1
|
Yan W, Li X, Zhao D, Xie M, Li T, Qian L, Ye C, Shi T, Wu L, Wang Y. Advanced strategies in high-throughput droplet screening for enzyme engineering. Biosens Bioelectron 2024; 248:115972. [PMID: 38171222 DOI: 10.1016/j.bios.2023.115972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 11/05/2023] [Accepted: 12/23/2023] [Indexed: 01/05/2024]
Abstract
Enzymes, as biocatalysts, play a cumulatively important role in environmental purification and industrial production of chemicals and pharmaceuticals. However, natural enzymes are limited by their physiological properties in practice, which need to be modified driven by requirements. Screening and isolating certain enzyme variants or ideal industrial strains with high yielding of target product enzymes is one of the main directions of enzyme engineering research. Droplet-based high-throughput screening (DHTS) technology employs massive monodisperse emulsion droplets as microreactors to achieve single strain encapsulation, as well as continuous monitoring for the inside mutant library. It can effectively sort out strains or enzymes with desired characteristics, offering a throughput of 108 events per hour. Much of the early literature focused on screening various engineered strains or designing signalling sorting strategies based on DHTS technology. However, the field of enzyme engineering lacks a comprehensive overview of advanced methods for microfluidic droplets and their cutting-edge developments in generation and manipulation. This review emphasizes the advanced strategies and frontiers of microfluidic droplet generation and manipulation facilitating enzyme engineering development. We also introduce design for various screening signals that cooperate with DHTS and devote to enzyme engineering.
Collapse
Affiliation(s)
- Wenxin Yan
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210046, China
| | - Xiang Li
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210046, China
| | - Danshan Zhao
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210046, China
| | - Meng Xie
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210046, China
| | - Ting Li
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210046, China
| | - Lu Qian
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210046, China
| | - Chao Ye
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210046, China; Ministry of Education Key Laboratory of NSLSCS, Nanjing Normal University, Nanjing 210046, China.
| | - Tianqiong Shi
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210046, China.
| | - Lina Wu
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210046, China; Food Laboratory of Zhongyuan, Luohe, 462300, Henan, China.
| | - Yuetong Wang
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210046, China.
| |
Collapse
|
2
|
Jiang L, Guo K, Chen Y, Xiang N. Droplet Microfluidics for Current Cancer Research: From Single-Cell Analysis to 3D Cell Culture. ACS Biomater Sci Eng 2024; 10:1335-1354. [PMID: 38420753 DOI: 10.1021/acsbiomaterials.3c01866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2024]
Abstract
Cancer is the second leading cause of death worldwide. Differences in drug resistance and treatment response caused by the heterogeneity of cancer cells are the primary reasons for poor cancer therapy outcomes in patients. In addition, current in vitro anticancer drug-screening methods rely on two-dimensional monolayer-cultured cancer cells, which cannot accurately predict drug behavior in vivo. Therefore, a powerful tool to study the heterogeneity of cancer cells and produce effective in vitro tumor models is warranted to leverage cancer research. Droplet microfluidics has become a powerful platform for the single-cell analysis of cancer cells and three-dimensional cell culture of in vitro tumor spheroids. In this review, we discuss the use of droplet microfluidics in cancer research. Droplet microfluidic technologies, including single- or double-emulsion droplet generation and passive- or active-droplet manipulation, are concisely discussed. Recent advances in droplet microfluidics for single-cell analysis of cancer cells, circulating tumor cells, and scaffold-free/based 3D cell culture of tumor spheroids have been systematically introduced. Finally, the challenges that must be overcome for the further application of droplet microfluidics in cancer research are discussed.
Collapse
Affiliation(s)
- Lin Jiang
- School of Mechanical Engineering, and Jiangsu Key Laboratory for Design and Manufacture of Micro-Nano Biomedical Instruments, Southeast University, Nanjing 211189, China
| | - Kefan Guo
- School of Mechanical Engineering, and Jiangsu Key Laboratory for Design and Manufacture of Micro-Nano Biomedical Instruments, Southeast University, Nanjing 211189, China
| | - Yao Chen
- School of Mechanical Engineering, and Jiangsu Key Laboratory for Design and Manufacture of Micro-Nano Biomedical Instruments, Southeast University, Nanjing 211189, China
| | - Nan Xiang
- School of Mechanical Engineering, and Jiangsu Key Laboratory for Design and Manufacture of Micro-Nano Biomedical Instruments, Southeast University, Nanjing 211189, China
| |
Collapse
|
3
|
He Y, Qiao Y, Ding L, Cheng T, Tu J. Recent advances in droplet sequential monitoring methods for droplet sorting. BIOMICROFLUIDICS 2023; 17:061501. [PMID: 37969470 PMCID: PMC10645479 DOI: 10.1063/5.0173340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 10/23/2023] [Indexed: 11/17/2023]
Abstract
Droplet microfluidics is an attractive technology to run parallel experiments with high throughput and scalability while maintaining the heterogeneous features of individual samples or reactions. Droplet sorting is utilized to collect the desired droplets based on droplet characterization and in-droplet content evaluation. A proper monitoring method is critical in this process, which governs the accuracy and maximum frequency of droplet handling. Until now, numerous monitoring methods have been integrated in the microfluidic devices for identifying droplets, such as optical spectroscopy, mass spectroscopy, electrochemical monitoring, and nuclear magnetic resonance spectroscopy. In this review, we summarize the features of various monitoring methods integrated into droplet sorting workflow and discuss their suitable condition and potential obstacles in use. We aim to provide a systematic introduction and an application guide for choosing and building a droplet monitoring platform.
Collapse
Affiliation(s)
- Yukun He
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Yi Qiao
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Lu Ding
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Tianguang Cheng
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Jing Tu
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| |
Collapse
|
4
|
Sun G, Qu L, Azi F, Liu Y, Li J, Lv X, Du G, Chen J, Chen CH, Liu L. Recent progress in high-throughput droplet screening and sorting for bioanalysis. Biosens Bioelectron 2023; 225:115107. [PMID: 36731396 DOI: 10.1016/j.bios.2023.115107] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 01/09/2023] [Accepted: 01/25/2023] [Indexed: 01/31/2023]
Abstract
Owing to its ability to isolate single cells and perform high-throughput sorting, droplet sorting has been widely applied in several research fields. Compared with flow cytometry, droplet allows the encapsulation of single cells for cell secretion or lysate analysis. With the rapid development of this technology in the past decade, various droplet sorting devices with high throughput and accuracy have been developed. A droplet sorter with the highest sorting throughput of 30,000 droplets per second was developed in 2015. Since then, increased attention has been paid to expanding the possibilities of droplet sorting technology and strengthening its advantages over flow cytometry. This review aimed to summarize the recent progress in droplet sorting technology from the perspectives of device design, detection signal, actuating force, and applications. Technical details for improving droplet sorting through various approaches are introduced and discussed. Finally, we discuss the current limitations of droplet sorting for single-cell studies along with the existing gap between the laboratory and industry and provide our insights for future development of droplet sorters.
