1
|
Wittwer CT, Hemmert AC, Kent JO, Rejali NA. DNA melting analysis. Mol Aspects Med 2024; 97:101268. [PMID: 38489863 DOI: 10.1016/j.mam.2024.101268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 02/19/2024] [Accepted: 03/11/2024] [Indexed: 03/17/2024]
Abstract
Melting is a fundamental property of DNA that can be monitored by absorbance or fluorescence. PCR conveniently produces enough DNA to be directly monitored on real-time instruments with fluorescently labeled probes or dyes. Dyes monitor the entire PCR product, while probes focus on a specific locus within the amplicon. Advances in amplicon melting include high resolution instruments, saturating DNA dyes that better reveal multiple products, prediction programs for domain melting, barcode taxonomic identification, high speed microfluidic melting, and highly parallel digital melting. Most single base variants and small insertions or deletions can be genotyped by high resolution amplicon melting. High resolution melting also enables heterozygote scanning for any variant within a PCR product. A web application (uMelt, http://www.dna-utah.org) predicts amplicon melting curves with multiple domains, a useful tool for verifying intended products. Additional applications include methylation assessment, copy number determination and verification of sequence identity. When amplicon melting does not provide sufficient detail, unlabeled probes or snapback primers can be used instead of covalently labeled probes. DNA melting is a simple, inexpensive, and powerful tool with many research applications that is beginning to make its mark in clinical diagnostics.
Collapse
Affiliation(s)
- Carl T Wittwer
- Department of Pathology, University of Utah, Salt Lake City, UT, USA.
| | | | - Jana O Kent
- Department of Pathology, University of Utah, Salt Lake City, UT, USA
| | - Nick A Rejali
- Department of Pathology, University of Utah, Salt Lake City, UT, USA
| |
Collapse
|
2
|
Yu Y, Wang S, Luo Y, Gu C, Shi X, Shen F. Quantitative Investigation of Methylation Heterogeneity by Digital Melting Curve Analysis on a SlipChip for Atrial Fibrillation. ACS Sens 2023; 8:3595-3603. [PMID: 37590470 DOI: 10.1021/acssensors.3c01309] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/19/2023]
Abstract
Methylation is an essential epigenetic modification involved in regulating gene expression and maintaining genome stability. Methylation patterns can be heterogeneous, exhibiting variations in both level and density. However, current methods of methylation analysis, including sequencing, methylation-specific PCR, and high-resolution melting curve analysis (HRM), face limitations of high cost, time-consuming workflows, and the difficulty of both accurate heterogeneity analysis and precise quantification. Here, a droplet array SlipChip-based (da-SlipChip-based) digital melting curve analysis (MCA) method was developed for the accurate quantification of both methylation level (ratio of methylated molecules to total molecules) and methylation density (ratio of methylated CpG sites to total CpG sites). The SlipChip-based digital MCA system supplements an in situ thermal cycler with a fluorescence imaging module for real-time MCA. The da-SlipChip can generate 10,656 droplets of 1 nL each, which can be separated into four lanes, enabling the simultaneous analysis of four samples. This method's clinical application was demonstrated by analyzing samples from ten healthy individuals and twenty patients with atrial fibrillation (AF), the most common arrhythmia. This method can distinguish healthy individuals from those with AF of both the paroxysmal and persistent types. It also holds potential for broader application in various research and clinical settings requiring methylation analysis.
Collapse
Affiliation(s)
- Yan Yu
- School of Biomedical Engineering, Shanghai Jiao Tong University, 1954 Hua Shan Road, Shanghai 200030, China
| | - Sheng Wang
- School of Biomedical Engineering, Shanghai Jiao Tong University, 1954 Hua Shan Road, Shanghai 200030, China
| | - Yang Luo
- School of Biomedical Engineering, Shanghai Jiao Tong University, 1954 Hua Shan Road, Shanghai 200030, China
| | - Chang Gu
- Department of Thoracic Surgery, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China
- Department of Cardiothoracic Surgery, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200092, China
| | - Xin Shi
- Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China
| | - Feng Shen
- School of Biomedical Engineering, Shanghai Jiao Tong University, 1954 Hua Shan Road, Shanghai 200030, China
| |
Collapse
|
3
|
Yaghoubi Naei V, Bordhan P, Mirakhorli F, Khorrami M, Shrestha J, Nazari H, Kulasinghe A, Ebrahimi Warkiani M. Advances in novel strategies for isolation, characterization, and analysis of CTCs and ctDNA. Ther Adv Med Oncol 2023; 15:17588359231192401. [PMID: 37692363 PMCID: PMC10486235 DOI: 10.1177/17588359231192401] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Accepted: 07/19/2023] [Indexed: 09/12/2023] Open
Abstract
Over the past decade, the detection and analysis of liquid biopsy biomarkers such as circulating tumor cells (CTCs) and circulating tumor DNA (ctDNA) have advanced significantly. They have received recognition for their clinical usefulness in detecting cancer at an early stage, monitoring disease, and evaluating treatment response. The emergence of liquid biopsy has been a helpful development, as it offers a minimally invasive, rapid, real-time monitoring, and possible alternative to traditional tissue biopsies. In resource-limited settings, the ideal platform for liquid biopsy should not only extract more CTCs or ctDNA from a minimal sample volume but also accurately represent the molecular heterogeneity of the patient's disease. This review covers novel strategies and advancements in CTC and ctDNA-based liquid biopsy platforms, including microfluidic applications and comprehensive analysis of molecular complexity. We discuss these systems' operational principles and performance efficiencies, as well as future opportunities and challenges for their implementation in clinical settings. In addition, we emphasize the importance of integrated platforms that incorporate machine learning and artificial intelligence in accurate liquid biopsy detection systems, which can greatly improve cancer management and enable precision diagnostics.
