1
|
Lei X, Ye W, Safdarin F, Baghaei S. Microfluidics devices for sports: A review on technology for biomedical application used in fields such as biomedicine, drug encapsulation, preparation of nanoparticles, cell targeting, analysis, diagnosis, and cell culture. Tissue Cell 2024; 87:102339. [PMID: 38432127 DOI: 10.1016/j.tice.2024.102339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 02/21/2024] [Accepted: 02/22/2024] [Indexed: 03/05/2024]
Abstract
Microfluidics is an interdisciplinary field that combines knowledge from various disciplines, including biology, chemistry, sports medicine, fluid dynamics, kinetic biomechanics, and microelectronics, to manipulate and control fluids and particles in micron-scale channels and chambers. These channels and chambers can be fabricated using different materials and methods to achieve various geometries and shapes. Microfluidics has numerous biomedical applications, such as drug encapsulation, nanoparticle preparation, cell targeting, analysis, diagnosis, and treatment of sports injuries in both professional and non-professional athletes. It can also be used in other fields, such as biological analysis, chemical synthesis, optics, and acceleration in the treatment of critical sports injuries. The objective of this review is to provide a comprehensive overview of microfluidic technology, including its fabrication methods, current platform materials, and its applications in sports medicine. Biocompatible, biodegradable, and semi-crystalline polymers with unique mechanical and thermal properties are one of the promising materials in microfluidic technology. Despite the numerous advantages of microfluidic technology, further research and development are necessary. Although the technology offers benefits such as ease of operation and cost efficiency, it is still in its early stages. In conclusion, this review emphasizes the potential of microfluidic technology and highlights the need for continued research to fully exploit its potential in the biomedical field and sport applications.
Collapse
Affiliation(s)
- Xuehui Lei
- Graduate School of Wuhan Institute of Physical Education, Wuhan 430079, China
| | - Weiwu Ye
- National Traditional Sports College of Harbin Sports University, Harbin 150008, China.
| | - F Safdarin
- Mechanical Engineering Department, lslamic Azad University, Esfahan, Iran
| | - Sh Baghaei
- Mechanical Engineering Department, lslamic Azad University, Esfahan, Iran
| |
Collapse
|
2
|
Tian Z, Yuan Z, Duarte PA, Shaheen M, Wang S, Haddon L, Chen J. Highly efficient cell-microbead encapsulation using dielectrophoresis-assisted dual-nanowell array. PNAS NEXUS 2023; 2:pgad155. [PMID: 37252002 PMCID: PMC10210622 DOI: 10.1093/pnasnexus/pgad155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 04/03/2023] [Accepted: 05/03/2023] [Indexed: 05/31/2023]
Abstract
Recent advancements in micro/nanofabrication techniques have led to the development of portable devices for high-throughput single-cell analysis through the isolation of individual target cells, which are then paired with functionalized microbeads. Compared with commercially available benchtop instruments, portable microfluidic devices can be more widely and cost-effectively adopted in single-cell transcriptome and proteome analysis. The sample utilization and cell pairing rate (∼33%) of current stochastic-based cell-bead pairing approaches are fundamentally limited by Poisson statistics. Despite versatile technologies having been proposed to reduce randomness during the cell-bead pairing process in order to statistically beat the Poisson limit, improvement of the overall pairing rate of a single cell to a single bead is typically based on increased operational complexity and extra instability. In this article, we present a dielectrophoresis (DEP)-assisted dual-nanowell array (ddNA) device, which employs an innovative microstructure design and operating process that decouples the bead- and cell-loading processes. Our ddNA design contains thousands of subnanoliter microwell pairs specifically tailored to fit both beads and cells. Interdigitated electrodes (IDEs) are placed below the microwell structure to introduce a DEP force on cells, yielding high single-cell capture and pairing rates. Experimental results with human embryonic kidney cells confirmed the suitability and reproducibility of our design. We achieved a single-bead capture rate of >97% and a cell-bead pairing rate of >75%. We anticipate that our device will enhance the application of single-cell analysis in practical clinical use and academic research.