Collapse
Affiliation(s)
- Guoyun Sun
- Science Center for Future Foods, Jiangnan University, Wuxi, 214122, China; Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi, 214122, China
| | - Lisha Qu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi, 214122, China
| | - Fidelis Azi
- Department of Chemical Engineering, Guangdong Technion-Israel Institute of Technology GTIIT, Shantou, Guangdong, 515063, China
| | - Yanfeng Liu
- Science Center for Future Foods, Jiangnan University, Wuxi, 214122, China; Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi, 214122, China
| | - Jianghua Li
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi, 214122, China
| | - Xueqin Lv
- Science Center for Future Foods, Jiangnan University, Wuxi, 214122, China; Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi, 214122, China
| | - Guocheng Du
- Science Center for Future Foods, Jiangnan University, Wuxi, 214122, China; Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi, 214122, China
| | - Jian Chen
- Science Center for Future Foods, Jiangnan University, Wuxi, 214122, China; Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi, 214122, China
| | - Chia-Hung Chen
- Department of Biomedical Engineering, College of Engineering, City University of Hong Kong, Hong Kong, China.
| | - Long Liu
- Science Center for Future Foods, Jiangnan University, Wuxi, 214122, China; Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi, 214122, China.
| |
Collapse
|
5
|
Jiang L, Yang H, Cheng W, Ni Z, Xiang N. Droplet microfluidics for CTC-based liquid biopsy: a review. Analyst 2023; 148:203-221. [PMID: 36508171 DOI: 10.1039/d2an01747d] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Circulating tumor cells (CTCs) are important biomarkers of liquid biopsy. The number and heterogeneity of CTCs play an important role in cancer diagnosis and personalized medicine. However, owing to the low-abundance biomarkers of CTCs, conventional assays are only able to detect CTCs at the population level. Therefore, there is a pressing need for a highly sensitive method to analyze CTCs at the single-cell level. As an important branch of microfluidics, droplet microfluidics is a high-throughput and sensitive single-cell analysis platform for the quantitative detection and heterogeneity analysis of CTCs. In this review, we focus on the quantitative detection and heterogeneity analysis of CTCs using droplet microfluidics. Technologies that enable droplet microfluidics, particularly high-throughput droplet generation and high-efficiency droplet manipulation, are first discussed. Then, recent advances in detecting and analyzing CTCs using droplet microfluidics from the different aspects of nucleic acids, proteins, and metabolites are introduced. The purpose of this review is to provide guidance for the continued study of droplet microfluidics for CTC-based liquid biopsy.
Collapse
Affiliation(s)
- Lin Jiang
- School of Mechanical Engineering, and Jiangsu Key Laboratory for Design and Manufacture of Micro-Nano Biomedical Instruments, Southeast University, Nanjing, 211189, China.
| | - Hang Yang
- School of Mechanical Engineering, and Jiangsu Key Laboratory for Design and Manufacture of Micro-Nano Biomedical Instruments, Southeast University, Nanjing, 211189, China.
| | - Weiqi Cheng
- School of Mechanical Engineering, and Jiangsu Key Laboratory for Design and Manufacture of Micro-Nano Biomedical Instruments, Southeast University, Nanjing, 211189, China.
| | - Zhonghua Ni
- School of Mechanical Engineering, and Jiangsu Key Laboratory for Design and Manufacture of Micro-Nano Biomedical Instruments, Southeast University, Nanjing, 211189, China.
| | - Nan Xiang
- School of Mechanical Engineering, and Jiangsu Key Laboratory for Design and Manufacture of Micro-Nano Biomedical Instruments, Southeast University, Nanjing, 211189, China.
| |
Collapse
|
6
|
Jiang Z, Shi H, Tang X, Qin J. Recent advances in droplet microfluidics for single-cell analysis. Trends Analyt Chem 2023. [DOI: 10.1016/j.trac.2023.116932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
7
|
Huang C, Jiang Y, Li Y, Zhang H. Droplet Detection and Sorting System in Microfluidics: A Review. MICROMACHINES 2022; 14:mi14010103. [PMID: 36677164 PMCID: PMC9867185 DOI: 10.3390/mi14010103] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 12/23/2022] [Accepted: 12/26/2022] [Indexed: 05/26/2023]
Abstract
Since being invented, droplet microfluidic technologies have been proven to be perfect tools for high-throughput chemical and biological functional screening applications, and they have been heavily studied and improved through the past two decades. Each droplet can be used as one single bioreactor to compartmentalize a big material or biological population, so millions of droplets can be individually screened based on demand, while the sorting function could extract the droplets of interest to a separate pool from the main droplet library. In this paper, we reviewed droplet detection and active sorting methods that are currently still being widely used for high-through screening applications in microfluidic systems, including the latest updates regarding each technology. We analyze and summarize the merits and drawbacks of each presented technology and conclude, with our perspectives, on future direction of development.
Collapse
Affiliation(s)
- Can Huang
- Department of Electrical and Computer Engineering, Texas A&M University, College Station, TX 77842, USA
| | - Yuqian Jiang
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Yuwen Li
- Department of Electrical and Computer Engineering, Texas A&M University, College Station, TX 77842, USA
| | - Han Zhang
- Department of Electrical and Computer Engineering, Texas A&M University, College Station, TX 77842, USA
| |
Collapse
|
8
|
|
9
|
Sun X, Kong D, Liang C, Hu Y, Duan JA. Flexible and Precise Droplet Manipulation by a Laser-Induced Shape Temperature Field on a Lubricant-Infused Surface. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:6731-6740. [PMID: 35587878 DOI: 10.1021/acs.langmuir.2c00680] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Light actuation on a lubricant-infused surface (LIS) has attracted great attention because of its flexibility and remote control of droplet motion. However, to actuate a droplet on a LIS flexibly and precisely by light, the key issue is to control two degrees of freedom of the droplet motion in real time. In this paper, we propose a C-shape temperature field (CSTF) induced by rapid and selective laser irradiation on a LIS. The CSTF could not only manipulate a single droplet precisely and flexibly but also process multiple droplets automatically and orderly in real time. The mechanism showed that the droplet was confined by the Marangoni force in two orthogonal directions. For single droplet manipulation, the CSTF had the capability of correcting the off-track droplet motion. Moreover, the droplet motion, including rectilinear motion and curvilinear motion, could be precisely and flexibly controlled by the motion of the CSTF. For manipulation of multiple droplets, coalescence of multiple droplets was successfully achieved by triple rotating CSTFs. Such a method was applied in the detection of 5 μL of bovine serum albumin (BSA) by triggering chromogenic reactions automatically and orderly, which improved the efficiency of the whole process. We believe that this method is a significant candidate for intelligent droplet manipulation.