Collapse
Affiliation(s)
- Vahid Yaghoubi Naei
- School of Biomedical Engineering, University of Technology Sydney, Sydney, Australia
- Faculty of Medicine, Frazer Institute, The University of Queensland, Brisbane, QLD, Australia
| | - Pritam Bordhan
- School of Biomedical Engineering, University of Technology Sydney, Sydney, Australia
- Faculty of Science, Institute for Biomedical Materials & Devices, University of Technology Sydney, Australia
| | - Fatemeh Mirakhorli
- School of Biomedical Engineering, University of Technology Sydney, Sydney, Australia
| | - Motahare Khorrami
- Immunology Research Center, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Jesus Shrestha
- School of Biomedical Engineering, University of Technology Sydney, Sydney, Australia
| | - Hojjatollah Nazari
- School of Biomedical Engineering, University of Technology Sydney, Sydney, Australia
| | - Arutha Kulasinghe
- Faculty of Medicine, Frazer Institute, The University of Queensland, Brisbane, QLD, Australia
| | - Majid Ebrahimi Warkiani
- School of Biomedical Engineering, University of Technology Sydney, 1, Broadway, Ultimo New South Wales 2007, Australia
| |
Collapse
|
4
|
O'Keefe CM, Wang THJ. Fabrication of Multilayer Microfluidic Arrays for Passive, Efficient DNA Trapping and Profiling. Methods Mol Biol 2023; 2679:315-322. [PMID: 37300626 DOI: 10.1007/978-1-0716-3271-0_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Trace amounts of cell-free DNA containing cancer-specific biomarkers can be found in blood plasma. Detection of these biomarkers holds tremendous potential for applications such as noninvasive cancer diagnostics and therapeutic monitoring. However, such DNA molecules are extremely rare, and a typical patient blood sample may only contain a few copies. Here we describe the fabrication and operation of a microfluidic device to efficiently trap single DNA molecules into chambers for detection of tumor-specific biomarkers through a passive, geometric manipulation strategy.
Collapse
Affiliation(s)
- Christine M O'Keefe
- Johns Hopkins University, Whiting School of Engineering, Department of Biomedical Engineering, Baltimore, MD, USA
| | - Tza-Huei Jeff Wang
- Johns Hopkins University, Whiting School of Engineering, Department of Biomedical Engineering, Baltimore, MD, USA.
| |
Collapse
|
5
|
Shao F, Lee PW, Li H, Hsieh K, Wang TH. Emerging platforms for high-throughput enzymatic bioassays. Trends Biotechnol 2023; 41:120-133. [PMID: 35863950 PMCID: PMC9789168 DOI: 10.1016/j.tibtech.2022.06.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Revised: 05/19/2022] [Accepted: 06/14/2022] [Indexed: 12/27/2022]
Abstract
Enzymes have essential roles in catalyzing biological reactions and maintaining metabolic systems. Many in vitro enzymatic bioassays have been developed for use in industrial and research fields, such as cell biology, enzyme engineering, drug screening, and biofuel production. Of note, many of these require the use of high-throughput platforms. Although the microtiter plate remains the standard for high-throughput enzymatic bioassays, microfluidic arrays and droplet microfluidics represent emerging methods. Each has seen significant advances and offers distinct advantages; however, drawbacks in key performance metrics, including reagent consumption, reaction manipulation, reaction recovery, real-time measurement, concentration gradient range, and multiplexity, remain. Herein, we compare recent high-throughput platforms using the aforementioned metrics as criteria and provide insights into remaining challenges and future research trends.