Collapse
Affiliation(s)
- Zuyuan Tian
- Department of Electrical and Computer Engineering, University of Alberta, 9107 116 Street NW, T6G 1H9 Edmonton, AB, Canada
| | - Zhipeng Yuan
- Department of Electrical and Computer Engineering, University of Alberta, 9107 116 Street NW, T6G 1H9 Edmonton, AB, Canada
| | - Pedro A Duarte
- Department of Electrical and Computer Engineering, University of Alberta, 9107 116 Street NW, T6G 1H9 Edmonton, AB, Canada
| | - Mohamed Shaheen
- Department of Electrical and Computer Engineering, University of Alberta, 9107 116 Street NW, T6G 1H9 Edmonton, AB, Canada
| | - Shaoxi Wang
- School of Microelectronics, Northwestern Polytechnical University, 127 Youyi St West, 710129 Xi’an, Shannxi, China
| | - Lacey Haddon
- Department of Electrical and Computer Engineering, University of Alberta, 9107 116 Street NW, T6G 1H9 Edmonton, AB, Canada
| | - Jie Chen
- To whom correspondence should be addressed:
| |
Collapse
|
3
|
Iakovlev AP, Erofeev AS, Gorelkin PV. Novel Pumping Methods for Microfluidic Devices: A Comprehensive Review. BIOSENSORS 2022; 12:956. [PMID: 36354465 PMCID: PMC9688261 DOI: 10.3390/bios12110956] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 10/26/2022] [Accepted: 10/28/2022] [Indexed: 06/02/2023]
Abstract
This review is an account of methods that use various strategies to control microfluidic flow control with high accuracy. The reviewed systems are divided into two large groups based on the way they create flow: passive systems (non-mechanical systems) and active (mechanical) systems. Each group is presented by a number of device fabrications. We try to explain the main principles of operation, and we list advantages and disadvantages of the presented systems. Mechanical systems are considered in more detail, as they are currently an area of increased interest due to their unique precision flow control and "multitasking". These systems are often applied as mini-laboratories, working autonomously without any additional operations, provided by humans, which is very important under complicated conditions. We also reviewed the integration of autonomous microfluidic systems with a smartphone or single-board computer when all data are retrieved and processed without using a personal computer. In addition, we discuss future trends and possible solutions for further development of this area of technology.
Collapse
Affiliation(s)
| | | | - Petr V. Gorelkin
- Research Laboratory of Biophysics, National University of Science and Technology «MISiS», 119049 Moscow, Russia
| |
Collapse
|
4
|
Abdulhameed A, Mohtar MN, Hamidon MN, Halin IA. Assembly of long carbon nanotube bridges across transparent electrodes using novel thickness-controlled dielectrophoresis. Electrophoresis 2021; 43:487-494. [PMID: 34679198 DOI: 10.1002/elps.202100268] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 10/01/2021] [Accepted: 10/12/2021] [Indexed: 12/13/2022]
Abstract
The assembly of carbon nanotubes (CNTs) across planner electrodes using dielectrophoresis (DEP) is one of the standard methods used to fabricate CNT-based devices such as sensors. The medium drag velocity caused by electrokinetic phenomena such as electrothermal and electroosmotic might drive CNTs away from the deposition area. This problem becomes critical at large-scale electrode structures due to the high attenuation of the DEP force. Herein, we simulated and experimentally validated a novel DEP setup that uses a top glass cover to minimize the medium drag velocity. The simulation results showed that the drag velocity can be reduced by 2-3 orders of magnitude compared with the basic DEP setup. The simulation also showed that the optimum channel height to result in a significant drag velocity reduction was between 100 μm and 240 μm. We experimentally report, for the first time, the assembly and alignment of CNT bridges across indium tin oxide (ITO) electrodes with spacing up to 125 μm. We also derived an equation to optimize the CNT's concentration in suspensions based on the electrode gap width and channel height. The deposition of long CNTs across ITO electrodes has potential use in transparent electronics and microfluidic systems.