Collapse
Affiliation(s)
- Xiaoyan Sun
- State Key Laboratory of High Performance and Complex Manufacturing, College of Mechanical and Electrical Engineering, Central South University, Changsha 410083, Hunan, China
| | - Dejian Kong
- State Key Laboratory of High Performance and Complex Manufacturing, College of Mechanical and Electrical Engineering, Central South University, Changsha 410083, Hunan, China
| | - Chang Liang
- State Key Laboratory of High Performance and Complex Manufacturing, College of Mechanical and Electrical Engineering, Central South University, Changsha 410083, Hunan, China
| | - Youwang Hu
- State Key Laboratory of High Performance and Complex Manufacturing, College of Mechanical and Electrical Engineering, Central South University, Changsha 410083, Hunan, China
- Science and Technology on Reliability Physics and Application Technology of Electronic Component Laboratory, Guangzhou 510610, China
| | - Ji-An Duan
- State Key Laboratory of High Performance and Complex Manufacturing, College of Mechanical and Electrical Engineering, Central South University, Changsha 410083, Hunan, China
| |
Collapse
|
10
|
Blaha ME, Hasan S, Dusny C, Belder D. Fluorescence lifetime activated droplet sorting (FLADS) for label-free sorting of Synechocystis sp. PCC6803. LAB ON A CHIP 2022; 22:1604-1614. [PMID: 35332894 DOI: 10.1039/d2lc00032f] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
This study presents the label-free sorting of cyanobacterial cells in droplets with single-cell sensitivity based on their fluorescence lifetime. We separated living and dead cyanobacteria (Synechocystis sp. PCC6803) using fluorescence lifetime signals of the photopigment autofluorescence to indicate their photosynthetic activity. We developed a setup and a chip design to achieve live/dead sorting accuracies of more than 97% at a droplet frequency of 100 Hz with a PDMS-based chip system and standard optics using fluorescence lifetime as the sorting criterion. The obtained sorting accuracies could be experimentally confirmed by cell plating and observing the droplet sorting process via a high-speed camera. The herein presented results demonstrate the capabilities of the developed system for studying the effects of stressors on cyanobacterial physiology and the subsequent deterministic sorting of different stress-response phenotypes. This technology eliminates the need for tedious staining of cyanobacterial cells, which makes it particularly attractive for its application in the field of phototrophic microbial bio(techno)logic and in the context of cell secretion studies.
Collapse
Affiliation(s)
| | - Sadat Hasan
- Institute for Analytical Chemistry, Leipzig University, Linnéstraße 3, 04103 Leipzig, Germany.
| | - Christian Dusny
- Department Solar Materials, Helmoltz-Centre for Environmental Research - UFZ Leipzig, Permoserstr. 15, 04318 Leipzig, Germany
| | - Detlev Belder
- Institute for Analytical Chemistry, Leipzig University, Linnéstraße 3, 04103 Leipzig, Germany.
| |
Collapse
|
11
|
Nguyen HQ, Seo TS. A 3D printed size-tunable flow-focusing droplet microdevice to produce cell-laden hydrogel microspheres. Anal Chim Acta 2021; 1192:339344. [DOI: 10.1016/j.aca.2021.339344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 11/24/2021] [Accepted: 11/30/2021] [Indexed: 11/01/2022]
|
12
|
Two-photon fluorescence lifetime for label-free microfluidic droplet sorting. Anal Bioanal Chem 2021; 414:721-730. [PMID: 34792636 PMCID: PMC8748334 DOI: 10.1007/s00216-021-03745-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Revised: 10/14/2021] [Accepted: 10/19/2021] [Indexed: 12/19/2022]
Abstract
Microfluidic droplet sorting systems facilitate automated selective micromanipulation of compartmentalized micro- and nano-entities in a fluidic stream. Current state-of-the-art droplet sorting systems mainly rely on fluorescence detection in the visible range with the drawback that pre-labeling steps are required. This limits the application range significantly, and there is a high demand for alternative, label-free methods. Therefore, we introduce time-resolved two-photon excitation (TPE) fluorescence detection with excitation at 532 nm as a detection technique in droplet microfluidics. This enables label-free in-droplet detection of small aromatic compounds that only absorb in a deep-UV spectral region. Applying time-correlated single-photon counting, compounds with similar emission spectra can be distinguished due to their fluorescence lifetimes. This information is then used to trigger downstream dielectrophoretic droplet sorting. In this proof-of-concept study, we developed a polydimethylsiloxane-fused silica (FS) hybrid chip that simultaneously provides a very high optical transparency in the deep-UV range and suitable surface properties for droplet microfluidics. The herein developed system incorporating a 532-nm picosecond laser, time-correlated single-photon counting (TCSPC), and a chip-integrated dielectrophoretic pulsed actuator was exemplarily applied to sort droplets containing serotonin or propranolol. Furthermore, yeast cells were screened using the presented platform to show its applicability to study cells based on their protein autofluorescence via TPE fluorescence lifetime at 532 nm.
Collapse
|
13
|
Stucki A, Vallapurackal J, Ward TR, Dittrich PS. Droplet Microfluidics and Directed Evolution of Enzymes: An Intertwined Journey. Angew Chem Int Ed Engl 2021; 60:24368-24387. [PMID: 33539653 PMCID: PMC8596820 DOI: 10.1002/anie.202016154] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Indexed: 12/12/2022]
Abstract
Evolution is essential to the generation of complexity and ultimately life. It relies on the propagation of the properties, traits, and characteristics that allow an organism to survive in a challenging environment. It is evolution that shaped our world over about four billion years by slow and iterative adaptation. While natural evolution based on selection is slow and gradual, directed evolution allows the fast and streamlined optimization of a phenotype under selective conditions. The potential of directed evolution for the discovery and optimization of enzymes is mostly limited by the throughput of the tools and methods available for screening. Over the past twenty years, versatile tools based on droplet microfluidics have been developed to address the need for higher throughput. In this Review, we provide a chronological overview of the intertwined development of microfluidics droplet-based compartmentalization methods and in vivo directed evolution of enzymes.
