is more obvious with the increase of TGF-β2 concentration. CONCLUSION Our findings are crucial steps in determining the critical roles of the PI3K/Akt signaling pathway and miRNA-29b in pathogenesis of proliferative vitreoretinopathy (PVR) which may be a potential target for preventing or treating PVR.
Collapse
Affiliation(s)
- Qian Cao
- Eye Hospital, Nanjing Medical University, Nanjing 210002, Jiangsu Province, China.,The Fourth School of Clinical Medicine, Nanjing Medical University, Nanjing 210002, Jiangsu Province, China
| | - Qu-Zhen Deji
- Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing 210002, Jiangsu Province, China
| | - Ya-Jun Liu
- Department of Ophthalmology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing 210008, Jiangsu Province, China
| | - Wei Ye
- School of Second Military Medical University, Department of Ophthalmology, Jinling Hospital, Nanjing 210002, Jiangsu Province, China
| | - Wang-Dui Zhaba
- Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing 210002, Jiangsu Province, China
| | - Qin Jiang
- Eye Hospital, Nanjing Medical University, Nanjing 210002, Jiangsu Province, China.,The Fourth School of Clinical Medicine, Nanjing Medical University, Nanjing 210002, Jiangsu Province, China
| | - Feng Yan
- Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing 210002, Jiangsu Province, China
| |
Collapse
|