Collapse
Affiliation(s)
- Abdullah Abdulhameed
- Department of Electrical and Electronic Engineering, Faculty of Engineering, Universiti Putra Malaysia, Serdang, Malaysia.,Department of Electronic Engineering, Faculty of Engineering, Hadhramout University, Mukalla, Yemen
| | - Mohd Nazim Mohtar
- Department of Electrical and Electronic Engineering, Faculty of Engineering, Universiti Putra Malaysia, Serdang, Malaysia.,Institute of Advanced Technology (ITMA), Universiti Putra Malaysia, Serdang, Malaysia
| | - Mohd Nizar Hamidon
- Department of Electrical and Electronic Engineering, Faculty of Engineering, Universiti Putra Malaysia, Serdang, Malaysia.,Institute of Advanced Technology (ITMA), Universiti Putra Malaysia, Serdang, Malaysia
| | - Izhal Abdul Halin
- Department of Electrical and Electronic Engineering, Faculty of Engineering, Universiti Putra Malaysia, Serdang, Malaysia
| |
Collapse
|
5
|
Bhardwaj J, Hong S, Jang J, Han CH, Lee J, Jang J. Recent advancements in the measurement of pathogenic airborne viruses. JOURNAL OF HAZARDOUS MATERIALS 2021; 420:126574. [PMID: 34252679 PMCID: PMC8256664 DOI: 10.1016/j.jhazmat.2021.126574] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Revised: 06/24/2021] [Accepted: 07/02/2021] [Indexed: 05/11/2023]
Abstract
Air-transmissible pathogenic viruses, such as influenza viruses and coronaviruses, are some of the most fatal strains and spread rapidly by air, necessitating quick and stable measurements from sample air volumes to prevent further spread of diseases and to take appropriate steps rapidly. Measurements of airborne viruses generally require their collection into liquids or onto solid surfaces, with subsequent hydrosolization and then analysis using the growth method, nucleic-acid-based techniques, or immunoassays. Measurements can also be performed in real time without sampling, where species-specific determination is generally disabled. In this review, we introduce some recent advancements in the measurement of pathogenic airborne viruses. Air sampling and measurement technologies for viral aerosols are reviewed, with special focus on the effects of air sampling on damage to the sampled viruses and their measurements. Measurement of pathogenic airborne viruses is an interdisciplinary research area that requires understanding of both aerosol technology and biotechnology to effectively address the issues. Hence, this review is expected to provide some useful guidelines regarding appropriate air sampling and virus detection methods for particular applications.
Collapse
Affiliation(s)
- Jyoti Bhardwaj
- Sensors and Aerosols Laboratory, Department of Mechanical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | | | - Junbeom Jang
- Sensors and Aerosols Laboratory, Department of Mechanical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Chang-Ho Han
- Sensors and Aerosols Laboratory, Department of Mechanical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Jaegil Lee
- Sensors and Aerosols Laboratory, Department of Mechanical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Jaesung Jang
- Sensors and Aerosols Laboratory, Department of Mechanical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea; Department of Biomedical Engineering & Department of Urban and Environmental Engineering, UNIST, Ulsan 44919, Republic of Korea.
| |
Collapse
|
6
|
Tai YH, Lo SC, Montagne K, Tsai PC, Liao CC, Wang SH, Chin IS, Xing D, Ho YL, Huang NT, Wei PK, Delaunay JJ. Enhancing Raman signals from bacteria using dielectrophoretic force between conductive lensed fiber and black silicon. Biosens Bioelectron 2021; 191:113463. [PMID: 34198171 DOI: 10.1016/j.bios.2021.113463] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Revised: 06/02/2021] [Accepted: 06/22/2021] [Indexed: 12/26/2022]
Abstract
An osmium-coated lensed fiber (OLF) probe combined with a silver-coated black silicon (SBS) substrate was used to generate a dielectrophoretic (DEP) force that traps bacteria and enables Raman signal detection from bacteria. The lensed fiber coated with a 2-nm osmium layer was used as an electrode for the DEP force and also as a lens to excite Raman signals. The black silicon coated with a 150-nm silver layer was used both as the surface-enhanced Raman scattering (SERS) substrate and the counter electrode. The enhanced Raman signal was collected by the same OLF probe and further analyzed with a spectrometer. For Raman measurements, a drop of bacterial suspension was placed between the OLF probe and the SBS substrate. By controlling the frequency of an AC voltage on the OLF probe and SBS substrate, a DEP force at 1 MHz concentrated bacteria on the SBS surface and removed the unbound micro-objects in the solution at 1 kHz. A bacteria concentration of 6 × 104 CFU/mL (colony forming units per mL) could be identified in less than 15 min, using a volume of only 1 μL, by recording the variation of the Raman peak at 740 cm-1.