Collapse
Affiliation(s)
- Ariane Stucki
- Department of Biosystems Science and EngineeringETH ZurichMattenstrasse 26CH-4058BaselSwitzerland
- National Competence Center in Research (NCCR)Molecular Systems EngineeringBaselSwitzerland
| | - Jaicy Vallapurackal
- Department of ChemistryUniversity of BaselMattenstrasse 24aCH-4058BaselSwitzerland
- National Competence Center in Research (NCCR)Molecular Systems EngineeringBaselSwitzerland
| | - Thomas R. Ward
- Department of ChemistryUniversity of BaselMattenstrasse 24aCH-4058BaselSwitzerland
- National Competence Center in Research (NCCR)Molecular Systems EngineeringBaselSwitzerland
| | - Petra S. Dittrich
- Department of Biosystems Science and EngineeringETH ZurichMattenstrasse 26CH-4058BaselSwitzerland
- National Competence Center in Research (NCCR)Molecular Systems EngineeringBaselSwitzerland
| |
Collapse
|
14
|
Grytsyk N, Cianfarani D, Crégut O, Richert L, Boudier C, Humbert N, Didier P, Mély Y, Léonard J. Kinetics of protein-assisted nucleic acid interconversion monitored by transient time resolved fluorescence in microfluidic droplets. Nucleic Acids Res 2021; 49:e111. [PMID: 34450653 PMCID: PMC8565319 DOI: 10.1093/nar/gkab687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Revised: 06/29/2021] [Accepted: 08/24/2021] [Indexed: 11/25/2022] Open
Abstract
Interconversions between nucleic acid structures play an important role in transcriptional and translational regulation and also in repair and recombination. These interconversions are frequently promoted by nucleic acid chaperone proteins. To monitor their kinetics, Förster resonance energy transfer (FRET) is widely exploited using ensemble fluorescence intensity measurements in pre-steady-state stopped-flow experiments. Such experiments only provide a weighted average of the emission of all species in solution and consume large quantities of materials. Herein, we lift these limitations by combining time-resolved fluorescence (TRF) with droplet microfluidics (DmF). We validate the innovative TRF-DmF approach by investigating the well characterized annealing of the HIV-1 (+)/(–) Primer Binding Sequences (PBS) promoted by a HIV-1 nucleocapsid peptide. Upon rapid mixing of the FRET-labelled (–)PBS with its complementary (+)PBS sequence inside microdroplets, the TRF-DmF set-up enables resolving the time evolution of sub-populations of reacting species and reveals an early intermediate with a ∼50 ps donor fluorescence lifetime never identified so far. TRF-DmF also favorably compares with single molecule experiments, as it offers an accurate control of concentrations with no upper limit, no need to graft one partner on a surface and no photobleaching issues.
Collapse
Affiliation(s)
- Natalia Grytsyk
- Institut de Physique et Chimie des Matériaux de Strasbourg, Université de Strasbourg & CNRS, 67034 Strasbourg, France.,Laboratoire de Bioimagerie et Pathologies, UMR 7021 CNRS, Université de Strasbourg, Faculté de Pharmacie, 67401 Illkirch, France
| | - Damien Cianfarani
- Institut de Physique et Chimie des Matériaux de Strasbourg, Université de Strasbourg & CNRS, 67034 Strasbourg, France
| | - Olivier Crégut
- Institut de Physique et Chimie des Matériaux de Strasbourg, Université de Strasbourg & CNRS, 67034 Strasbourg, France
| | - Ludovic Richert
- Laboratoire de Bioimagerie et Pathologies, UMR 7021 CNRS, Université de Strasbourg, Faculté de Pharmacie, 67401 Illkirch, France
| | - Christian Boudier
- Laboratoire de Bioimagerie et Pathologies, UMR 7021 CNRS, Université de Strasbourg, Faculté de Pharmacie, 67401 Illkirch, France
| | - Nicolas Humbert
- Laboratoire de Bioimagerie et Pathologies, UMR 7021 CNRS, Université de Strasbourg, Faculté de Pharmacie, 67401 Illkirch, France
| | - Pascal Didier
- Laboratoire de Bioimagerie et Pathologies, UMR 7021 CNRS, Université de Strasbourg, Faculté de Pharmacie, 67401 Illkirch, France
| | - Yves Mély
- Laboratoire de Bioimagerie et Pathologies, UMR 7021 CNRS, Université de Strasbourg, Faculté de Pharmacie, 67401 Illkirch, France
| | - Jérémie Léonard
- Institut de Physique et Chimie des Matériaux de Strasbourg, Université de Strasbourg & CNRS, 67034 Strasbourg, France
| |
Collapse
|
15
|
Hartner NT, Wink K, Raddatz CR, Thoben C, Schirmer M, Zimmermann S, Belder D. Coupling Droplet Microfluidics with Ion Mobility Spectrometry for Monitoring Chemical Conversions at Nanoliter Scale. Anal Chem 2021; 93:13615-13623. [PMID: 34592821 DOI: 10.1021/acs.analchem.1c02883] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We introduce the coupling of droplet microfluidics and ion mobility spectrometry (IMS) to address the challenges of label-free and chemical-specific detection of compounds in individual droplets. In analogy to the established use of mass spectrometry, droplet-IMS coupling can be also achieved via electrospray ionization but with significantly less instrumental effort. Because IMS instruments do not require high-vacuum systems, they are very compact, cost-effective, and robust, making them an ideal candidate as a chemical-specific end-of-line detector for segmented flow experiments. Herein, we demonstrate the successful coupling of droplet microfluidics with a custom-built high-resolution drift tube IMS system for monitoring chemical reactions in nL-sized droplets in an oil phase. The analytes contained in each droplet were assigned according to their characteristic ion mobility with limit of detections down to 200 nM to 1 μM and droplet frequencies ranging from 0.1 to 0.5 Hz. Using a custom sheath flow electrospray interface, we have further achieved the chemical-specific monitoring of a biochemical transformation catalyzed by a few hundred yeast cells, at single droplet level.
Collapse
Affiliation(s)
- Nora T Hartner
- Institute of Analytical Chemistry, Leipzig University, Linnéstraße 3, 04103 Leipzig, Germany
| | - Konstantin Wink
- Institute of Analytical Chemistry, Leipzig University, Linnéstraße 3, 04103 Leipzig, Germany
| | - Christian-Robert Raddatz
- Department of Sensors and Measurement Technology, Institute of Electrical Engineering and Measurement Technology, Leibniz University Hannover, Appelstraße 9A, 30167 Hannover, Germany
| | - Christian Thoben
- Department of Sensors and Measurement Technology, Institute of Electrical Engineering and Measurement Technology, Leibniz University Hannover, Appelstraße 9A, 30167 Hannover, Germany
| | - Martin Schirmer
- Helmholtz Centre for Environmental Research - UFZ Leipzig, Leipzig 04318, Germany
| | - Stefan Zimmermann
- Department of Sensors and Measurement Technology, Institute of Electrical Engineering and Measurement Technology, Leibniz University Hannover, Appelstraße 9A, 30167 Hannover, Germany
| | - Detlev Belder
- Institute of Analytical Chemistry, Leipzig University, Linnéstraße 3, 04103 Leipzig, Germany
| |
Collapse
|
16
|
Duncombe TA, Ponti A, Seebeck FP, Dittrich PS. UV-Vis Spectra-Activated Droplet Sorting for Label-Free Chemical Identification and Collection of Droplets. Anal Chem 2021; 93:13008-13013. [PMID: 34533299 DOI: 10.1021/acs.analchem.1c02822] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
We introduce the UV-vis spectra-activated droplet sorter (UVADS) for high-throughput label-free chemical identification and enzyme screening. In contrast to previous absorbance-based droplet sorters that relied on single-wavelength absorbance in the visible range, our platform collects full UV-vis spectra from 200 to 1050 nm at up to 2100 spectra per second. Our custom-built open-source software application, "SpectraSorter," enables real-time data processing, analysis, visualization, and selection of droplets for sorting with any set of UV-vis spectral features. An optimized UV-vis detection region extended the absorbance path length for droplets and allowed for the direct protein quantification down to 10 μM of bovine serum albumin at 280 nm. UV-vis spectral data can distinguish a variety of different chemicals or spurious events (such as air bubbles) that are inaccessible at a single wavelength. The platform is used to measure ergothionase enzyme activity from monoclonal microcolonies isolated in droplets. In a label-free manner, we directly measure the ergothioneine substrate to thiourocanic acid product conversion while tracking the microcolony formation. UVADS represents an important new tool for high-throughput label-free in-droplet chemical analysis.