Collapse
Affiliation(s)
- Fangchi Shao
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Pei-Wei Lee
- Department of Mechanical Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Hui Li
- Department of Mechanical Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Kuangwen Hsieh
- Department of Mechanical Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Tza-Huei Wang
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA; Department of Mechanical Engineering, Johns Hopkins University, Baltimore, MD, USA.
| |
Collapse
|
6
|
Chen S, Sun Y, Fan F, Chen S, Zhang Y, Zhang Y, Meng X, Lin JM. Present status of microfluidic PCR chip in nucleic acid detection and future perspective. Trends Analyt Chem 2022. [DOI: 10.1016/j.trac.2022.116737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
7
|
Luo Y, Cui X, Cheruba E, Chua YK, Ng C, Tan RZ, Tan KK, Cheow LF. SAMBA: A Multicolor Digital Melting PCR Platform for Rapid Microbiome Profiling. SMALL METHODS 2022; 6:e2200185. [PMID: 35652511 DOI: 10.1002/smtd.202200185] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Revised: 04/27/2022] [Indexed: 06/15/2023]
Abstract
During the past decade, breakthroughs in sequencing technology have provided the basis for studies of the myriad ways in which microbial communities in and on the human body influence human health and disease. In almost every medical specialty, there is now a growing interest in accurate and quantitative profiling of the microbiota for use in diagnostic and therapeutic applications. However, the current next-generation sequencing approach for microbiome profiling is costly, requires laborious library preparation, and is challenging to scale up for routine diagnostics. Split, Amplify, and Melt analysis of BActeria-community (SAMBA), a novel multicolor digital melting polymerase chain reaction platform with unprecedented multiplexing capability is presented, and the capability to distinguish and quantify 16 bacteria species in mixtures is demonstrated. Subsequently, SAMBA is applied to measure the compositions of bacteria in the gut microbiome to identify microbial dysbiosis related to colorectal cancer. This rapid, low cost, and high-throughput approach will enable the implementation of microbiome diagnostics in clinical laboratories and routine medical practice.
Collapse
Affiliation(s)
- Yongqiang Luo
- Department of Biomedical Engineering & Institute for Health Innovation and Technology, National University of Singapore, Singapore, 119077, Singapore
| | - Xu Cui
- Department of Biomedical Engineering & Institute for Health Innovation and Technology, National University of Singapore, Singapore, 119077, Singapore
| | - Elsie Cheruba
- Department of Biomedical Engineering & Institute for Health Innovation and Technology, National University of Singapore, Singapore, 119077, Singapore
| | - Yong Kang Chua
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597, Singapore
| | - Charmaine Ng
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597, Singapore
| | - Rui Zhen Tan
- Engineering Cluster, Singapore Institute of Technology, Singapore, 138683, Singapore
| | - Ker-Kan Tan
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597, Singapore
- Division of Colorectal Surgery, National University Hospital, Singapore, 119074, Singapore
| | - Lih Feng Cheow
- Department of Biomedical Engineering & Institute for Health Innovation and Technology, National University of Singapore, Singapore, 119077, Singapore
| |
Collapse
|
8
|
Screening and Validation of Significant Genes with Poor Prognosis in Pathologic Stage-I Lung Adenocarcinoma. JOURNAL OF ONCOLOGY 2022; 2022:3794021. [PMID: 35444699 PMCID: PMC9015852 DOI: 10.1155/2022/3794021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 02/05/2022] [Indexed: 11/17/2022]
Abstract
Background Although more pathologic stage-I lung adenocarcinoma (LUAD) was diagnosed recently, some relapsed or distantly metastasized shortly after radical resection. The study aimed to identify biomarkers predicting prognosis in the pathologic stage-I LUAD and improve the understanding of the mechanisms involved in tumorigenesis. Methods We obtained the expression profiling data for non-small cell lung cancer (NSCLC) patients from the NCBI-GEO database. Differentially expressed genes (DEGs) between early-stage NSCLC and normal lung tissue were determined. After function enrichment analyses on DEGs, the protein-protein interaction (PPI) network was built and analyzed with the Search Tool for the Retrieval of Interacting Genes (STRING) and Cytoscape. Overall survival (OS) and mRNA levels of genes were performed with Kaplan–Meier analysis and Gene Expression Profiling Interactive Analysis (GEPIA). qPCR and western blot analysis of hub genes in stage-I LUAD patients validated the significant genes with poor prognosis. Results A total of 172 DEGs were identified, which were mainly enriched in terms related to management of extracellular matrix (ECM), receptor signaling pathway, cell adhesion, activity of endopeptidase, and receptor. The PPI network identified 11 upregulated hub genes that were significantly associated with OS in NSCLC and highly expressed in NSCLC tissues compared with normal tissues by GEPIA. Elevated expression of ANLN, EXO1, KIAA0101, RRM2, TOP2A, and UBE2T were identified as potential risk factors in pathologic stage-I LUAD. Except for ANLN and KIAA0101, the hub genes mRNA levels were higher in tumors compared with adjacent non-cancerous samples in the qPCR analysis. The hub genes protein levels were also overexpressed in tumors. In vitro experiments showed that knockdown of UBE2T in LUAD cell lines could inhibit cell proliferation and cycle progression. Conclusions The DEGs can probably be used as potential predictors for stage-I LUAD worse prognosis and UBE2T may be a potential tumor promoter and target for treatment.