Collapse
Affiliation(s)
- Yi-Hsin Tai
- Department of Mechanical Engineering, School of Engineering, The University of Tokyo, Tokyo, 113-8656, Japan
| | - Shu-Cheng Lo
- Institute of Applied Mechanics, National Taiwan University, Taipei, 10617, Taiwan
| | - Kevin Montagne
- Department of Mechanical Engineering, School of Engineering, The University of Tokyo, Tokyo, 113-8656, Japan
| | - Po-Cheng Tsai
- Graduate Institute of Electronics Engineering, National Taiwan University, Taipei, 10617, Taiwan
| | - Cheng-Chieh Liao
- Graduate Institute of Biomedical Electronics and Bioinformatics, National Taiwan University, Taipei, 10617, Taiwan
| | - Sheng-Hann Wang
- Research Center for Applied Sciences, Academia Sinica, Taipei, 11529, Taiwan
| | - Iuan-Sheau Chin
- Research Center for Applied Sciences, Academia Sinica, Taipei, 11529, Taiwan
| | - Di Xing
- Department of Mechanical Engineering, School of Engineering, The University of Tokyo, Tokyo, 113-8656, Japan
| | - Ya-Lun Ho
- Department of Mechanical Engineering, School of Engineering, The University of Tokyo, Tokyo, 113-8656, Japan
| | - Nien-Tsu Huang
- Graduate Institute of Biomedical Electronics and Bioinformatics, National Taiwan University, Taipei, 10617, Taiwan; Department of Electrical Engineering, National Taiwan University, Taipei, 10617, Taiwan
| | - Pei-Kuen Wei
- Research Center for Applied Sciences, Academia Sinica, Taipei, 11529, Taiwan
| | - Jean-Jacques Delaunay
- Department of Mechanical Engineering, School of Engineering, The University of Tokyo, Tokyo, 113-8656, Japan.
| |
Collapse
|
7
|
Han X, Liu Y, Yin J, Yue M, Mu Y. Microfluidic devices for multiplexed detection of foodborne pathogens. Food Res Int 2021; 143:110246. [PMID: 33992358 DOI: 10.1016/j.foodres.2021.110246] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 02/02/2021] [Accepted: 02/16/2021] [Indexed: 01/10/2023]
Abstract
The global burden of foodborne diseases is substantial and foodborne pathogens are the major cause for human illnesses. In order to prevent the spread of foodborne pathogens, detection methods are constantly being updated towards rapid, portable, inexpensive, and multiplexed on-site detection. Due to the nature of the small size and low volume, microfluidics has been applied to rapid, time-saving, sensitive, and portable devices to meet the requirements of on-site detection. Simultaneous detection of multiple pathogens is another key parameter to ensure food safety. Multiplexed detection technology, including microfluidic chip design, offers a new opportunity to achieve this goal. In this review, we introduced several sample preparation and corresponding detection methods on microfluidic devices for multiplexed detection of foodborne pathogens. In the sample preparation section, methods of cell capture and enrichment, as well as nucleic acid sample preparation, were described in detail, and in the section of detection methods, amplification, immunoassay, surface plasmon resonance and impedance spectroscopy were exhaustively illustrated. The limitations and advantages of all available experimental options were also summarized and discussed in order to form a comprehensive understanding of cutting-edge technologies and provide a comparative assessment for future investigation and in-field application.