Collapse
Affiliation(s)
- Todd A Duncombe
- Department of Biosystems Science and Engineering, ETH Zurich, Mattenstrasse 26, 4058 Basel, Switzerland.,NCCR Molecular Systems Engineering, BPR 1095, Mattenstrasse 24a, 4058 Basel, Switzerland
| | - Aaron Ponti
- Department of Biosystems Science and Engineering, ETH Zurich, Mattenstrasse 26, 4058 Basel, Switzerland
| | - Florian P Seebeck
- NCCR Molecular Systems Engineering, BPR 1095, Mattenstrasse 24a, 4058 Basel, Switzerland.,Department of Chemistry, University of Basel, Mattenstrasse 24a, 4002 Basel, Switzerland
| | - Petra S Dittrich
- Department of Biosystems Science and Engineering, ETH Zurich, Mattenstrasse 26, 4058 Basel, Switzerland.,NCCR Molecular Systems Engineering, BPR 1095, Mattenstrasse 24a, 4058 Basel, Switzerland
| |
Collapse
|
17
|
Stucki A, Vallapurackal J, Ward TR, Dittrich PS. Droplet Microfluidics and Directed Evolution of Enzymes: An Intertwined Journey. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202016154] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Ariane Stucki
- Department of Biosystems Science and Engineering ETH Zurich Mattenstrasse 26 CH-4058 Basel Switzerland
- National Competence Center in Research (NCCR) Molecular Systems Engineering Basel Switzerland
| | - Jaicy Vallapurackal
- Department of Chemistry University of Basel Mattenstrasse 24a CH-4058 Basel Switzerland
- National Competence Center in Research (NCCR) Molecular Systems Engineering Basel Switzerland
| | - Thomas R. Ward
- Department of Chemistry University of Basel Mattenstrasse 24a CH-4058 Basel Switzerland
- National Competence Center in Research (NCCR) Molecular Systems Engineering Basel Switzerland
| | - Petra S. Dittrich
- Department of Biosystems Science and Engineering ETH Zurich Mattenstrasse 26 CH-4058 Basel Switzerland
- National Competence Center in Research (NCCR) Molecular Systems Engineering Basel Switzerland
| |
Collapse
|
18
|
Fu X, Zhang Y, Xu Q, Sun X, Meng F. Recent Advances on Sorting Methods of High-Throughput Droplet-Based Microfluidics in Enzyme Directed Evolution. Front Chem 2021; 9:666867. [PMID: 33996758 PMCID: PMC8114877 DOI: 10.3389/fchem.2021.666867] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Accepted: 03/02/2021] [Indexed: 11/24/2022] Open
Abstract
Droplet-based microfluidics has been widely applied in enzyme directed evolution (DE), in either cell or cell-free system, due to its low cost and high throughput. As the isolation principles are based on the labeled or label-free characteristics in the droplets, sorting method contributes mostly to the efficiency of the whole system. Fluorescence-activated droplet sorting (FADS) is the mostly applied labeled method but faces challenges of target enzyme scope. Label-free sorting methods show potential to greatly broaden the microfluidic application range. Here, we review the developments of droplet sorting methods through a comprehensive literature survey, including labeled detections [FADS and absorbance-activated droplet sorting (AADS)] and label-free detections [electrochemical-based droplet sorting (ECDS), mass-activated droplet sorting (MADS), Raman-activated droplet sorting (RADS), and nuclear magnetic resonance-based droplet sorting (NMR-DS)]. We highlight recent cases in the last 5 years in which novel enzymes or highly efficient variants are generated by microfluidic DE. In addition, the advantages and challenges of different sorting methods are briefly discussed to provide an outlook for future applications in enzyme DE.
Collapse
Affiliation(s)
- Xiaozhi Fu
- Department of Biology and Biological Engineering, Chalmers University of Technology, Gothenburg, Sweden
| | - Yueying Zhang
- Department of Clinical Laboratory Medicine, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Medicine and Health Key Laboratory of Laboratory Medicine, Jinan, China
- School of Basic Medicine, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
| | - Qiang Xu
- Department of Clinical Laboratory Medicine, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Medicine and Health Key Laboratory of Laboratory Medicine, Jinan, China
- School of Basic Medicine, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
| | - Xiaomeng Sun
- Department of Clinical Laboratory Medicine, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Medicine and Health Key Laboratory of Laboratory Medicine, Jinan, China
- School of Basic Medicine, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
| | - Fanda Meng
- Department of Clinical Laboratory Medicine, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Medicine and Health Key Laboratory of Laboratory Medicine, Jinan, China
- School of Basic Medicine, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology, Gothenburg, Sweden
| |
Collapse
|
19
|
Gaikwad R, Sen AK. An optomicrofluidic device for the detection and isolation of drop-encapsulated target cells in single-cell format. Analyst 2021; 146:95-108. [PMID: 33107500 DOI: 10.1039/d0an00160k] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Single-cell analysis has emerged as a powerful method for genomics, transcriptomics, proteomics, and metabolomics characterisation at the individual cell level. Here, we demonstrate a technique for the detection and selective isolation of target cells encapsulated in microdroplets in single-cell format. A sample containing a mixed population of cells with fluorescently labelled target cells can be focused using a sheath fluid to direct cells in single file toward a droplet junction, wherein the cells are encapsulated inside droplets. The droplets containing the cells migrate toward the centre of the channel owing to non-inertial lift force. The cells present in the droplets are studied and characterised based on forward scatter (FSC), side scatter (SSC), and fluorescence (FL) signals. The FL signals from the target cells can be used to activate a selective isolation module based on electro-coalescence, using suitable electronics and a program to sort droplets containing the target cells in single-cell format from droplets containing background cells. We demonstrated the detection and isolation of target cells (cancer cells: HeLa and DU145) from mixed populations of cells, peripheral blood mononuclear cells (PBMC) + cervical cancer cells (HeLa) and PBMC + human prostate cancer cells (DU145), at a concentration range of 104-106 ml-1 at 300 cells per s. The performance of the device is characterised in terms of sorting efficiency (>97%), enrichment (>1800×), purity (>98%), and recovery (>95%). The sorted target cells were found to be viable (>95% viability) and showed good proliferation when cultured, showing the potential of the proposed sorting technique for downstream analysis.