Collapse
|
9
|
Numerical analysis of the pore-scale mechanisms controlling the efficiency of immiscible displacement of a pollutant phase by a shear-thinning fluid. Chem Eng Sci 2022. [DOI: 10.1016/j.ces.2022.117462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
10
|
Yu Y, Yu Z, Pan X, Xu L, Guo R, Qian X, Shen F. Multiplex digital PCR with digital melting curve analysis on a self-partitioning SlipChip. Analyst 2022; 147:625-633. [PMID: 35107102 DOI: 10.1039/d1an01916c] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Digital polymerase chain reaction (digital PCR) can provide absolute quantification of target nucleic acids with high sensitivity, excellent precision, and superior resolution. Digital PCR has broad applications in both life science research and clinical molecular diagnostics. However, limited by current fluorescence imaging methods, parallel quantification of multiple target molecules in a single digital PCR remains challenging. Here, we present a multiplex digital PCR method using digital melting curve analysis (digital MCA) with a SlipChip microfluidic system. The self-partitioning SlipChip (sp-SlipChip) can generate an array of nanoliter microdroplets with trackable physical positions using a simple loading-and-slipping operation. A fluorescence imaging adaptor and an in situ thermal cycler can be used to perform digital PCR and digital MCA on the sp-SlipChip. The unique signature melting temperature (Tm) designed for amplification products can be used as a fingerprint to further classify the positive amplification partitions into different subgroups. Amplicons with Tm differences as low as 1.5 degrees celsius were clearly separated, and multiple amplicons in the same partition could also be distinguished by digital MCA. We further demonstrated this digital MCA method with simultaneous digital quantification of five common respiratory pathogens, including Staphylococcus aureus, Acinetobacter baumannii, Streptococcus pneumoniae, Hemophilus influenzae, and Klebsiella pneumoniae. Since digital MCA only requires an intercalation dye instead of sequence-specific hydrolysis probes to perform multiplex digital PCR analysis, it can be less expensive and not limited to the number of fluorescence channels.
Collapse
Affiliation(s)
- Yan Yu
- School of Biomedical Engineering, Shanghai Jiao Tong University, 1954 Hua Shan Road, Shanghai, China.
| | - Ziqing Yu
- School of Biomedical Engineering, Shanghai Jiao Tong University, 1954 Hua Shan Road, Shanghai, China.
| | - Xufeng Pan
- Department of Thoracic Surgery, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Lei Xu
- School of Biomedical Engineering, Shanghai Jiao Tong University, 1954 Hua Shan Road, Shanghai, China.
| | - Rui Guo
- School of Biomedical Engineering, Shanghai Jiao Tong University, 1954 Hua Shan Road, Shanghai, China.
| | - Xiaohua Qian
- School of Biomedical Engineering, Shanghai Jiao Tong University, 1954 Hua Shan Road, Shanghai, China.
| | - Feng Shen
- School of Biomedical Engineering, Shanghai Jiao Tong University, 1954 Hua Shan Road, Shanghai, China.
| |
Collapse
|
11
|
Liu Y, Zhang N, Pan JB, Song J, Zhao W, Chen HY, Xu JJ. Bipolar Electrode Array for Multiplexed Detection of Prostate Cancer Biomarkers. Anal Chem 2022; 94:3005-3012. [PMID: 35103469 DOI: 10.1021/acs.analchem.1c05383] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Owing to the characteristics of high throughput, high flexibility, and convenient separation of the sensing and reporting reactions, the bipolar electrode (BPE) shows great potential in clinical analysis. However, there are some difficulties in the combination of BPEs and multiplex electrochemiluminescence (ECL) biosensing, such as the need for small sample consumption, multistep operations, and separated sample loading. In this paper, a microfluidic BPE array chip was fabricated toward multiplex detection of cancer biomarkers. With a special channel structure and the difference in flow resistance of channels of different sizes, the direction of liquid flow was successfully controlled. In this way, rapid and automatic multiplex sampling was achieved on the array, which would help improve the sensing efficiency and reduce the reagent consumption. The ECL BPE array chip served as an immunosensor for multiple prostate cancer biomarkers including prostate-specific antigen (PSA), interleukin-6 (IL-6), and prostate-specific membrane antigen (PSMA). The microfluidic BPE chip shows good reproducibility and high sensitivity. The limits of detection for PSA, IL-6, and PSMA are 0.093 ng/mL, 0.061 pg/mL, and 0.059 ng/mL, respectively. It also exhibits excellent performance in real sample analysis. The integrated ECL BPE array shows a good application prospect in clinical sensing of cancer biomarkers, as well as point-of-care testing.