Collapse
Affiliation(s)
- R Gaikwad
- Department of Mechanical Engineering, Indian Institute of Technology Madras, Chennai-600036, India.
| | | |
Collapse
|
20
|
Peretzki AJ, Schmidt S, Flachowsky E, Das A, Gerhardt RF, Belder D. How electrospray potentials can disrupt droplet microfluidics and how to prevent this. LAB ON A CHIP 2020; 20:4456-4465. [PMID: 33103684 DOI: 10.1039/d0lc00936a] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
A pressure-resistant microfluidic glass chip that integrates a packed-bed HPLC column, a droplet generator and a monolithic electrospray emitter is presented. This approach enables a seamless coupling of chip-HPLC and droplet microfluidics with ESI-MS detection. For the electrical contacting of the emitter, an electrode was integrated into the channel, which reaches up to the emitter tip. The incidental finding that under certain circumstances, the electrospray potential can strongly disturb the droplet microfluidics by electrowetting, was investigated in detail. Strategies to avoid this are evaluated and include electrical shielding and/or chip layouts, where the droplet generator is positioned at a long distance from the emitter.
Collapse
Affiliation(s)
- Andrea J Peretzki
- Institute of Analytical Chemistry, Leipzig University, Johannisallee 29, D-04103 Leipzig, Germany.
| | | | | | | | | | | |
Collapse
|
21
|
Method for Passive Droplet Sorting after Photo-Tagging. MICROMACHINES 2020; 11:mi11110964. [PMID: 33126559 PMCID: PMC7692103 DOI: 10.3390/mi11110964] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 10/22/2020] [Accepted: 10/26/2020] [Indexed: 12/16/2022]
Abstract
We present a method to photo-tag individual microfluidic droplets for latter selection by passive sorting. The use of a specific surfactant leads to the interfacial tension to be very sensitive to droplet pH. The photoexcitation of droplets containing a photoacid, pyranine, leads to a decrease in droplet pH. The concurrent increase in droplet interfacial tension enables the passive selection of irradiated droplets. The technique is used to select individual droplets within a droplet array as illuminated droplets remain in the wells while other droplets are eluted by the flow of the external oil. This method was used to select droplets in an array containing cells at a specific stage of apoptosis. The technique is also adaptable to continuous-flow sorting. By passing confined droplets over a microfabricated trench positioned diagonally in relation to the direction of flow, photo-tagged droplets were directed toward a different chip exit based on their lateral movement. The technique can be performed on a conventional fluorescence microscope and uncouples the observation and selection of droplets, thus enabling the selection on a large variety of signals, or based on qualitative user-defined features.
Collapse
|
22
|
Bacon K, Lavoie A, Rao BM, Daniele M, Menegatti S. Past, Present, and Future of Affinity-based Cell Separation Technologies. Acta Biomater 2020; 112:29-51. [PMID: 32442784 PMCID: PMC10364325 DOI: 10.1016/j.actbio.2020.05.004] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 04/29/2020] [Accepted: 05/05/2020] [Indexed: 02/06/2023]
Abstract
Progress in cell purification technology is critical to increase the availability of viable cells for therapeutic, diagnostic, and research applications. A variety of techniques are now available for cell separation, ranging from non-affinity methods such as density gradient centrifugation, dielectrophoresis, and filtration, to affinity methods such as chromatography, two-phase partitioning, and magnetic-/fluorescence-assisted cell sorting. For clinical and analytical procedures that require highly purified cells, the choice of cell purification method is crucial, since every method offers a different balance between yield, purity, and bioactivity of the cell product. For most applications, the requisite purity is only achievable through affinity methods, owing to the high target specificity that they grant. In this review, we discuss past and current methods for developing cell-targeting affinity ligands and their application in cell purification, along with the benefits and challenges associated with different purification formats. We further present new technologies, like stimuli-responsive ligands and parallelized microfluidic devices, towards improving the viability and throughput of cell products for tissue engineering and regenerative medicine. Our comparative analysis provides guidance in the multifarious landscape of cell separation techniques and highlights new technologies that are poised to play a key role in the future of cell purification in clinical settings and the biotech industry. STATEMENT OF SIGNIFICANCE: Technologies for cell purification have served science, medicine, and industrial biotechnology and biomanufacturing for decades. This review presents a comprehensive survey of this field by highlighting the scope and relevance of all known methods for cell isolation, old and new alike. The first section covers the main classes of target cells and compares traditional non-affinity and affinity-based purification techniques, focusing on established ligands and chromatographic formats. The second section presents an excursus of affinity-based pseudo-chromatographic and non-chromatographic technologies, especially focusing on magnetic-activated cell sorting (MACS) and fluorescence-activated cell sorting (FACS). Finally, the third section presents an overview of new technologies and emerging trends, highlighting how the progress in chemical, material, and microfluidic sciences has opened new exciting avenues towards high-throughput and high-purity cell isolation processes. This review is designed to guide scientists and engineers in their choice of suitable cell purification techniques for research or bioprocessing needs.
Collapse
Affiliation(s)
- Kaitlyn Bacon
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC 27695-7905, USA
| | - Ashton Lavoie
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC 27695-7905, USA
| | - Balaji M Rao
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC 27695-7905, USA; Biomanufacturing Training and Education Center (BTEC), North Carolina State University, Raleigh, NC 27695-7928, USA
| | - Michael Daniele
- Joint Department of Biomedical Engineering, North Carolina State University - University of North Carolina Chapel Hill, North Carolina, United States
| | - Stefano Menegatti
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC 27695-7905, USA; Biomanufacturing Training and Education Center (BTEC), North Carolina State University, Raleigh, NC 27695-7928, USA.
| |
Collapse
|
23
|
Sesen M, Whyte G. Image-Based Single Cell Sorting Automation in Droplet Microfluidics. Sci Rep 2020; 10:8736. [PMID: 32457421 PMCID: PMC7250914 DOI: 10.1038/s41598-020-65483-2] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Accepted: 05/06/2020] [Indexed: 12/13/2022] Open
Abstract
The recent boom in single-cell omics has brought researchers one step closer to understanding the biological mechanisms associated with cell heterogeneity. Rare cells that have historically been obscured by bulk measurement techniques are being studied by single cell analysis and providing valuable insight into cell function. To support this progress, novel upstream capabilities are required for single cell preparation for analysis. Presented here is a droplet microfluidic, image-based single-cell sorting technique that is flexible and programmable. The automated system performs real-time dual-camera imaging (brightfield & fluorescent), processing, decision making and sorting verification. To demonstrate capabilities, the system was used to overcome the Poisson loading problem by sorting for droplets containing a single red blood cell with 85% purity. Furthermore, fluorescent imaging and machine learning was used to load single K562 cells amongst clusters based on their instantaneous size and circularity. The presented system aspires to replace manual cell handling techniques by translating expert knowledge into cell sorting automation via machine learning algorithms. This powerful technique finds application in the enrichment of single cells based on their micrographs for further downstream processing and analysis.
Collapse
Affiliation(s)
- Muhsincan Sesen
- Heriot-Watt University, Institute of Biological Chemistry, Biophysics and Bioengineering, Edinburgh, EH14 4AS, United Kingdom
- Imperial College London, Department of Bioengineering, London, SW7 2AZ, United Kingdom
| | - Graeme Whyte
- Heriot-Watt University, Institute of Biological Chemistry, Biophysics and Bioengineering, Edinburgh, EH14 4AS, United Kingdom.
| |
Collapse
|
24
|
Saucedo-Espinosa MA, Dittrich PS. In-Droplet Electrophoretic Separation and Enrichment of Biomolecules. Anal Chem 2020; 92:8414-8421. [DOI: 10.1021/acs.analchem.0c01044] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Affiliation(s)
- Mario A. Saucedo-Espinosa
- Department of Biosystems Science and Engineering, ETH Zürich, Mattenstrasse 26, 4058 Basel, Switzerland
| | - Petra S. Dittrich
- Department of Biosystems Science and Engineering, ETH Zürich, Mattenstrasse 26, 4058 Basel, Switzerland
| |
Collapse
|
25
|
Gul I, Bogale TF, Chen Y, Yang X, Fang R, Feng J, Gao H, Tang L. A paper-based whole-cell screening assay for directed evolution-driven enzyme engineering. Appl Microbiol Biotechnol 2020; 104:6013-6022. [DOI: 10.1007/s00253-020-10615-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 03/06/2020] [Accepted: 04/06/2020] [Indexed: 12/14/2022]
|
26
|
Anagnostidis V, Sherlock B, Metz J, Mair P, Hollfelder F, Gielen F. Deep learning guided image-based droplet sorting for on-demand selection and analysis of single cells and 3D cell cultures. LAB ON A CHIP 2020; 20:889-900. [PMID: 31989120 DOI: 10.1039/d0lc00055h] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Uncovering the heterogeneity of cellular populations and multicellular constructs is a long-standing goal in fields ranging from antimicrobial resistance to cancer research. Emerging technology platforms such as droplet microfluidics hold the promise to decipher such heterogeneities at ultra-high-throughput. However, there is a lack of methods able to rapidly identify and isolate single cells or 3D cell cultures. Here we demonstrate that deep neural networks can accurately classify single droplet images in real-time based on the presence and number of micro-objects including single mammalian cells and multicellular spheroids. This approach also enables the identification of specific objects within mixtures of objects of different types and sizes. The training sets for the neural networks consisted of a few hundred images manually picked and augmented to up to thousands of images per training class. Training required less than 10 minutes using a single GPU, and yielded accuracies of over 90% for single mammalian cell identification. Crucially, the same model could be used to classify different types of objects such as polystyrene spheres, polyacrylamide beads and MCF-7 cells. We applied the developed method for the selection of 3D cell cultures generated with Hek293FT cells encapsulated in agarose gel beads, highlighting the potential of the technology for the selection of objects with a high diversity of visual appearances. The real-time sorting of single droplets was in-line with droplet generation and occurred at rates up to 40 per second independently of image size up to 480 × 480 pixels. The presented microfluidic device also enabled storage of sorted droplets to allow for downstream analyses.
Collapse
Affiliation(s)
| | - Benjamin Sherlock
- Living Systems Institute, University of Exeter, Stocker Road, Exeter, EX4 4QD, UK.
| | - Jeremy Metz
- Living Systems Institute, University of Exeter, Stocker Road, Exeter, EX4 4QD, UK.
| | - Philip Mair
- Department of Biochemistry, University of Cambridge, 80 Tennis Court, Cambridge, CB2 1QW, UK
| | - Florian Hollfelder
- Department of Biochemistry, University of Cambridge, 80 Tennis Court, Cambridge, CB2 1QW, UK
| | - Fabrice Gielen
- Living Systems Institute, University of Exeter, Stocker Road, Exeter, EX4 4QD, UK.
| |
Collapse
|
27
|
Hung ST, Mukherjee S, Jimenez R. Enrichment of rare events using a multi-parameter high throughput microfluidic droplet sorter. LAB ON A CHIP 2020; 20:834-843. [PMID: 31974539 PMCID: PMC7135947 DOI: 10.1039/c9lc00790c] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
High information content analysis, enrichment, and selection of rare events from a large population are of great importance in biological and biomedical research. The fluorescence lifetime of a fluorophore, a photophysical property which is independent of and complementary to fluorescence intensity, has been incorporated into various imaging and sensing techniques through microscopy, flow cytometry and droplet microfluidics. However, the throughput of fluorescence lifetime activated droplet sorting is orders of magnitude lower than that of fluorescence activated cell sorting, making it unattractive for applications such as directed evolution of enzymes, despite its highly effective compartmentalization of library members. We developed a microfluidic sorter capable of selecting fluorophores based on fluorescence lifetime and brightness at two excitation and emission colors at a maximum droplet rate of 2.5 kHz. We also present a novel selection strategy for efficiently analyzing and/or enriching rare fluorescent members from a large population which capitalizes on the Poisson distribution of analyte encapsulation into droplets. The effectiveness of the droplet sorter and the new selection strategy are demonstrated by enriching rare populations from a ∼108-member site-directed mutagenesis library of fluorescent proteins expressed in bacteria. This selection strategy can in principle be employed on many droplet sorting platforms, and thus can potentially impact broad areas of science where analysis and enrichment of rare events is needed.
Collapse
Affiliation(s)
- Sheng-Ting Hung
- JILA, NIST and University of Colorado, Boulder, Colorado 80309, USA.
| | - Srijit Mukherjee
- JILA, NIST and University of Colorado, Boulder, Colorado 80309, USA. and Department of Chemistry, University of Colorado, Boulder, Colorado 80309, USA
| | - Ralph Jimenez
- JILA, NIST and University of Colorado, Boulder, Colorado 80309, USA. and Department of Chemistry, University of Colorado, Boulder, Colorado 80309, USA
| |
Collapse
|
28
|
On-chip integration of normal phase high-performance liquid chromatography and droplet microfluidics introducing ethylene glycol as polar continuous phase for the compartmentalization of n-heptane eluents. J Chromatogr A 2020; 1612:460653. [DOI: 10.1016/j.chroma.2019.460653] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Revised: 10/08/2019] [Accepted: 10/23/2019] [Indexed: 01/06/2023]
|
29
|
Hackler AL, FitzGerald FG, Dang VQ, Satz AL, Paegel BM. Off-DNA DNA-Encoded Library Affinity Screening. ACS COMBINATORIAL SCIENCE 2020; 22:25-34. [PMID: 31829554 DOI: 10.1021/acscombsci.9b00153] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
DNA-encoded library (DEL) technology is emerging as a key element of the small molecule discovery toolbox. Conventional DEL screens (i.e., on-DNA screening) interrogate large combinatorial libraries via affinity selection of DNA-tagged library members that are ligands of a purified and immobilized protein target. In these selections, the DNA tags can materially and undesirably influence target binding and, therefore, the experiment outcome. Here, we use a solid-phase DEL and droplet-based microfluidic screening to separate the DEL member from its DNA tag (i.e., off-DNA screening), for subsequent in-droplet laser-induced fluorescence polarization (FP) detection of target binding, obviating DNA tag interference. Using the receptor tyrosine kinase (RTK) discoidin domain receptor 1 (DDR1) as a proof-of-concept target in a droplet-scale competition-binding assay, we screened a 67 100-member solid-phase DEL of drug-like small molecules for competitive ligands of DDR1 and identified several known RTK inhibitor pharmacophores, including azaindole- and quinazolinone-containing monomers. Off-DNA DEL affinity screening with FP detection is potentially amenable to a wide array of target classes, including nucleic acid binding proteins, proteins that are difficult to overexpress and purify, or targets with no known activity assay.