Collapse
Affiliation(s)
- Yu Liu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Nan Zhang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Jian-Bin Pan
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Juan Song
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Wei Zhao
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China.,Institute of Nanochemistry and Nanobiology, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Hong-Yuan Chen
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Jing-Juan Xu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| |
Collapse
|
12
|
Adampourezare M, Hasanzadeh M, Seidi F. Optical bio-sensing of DNA methylation analysis: an overview of recent progress and future prospects. RSC Adv 2022; 12:25786-25806. [PMID: 36199327 PMCID: PMC9460980 DOI: 10.1039/d2ra03630d] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Accepted: 09/03/2022] [Indexed: 12/02/2022] Open
Abstract
DNA methylation as one of the most important epigenetic modifications has a critical role in regulating gene expression and drug resistance in treating diseases such as cancer. Therefore, the detection of DNA methylation in the early stages of cancer plays an essential role in disease diagnosis. The majority of routine methods to detect DNA methylation are very tedious and costly. Therefore, designing easy and sensitive methods to detect DNA methylation directly and without the need for molecular methods is a hot topic issue in bioscience. Here we provide an overview on the optical biosensors (including fluorescence, FRET, SERs, colorimetric) that have been applied to detect the DNA methylation. In addition, various types of labeled and label-free reactions along with the application of molecular methods and optical biosensors have been surveyed. Also, the effect of nanomaterials on the sensitivity of detection methods is discussed. Furthermore, a comprehensive overview of the advantages and disadvantages of each method are provided. Finally, the use of microfluidic devices in the evaluation of DNA methylation and DNA damage analysis based on smartphone detection has been discussed. Here, we provide an overview on the optical biosensors (including fluorescence, FRET, SERs, colorimetric) that have been applied to detect the DNA methylation.![]()
Collapse
Affiliation(s)
- Mina Adampourezare
- Department of Biology, Faculty of Natural Science, University of Tabriz, Tabriz, Iran
- Pharmaceutical Analysis Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Hasanzadeh
- Pharmaceutical Analysis Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Nutrition Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Farzad Seidi
- Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources and International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing 210037, China
| |
Collapse
|
13
|
Hu J, Chen L, Zhang P, Hsieh K, Li H, Yang S, Wang TH. A vacuum-assisted, highly parallelized microfluidic array for performing multi-step digital assays. LAB ON A CHIP 2021; 21:4716-4724. [PMID: 34779472 DOI: 10.1039/d1lc00636c] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
There remains an unmet need for a simple microfluidic platform that can perform multi-step and multi-reagent biochemical assays in parallel for high-throughput detection and analysis of single molecules and single cells. In response, we report herein a PDMS-based vacuum-driven microfluidic array that is capable of multi-step sample loading and digitalization. The array features multi-level bifurcation microchannels connecting to 4096 dead-end microchambers for partitioning liquid reagents/samples. To realize multi-step repetitive liquid sample loading, we attach an external vacuum onto the chip to create internal negative pressure for a continuous liquid driving force. We demonstrated a high uniformity of our device for three sequential liquid loadings. To further improve its utility, we developed a thermosetting-oil covering method to prevent evaporation for assays that require high temperatures. We successfully performed digital PCR assays on our device, demonstrating the efficient multi-step reagent handling and the effective anti-evaporation design for thermal cycling. Furthermore, we performed a digital PCR detection for single-cell methicillin-resistant Staphylococcus aureus using a three-step loading approach and achieved accurate single-cell quantification. Taken together, we have demonstrated that our vacuum-driven microfluidic array is capable of multi-step sample digitalization at high throughput for single-molecule and single-cell analyses.
Collapse
Affiliation(s)
- Jiumei Hu
- Department of Mechanical Engineering, Johns Hopkins University, Baltimore, Maryland 21218, USA.
| | - Liben Chen
- Department of Mechanical Engineering, Johns Hopkins University, Baltimore, Maryland 21218, USA.
| | - Pengfei Zhang
- Department of Biomedical Engineering, Johns Hopkins School of Medicine, Baltimore, Maryland 21205, USA
| | - Kuangwen Hsieh
- Department of Mechanical Engineering, Johns Hopkins University, Baltimore, Maryland 21218, USA.
| | - Hui Li
- Department of Mechanical Engineering, Johns Hopkins University, Baltimore, Maryland 21218, USA.
| | - Samuel Yang
- Department of Emergency Medicine, Stanford University, Stanford, California, USA
| | - Tza-Huei Wang
- Department of Mechanical Engineering, Johns Hopkins University, Baltimore, Maryland 21218, USA.