Collapse
Affiliation(s)
| | | | | | - Alexander L. Satz
- Roche Pharma Research and Early Development (pRED), Roche Innovation Center Basel Hoffman-La Roche Ltd, Grenzacherstrasse 124, CH-4070 Basel, Switzerland
| | | |
Collapse
|
30
|
Droplet Microfluidics-Enabled High-Throughput Screening for Protein Engineering. MICROMACHINES 2019; 10:mi10110734. [PMID: 31671786 PMCID: PMC6915371 DOI: 10.3390/mi10110734] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/05/2019] [Revised: 10/22/2019] [Accepted: 10/26/2019] [Indexed: 12/19/2022]
Abstract
Protein engineering—the process of developing useful or valuable proteins—has successfully created a wide range of proteins tailored to specific agricultural, industrial, and biomedical applications. Protein engineering may rely on rational techniques informed by structural models, phylogenic information, or computational methods or it may rely upon random techniques such as chemical mutation, DNA shuffling, error prone polymerase chain reaction (PCR), etc. The increasing capabilities of rational protein design coupled to the rapid production of large variant libraries have seriously challenged the capacity of traditional screening and selection techniques. Similarly, random approaches based on directed evolution, which relies on the Darwinian principles of mutation and selection to steer proteins toward desired traits, also requires the screening of very large libraries of mutants to be truly effective. For either rational or random approaches, the highest possible screening throughput facilitates efficient protein engineering strategies. In the last decade, high-throughput screening (HTS) for protein engineering has been leveraging the emerging technologies of droplet microfluidics. Droplet microfluidics, featuring controlled formation and manipulation of nano- to femtoliter droplets of one fluid phase in another, has presented a new paradigm for screening, providing increased throughput, reduced reagent volume, and scalability. We review here the recent droplet microfluidics-based HTS systems developed for protein engineering, particularly directed evolution. The current review can also serve as a tutorial guide for protein engineers and molecular biologists who need a droplet microfluidics-based HTS system for their specific applications but may not have prior knowledge about microfluidics. In the end, several challenges and opportunities are identified to motivate the continued innovation of microfluidics with implications for protein engineering.
Collapse
|
31
|
Suea-Ngam A, Howes PD, Srisa-Art M, deMello AJ. Droplet microfluidics: from proof-of-concept to real-world utility? Chem Commun (Camb) 2019; 55:9895-9903. [PMID: 31334541 DOI: 10.1039/c9cc04750f] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Droplet microfluidics constitutes a diverse and practical tool set that enables chemical and biological experiments to be performed at high speed and with enhanced efficiency when compared to conventional instrumentation. Indeed, in recent years, droplet-based microfluidic tools have been used to excellent effect in a range of applications, including materials synthesis, single cell analysis, RNA sequencing, small molecule screening, in vitro diagnostics and tissue engineering. Our 2011 Chemical Communications Highlight Article [Chem. Commun., 2011, 47, 1936-1942] reviewed some of the most important technological developments and applications of droplet microfluidics, and identified key challenges that needed to be addressed in the short term. In the current contribution, we consider the intervening eight years, and assess the contributions that droplet-based microfluidics has made to experimental science in its broadest sense.
Collapse
Affiliation(s)
- Akkapol Suea-Ngam
- Institute for Chemical and Bioengineering, Department of Chemistry and Applied Biosciences, ETH Zürich, Vladimir-Prelog-Weg 1, 8093 Zürich, Switzerland.
| | - Philip D Howes
- Institute for Chemical and Bioengineering, Department of Chemistry and Applied Biosciences, ETH Zürich, Vladimir-Prelog-Weg 1, 8093 Zürich, Switzerland.
| | - Monpichar Srisa-Art
- Electrochemistry and Optical Spectroscopy Center of Excellence, Department of Chemistry, Faculty of Science, Chulalongkorn University, Patumwan, Bangkok, 10330, Thailand
| | - Andrew J deMello
- Institute for Chemical and Bioengineering, Department of Chemistry and Applied Biosciences, ETH Zürich, Vladimir-Prelog-Weg 1, 8093 Zürich, Switzerland.
| |
Collapse
|
32
|
Gao Z, Peng H, Zhu M, Wu L, Jia C, Zhou H, Zhao J. A Facile Strategy for Visualizing and Modulating Droplet-Based Microfluidics. MICROMACHINES 2019; 10:E291. [PMID: 31035446 PMCID: PMC6562635 DOI: 10.3390/mi10050291] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Revised: 04/22/2019] [Accepted: 04/25/2019] [Indexed: 11/23/2022]
Abstract
In droplet-based microfluidics, visualizing and modulating of droplets is often prerequisite. In this paper, we report a facile strategy for visualizing and modulating high-throughput droplets in microfluidics. In the strategy, by modulating the sampling frequency of a flash light with the droplet frequency, we are able to map a real high frequency signal to a low frequency signal, which facilitates visualizing and feedback controlling. Meanwhile, because of not needing synchronization signals, the strategy can be directly implemented on any droplet-based microfluidic chips. The only cost of the strategy is an additional signal generator. Moreover, the strategy can catch droplets with frequency up to several kilohertz, which covers the range of most high-throughput droplet-based microfluidics. In this paper, the principle, setup and procedure were introduced. Finally, as a demonstration, the strategy was also implemented in a miniaturized picoinjector in order to monitor and control the injection dosage to droplets. We expect that this facile strategy supplies a low-cost yet effective imaging system that can be easily implemented in miniaturized microfluidic systems or general laboratories.
Collapse
Affiliation(s)
- Zehang Gao
- State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, China.
- School of Information Science and Technology, ShanghaiTech University, Shanghai 201210, China.
- University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Huo Peng
- State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, China.
- University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Minjie Zhu
- State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, China.
- Department of Chemistry, College of Science, Shanghai University, Shanghai 200444, China.
| | - Lei Wu
- State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, China.
| | - Chunping Jia
- State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, China.
| | - Hongbo Zhou
- State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, China.
| | - Jianlong Zhao
- State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, China.
| |
Collapse
|