- Department of Biomedical Engineering, Johns Hopkins School of Medicine, Baltimore, Maryland 21205, USA
- Institute for NanoBiotechnology, Johns Hopkins University, Baltimore, Maryland 21218, USA
| |
Collapse
|
14
|
Adampourezare M, Dehghan G, Hasanzadeh M, Hosseinpoure Feizi MA. Application of lateral flow and microfluidic bio-assay and biosensing towards identification of DNA-methylation and cancer detection: Recent progress and challenges in biomedicine. Biomed Pharmacother 2021; 141:111845. [PMID: 34175816 DOI: 10.1016/j.biopha.2021.111845] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 06/16/2021] [Accepted: 06/16/2021] [Indexed: 02/06/2023] Open
Abstract
DNA methylation is an important epigenetic alteration that results from the covalent transfer of a methyl group to the fifth carbon of a cytosine residue in CpG dinucleotides by DNA methyltransferase. This modification mostly happens in the promoter region and the first exon of most genes and suppresses gene expression. Therefore, aberrant DNA methylation cause tumor progression, metastasis, and resistance to current anti-cancer therapies. So, the detection of DNA methylation is an important issue in diagnosis and therapy of most diseases. Conventional methods for the assay of DNA methylation and activity of DNA methyltransferases are time consuming. So, we need to multiplex operations and expensive instrumentation. To overcome the limitations of conventional methods, new methods such as microfluidic platforms and lateral flow tests have been developed to evaluate DNA methylation. The microfluidic tests are based on optical and electrical biosensing. These tests able us to can analyze DNA methylation with high efficiency and sensitivity without the need for expensive equipment and skilled people. Lateral flow strip tests are another type of rapid, simple, and sensitive test with advanced technology used to assess DNA methylation. Lateral flow strip tests are based on optical biosensors. This review attempts to evaluate new methods for assessing DNA extraction, DNA methylation and DNA methyltransferase activity as well as recent developments in microfluidic technology application for bisulfite treatment and restriction enzyme (bisulfite free), and lateral flow relying on their application in the field of recognition of DNA methylation in blood and body fluids. Also, the advantages and disadvantages of each test are reviewed. Finally, future prospects for the development of the microfluidics biodevices for the detection of DNA methylation is briefly discussed.
Collapse
Affiliation(s)
- Mina Adampourezare
- Department of Animal Biology, Faculty of Natural Science, University of Tabriz, Tabriz, Iran; Pharmaceutical Analysis Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Gholamreza Dehghan
- Department of Animal Biology, Faculty of Natural Science, University of Tabriz, Tabriz, Iran.
| | - Mohammad Hasanzadeh
- Pharmaceutical Analysis Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| | | |
Collapse
|
15
|
Carvalho Â, Ferreira G, Seixas D, Guimarães-Teixeira C, Henrique R, Monteiro FJ, Jerónimo C. Emerging Lab-on-a-Chip Approaches for Liquid Biopsy in Lung Cancer: Status in CTCs and ctDNA Research and Clinical Validation. Cancers (Basel) 2021; 13:cancers13092101. [PMID: 33925308 PMCID: PMC8123575 DOI: 10.3390/cancers13092101] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 04/16/2021] [Accepted: 04/25/2021] [Indexed: 01/31/2023] Open
Abstract
Simple Summary Lung cancer (LCa) remains the leading cause of cancer-related mortality worldwide, with late diagnosis and limited therapeutic approaches still constraining patient’s outcome. In recent years, liquid biopsies have significantly improved the disease characterization and brought new insights into LCa diagnosis and management. The integration of microfluidic devices in liquid biopsies have shown promising results regarding circulating biomarkers isolation and analysis and these tools are expected to establish automatized and standardized results for liquid biopsies in the near future. Herein, we review the status of lab-on-a-chip approaches for liquid biopsies in LCa and highlight their current applications for circulating tumor cells (CTCs) and circulating tumor DNA (ctDNA) research and clinical validation studies. Abstract Despite the intensive efforts dedicated to cancer diagnosis and treatment, lung cancer (LCa) remains the leading cause of cancer-related mortality, worldwide. The poor survival rate among lung cancer patients commonly results from diagnosis at late-stage, limitations in characterizing tumor heterogeneity and the lack of non-invasive tools for detection of residual disease and early recurrence. Henceforth, research on liquid biopsies has been increasingly devoted to overcoming these major limitations and improving management of LCa patients. Liquid biopsy is an emerging field that has evolved significantly in recent years due its minimally invasive nature and potential to assess various disease biomarkers. Several strategies for characterization of circulating tumor cells (CTCs) and circulating tumor DNA (ctDNA) have been developed. With the aim of standardizing diagnostic and follow-up practices, microfluidic devices have been introduced to improve biomarkers isolation efficiency and specificity. Nonetheless, implementation of lab-on-a-chip platforms in clinical practice may face some challenges, considering its recent application to liquid biopsies. In this review, recent advances and strategies for the use of liquid biopsies in LCa management are discussed, focusing on high-throughput microfluidic devices applied for CTCs and ctDNA isolation and detection, current clinical validation studies and potential clinical utility.
Collapse
Affiliation(s)
- Ângela Carvalho
- i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal; (G.F.); (D.S.); (F.J.M.)
- INEB-Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal
- Porto Comprehensive Cancer Center (P.CCC), R. Dr. António Bernardino de Almeida, 4200-072 Porto, Portugal; (C.G.-T.); (R.H.); (C.J.)
- Correspondence: ; Tel.: +351-226-074-900
| | - Gabriela Ferreira
- i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal; (G.F.); (D.S.); (F.J.M.)
- INEB-Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal
- Porto Comprehensive Cancer Center (P.CCC), R. Dr. António Bernardino de Almeida, 4200-072 Porto, Portugal; (C.G.-T.); (R.H.); (C.J.)
| | - Duarte Seixas
- i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal; (G.F.); (D.S.); (F.J.M.)
- INEB-Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal
- Porto Comprehensive Cancer Center (P.CCC), R. Dr. António Bernardino de Almeida, 4200-072 Porto, Portugal; (C.G.-T.); (R.H.); (C.J.)
- Cancer Biology and Epigenetics Group, IPO Porto Research Center (GEBC CI-IPOP), Portuguese Oncology Institute of Porto (IPO Porto), R. Dr. António Bernardino de Almeida, 4200-072 Porto, Portugal
| | - Catarina Guimarães-Teixeira
- Porto Comprehensive Cancer Center (P.CCC), R. Dr. António Bernardino de Almeida, 4200-072 Porto, Portugal; (C.G.-T.); (R.H.); (C.J.)
- Cancer Biology and Epigenetics Group, IPO Porto Research Center (GEBC CI-IPOP), Portuguese Oncology Institute of Porto (IPO Porto), R. Dr. António Bernardino de Almeida, 4200-072 Porto, Portugal
| | - Rui Henrique
- Porto Comprehensive Cancer Center (P.CCC), R. Dr. António Bernardino de Almeida, 4200-072 Porto, Portugal; (C.G.-T.); (R.H.); (C.J.)
- Cancer Biology and Epigenetics Group, IPO Porto Research Center (GEBC CI-IPOP), Portuguese Oncology Institute of Porto (IPO Porto), R. Dr. António Bernardino de Almeida, 4200-072 Porto, Portugal
- Department of Pathology, Portuguese Oncology Institute of Porto (IPO Porto), R. Dr. António Bernardino de Almeida, 4200-072 Porto, Portugal
- Department of Pathology and Molecular Immunology, Institute of Biomedical Sciences Abel Salazar, University of Porto (ICBAS-UP), Rua Jorge Viterbo Ferreira 228, 4050-513 Porto, Portugal
| | - Fernando J. Monteiro
- i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal; (G.F.); (D.S.); (F.J.M.)
- INEB-Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal
- Porto Comprehensive Cancer Center (P.CCC), R. Dr. António Bernardino de Almeida, 4200-072 Porto, Portugal; (C.G.-T.); (R.H.); (C.J.)
- Faculdade de Engenharia, Departamento de Engenharia Metalúrgica e Materiais, Universidade do Porto, Rua Dr Roberto Frias, s/n, 4200-465 Porto, Portugal
| | - Carmen Jerónimo
- Porto Comprehensive Cancer Center (P.CCC), R. Dr. António Bernardino de Almeida, 4200-072 Porto, Portugal; (C.G.-T.); (R.H.); (C.J.)
- Cancer Biology and Epigenetics Group, IPO Porto Research Center (GEBC CI-IPOP), Portuguese Oncology Institute of Porto (IPO Porto), R. Dr. António Bernardino de Almeida, 4200-072 Porto, Portugal
- Department of Pathology and Molecular Immunology, Institute of Biomedical Sciences Abel Salazar, University of Porto (ICBAS-UP), Rua Jorge Viterbo Ferreira 228, 4050-513 Porto, Portugal
| |
Collapse
|
16
|
Ruan Q, Zou F, Wang Y, Zhang Y, Xu X, Lin X, Tian T, Zhang H, Zhou L, Zhu Z, Yang C. Sensitive, Rapid, and Automated Detection of DNA Methylation Based on Digital Microfluidics. ACS APPLIED MATERIALS & INTERFACES 2021; 13:8042-8048. [PMID: 33576594 DOI: 10.1021/acsami.0c21995] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Biomarkers based on DNA methylation have attracted wide attention in biomedical research due to their potential clinical value. Therefore, a sensitive and accurate method for DNA methylation detection is highly desirable for the discovery and diagnostics of human diseases, especially cancers. Here, an integrated, low-cost, and portable point-of-care (POC) device is presented to analyze DNA methylation, which integrates the process of pyrosequencing in a digital microfluidic chip. Without additional equipment and complicated operation, droplets are manipulated by patterned electrodes with individually programmed control. The system exhibited an excellent sensitivity with a limit of detection (LOD) of 10 pg and a comparable checkout down to 5% methylation level within 30 min, which offered a potential substitute for the detection of DNA methylation. With the advantages of portability, ease of use, high accuracy, and low cost, the POC platform shows great potential for the analysis of tumor-specific circulating DNA.
Collapse
Affiliation(s)
- Qingyu Ruan
- The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, The Key Laboratory of Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Fenxiang Zou
- The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, The Key Laboratory of Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Yang Wang
- The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, The Key Laboratory of Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Yingkun Zhang
- The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, The Key Laboratory of Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Xing Xu
- The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, The Key Laboratory of Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Xiaoye Lin
- The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, The Key Laboratory of Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Tian Tian
- The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, The Key Laboratory of Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Huimin Zhang
- Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province, Xiamen 361005, China
| | - Leiji Zhou
- The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, The Key Laboratory of Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Zhi Zhu
- The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, The Key Laboratory of Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Chaoyong Yang
- The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, The Key Laboratory of Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
- Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province, Xiamen 361005, China
- Institute of Molecular Medicine, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, China
| |
Collapse
|
17
|
Gaddes DE, Lee PW, Trick AY, Athamanolap P, O'Keefe CM, Puleo C, Hsieh K, Wang TH. Facile Coupling of Droplet Magnetofluidic-Enabled Automated Sample Preparation for Digital Nucleic Acid Amplification Testing and Analysis. Anal Chem 2020; 92:13254-13261. [PMID: 32869628 PMCID: PMC8549765 DOI: 10.1021/acs.analchem.0c02454] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Digital nucleic acid amplification testing (dNAAT) and analysis techniques, such as digital polymerase chain reaction (PCR), have become useful clinical diagnostic tools. However, nucleic acid (NA) sample preparation preceding dNAAT is generally laborious and performed manually, thus creating the need for a simple sample preparation technique and a facile coupling strategy for dNAAT. Therefore, we demonstrate a simple workflow which automates magnetic bead-based extraction of NAs with a one-step transfer to dNAAT. Specifically, we leverage droplet magnetofluidics (DM) to automate the movement of magnetic beads between small volumes of reagents commonly employed for NA extraction and purification. Importantly, the buffer typically used to elute the NAs off the magnetic beads is replaced by a carefully selected PCR solution, enabling direct transfer from sample preparation to dNAAT. Moreover, we demonstrate the potential for multiplexing using a digital high-resolution melt (dHRM) after the digital PCR (dPCR). The utility of this workflow is demonstrated with duplexed detection of bacteria in a sample imitating a coinfection. We first purify the bacterial DNA into a PCR solution using our DM-based sample preparation. We then transfer the purified bacterial DNA to our microfluidic nanoarray to amplify 16S rRNA using dPCR and then perform dHRM to identify the two bacterial species.
Collapse
Affiliation(s)
- David E Gaddes
- Department of Mechanical Engineering, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Pei-Wei Lee
- Department of Mechanical Engineering, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Alexander Y Trick
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland 21205, United States
| | - Pornpat Athamanolap
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland 21205, United States
- Department of Biomedical Engineering, Faculty of Engineering, Mahidol University, Nakorn Pathom 73170, Thailand
| | - Christine M O'Keefe
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland 21205, United States
| | - Chris Puleo
- Electronics Organization, GE Global Research Center, Niskayuna, New York 12309, United States
| | - Kuangwen Hsieh
- Department of Mechanical Engineering, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Tza-Huei Wang
- Department of Mechanical Engineering, Johns Hopkins University, Baltimore, Maryland 21218, United States
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland 21205, United States
| |
Collapse
|
18
|
Cheng F, Ma X, Feng Q, Wang H, Yin M, He W. Preparation and characterization of DNA array slides via surface Michael addition. Biointerphases 2019; 14:061003. [PMID: 31752494 DOI: 10.1063/1.5124411] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
The reliability and stability of array slides are a big concern for array vendors and end users. Herein, we report on a new type of array slide with high reactivity toward DNA probes and low side reaction. A one-step surface reaction via the Michael addition involved in preparing array slides was developed and characterized by x-ray photoelectron spectroscopy, contact angle, and fluorescence labeling. The effects of array fabrication and storage conditions, i.e., spotting solution pH, high humidity, and long-term storage on the reactivity of the slides were examined. The fabricated DNA arrays could realize good hybridization efficiency (38.2% for slides with 0.88 pmol/cm2), low limit of detection (4 × 10-14M), as well as high mismatch selectivity.
Collapse
Affiliation(s)
- Fang Cheng
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian, Liaoning 116023, China
| | - Xiaochun Ma
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian, Liaoning 116023, China
| | - Qiancheng Feng
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian, Liaoning 116023, China
| | - Hanqi Wang
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian, Liaoning 116023, China
| | - Meng Yin
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian, Liaoning 116023, China
| | - Wei He
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian, Liaoning 116023, China
| |
Collapse
|
19
|
O’Keefe CM, Kaushik AM, Wang TH. Highly Efficient Real-Time Droplet Analysis Platform for High-Throughput Interrogation of DNA Sequences by Melt. Anal Chem 2019; 91:11275-11282. [DOI: 10.1021/acs.analchem.9b02346] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Christine M. O’Keefe
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Aniruddha M. Kaushik
- Department of Mechanical Engineering, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Tza-Huei Wang
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland 21218, United States
- Department of Mechanical Engineering, Johns Hopkins University, Baltimore, Maryland 21218, United States
| |
Collapse
|