Collapse
Affiliation(s)
- Xiaoying Han
- Research Centre for Analytical Instrumentation, Institute of Cyber-Systems and Control, State Key Laboratory of Industrial Control Technology, Zhejiang University, Hangzhou 310023, PR China; College of Life Sciences, Zhejiang University, Hangzhou 310058, PR China
| | - Yuanhui Liu
- Research Centre for Analytical Instrumentation, Institute of Cyber-Systems and Control, State Key Laboratory of Industrial Control Technology, Zhejiang University, Hangzhou 310023, PR China; College of Life Sciences, Zhejiang University, Hangzhou 310058, PR China
| | - Juxin Yin
- Research Centre for Analytical Instrumentation, Institute of Cyber-Systems and Control, State Key Laboratory of Industrial Control Technology, Zhejiang University, Hangzhou 310023, PR China
| | - Min Yue
- Department of Veterinary Medicine & Institute of Preventive Veterinary Sciences, Zhejiang University College of Animal Sciences, Hangzhou 310058, PR China; State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310003, PR China; Hainan Institute of Zhejiang University, Sanya 572025, PR China.
| | - Ying Mu
- Research Centre for Analytical Instrumentation, Institute of Cyber-Systems and Control, State Key Laboratory of Industrial Control Technology, Zhejiang University, Hangzhou 310023, PR China.
| |
Collapse
|
8
|
Han CH, Jang J. Integrated microfluidic platform with electrohydrodynamic focusing and a carbon-nanotube-based field-effect transistor immunosensor for continuous, selective, and label-free quantification of bacteria. LAB ON A CHIP 2021; 21:184-195. [PMID: 33283832 DOI: 10.1039/d0lc00783h] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Electrokinetic technologies such as AC electro-osmosis (EO) and dielectrophoresis (DEP) have been used for effective manipulation of bacteria to enhance the sensitivity of an assay, and many previously reported electrokinetics-enhanced biosensors are based on stagnant fluids. An effective region for positive DEP for particle capture is usually too close to the electrode for the flowing particles to move toward the detection zone of a biosensor against the flow direction; this poses a technical challenge for electrokinetics-assisted biosensors implemented within pressure-driven flows, especially if the particles flow with high speed and if the detection zone is small. Here, we present a microfluidic single-walled carbon nanotube (SWCNT)-based field-effect transistor immunosensor with electrohydrodynamic (EHD) focusing and DEP concentration for continuous and label-free detection of flowing Staphylococcus aureus in a 0.01× phosphate buffered saline (PBS) solution. The EHD focusing involved AC EO and negative DEP to align the flowing particles along lines close to the bottom surface of a microfluidic channel for facilitating particle capture downstream at the detection zone. For feasibility, 380 nm-diameter fluorescent beads suspended in 0.001× PBS were tested, and 14.6 times more beads were observed to be concentrated in the detection area with EHD focusing. Moreover, label-free, continuous, and selective measurement of S. aureus in 0.01× PBS was demonstrated, showing good linearity between the relative changes in electrical conductance of the SWCNTs and logarithmic S. aureus concentrations, a capture/detection time of 35 min, and a limit of detection of 150 CFU mL-1, as well as high specificity through electrical manipulation and biological interaction.
Collapse
Affiliation(s)
- Chang-Ho Han
- Department of Mechanical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea.
| | | |
Collapse
|
9
|
Benhal P, Quashie D, Kim Y, Ali J. Insulator Based Dielectrophoresis: Micro, Nano, and Molecular Scale Biological Applications. SENSORS (BASEL, SWITZERLAND) 2020; 20:E5095. [PMID: 32906803 PMCID: PMC7570478 DOI: 10.3390/s20185095] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/19/2020] [Revised: 08/16/2020] [Accepted: 09/04/2020] [Indexed: 12/31/2022]
Abstract
Insulator based dielectrophoresis (iDEP) is becoming increasingly important in emerging biomolecular applications, including particle purification, fractionation, and separation. Compared to conventional electrode-based dielectrophoresis (eDEP) techniques, iDEP has been demonstrated to have a higher degree of selectivity of biological samples while also being less biologically intrusive. Over the past two decades, substantial technological advances have been made, enabling iDEP to be applied from micro, to nano and molecular scales. Soft particles, including cell organelles, viruses, proteins, and nucleic acids, have been manipulated using iDEP, enabling the exploration of subnanometer biological interactions. Recent investigations using this technique have demonstrated a wide range of applications, including biomarker screening, protein folding analysis, and molecular sensing. Here, we review current state-of-art research on iDEP systems and highlight potential future work.
Collapse
Affiliation(s)
- Prateek Benhal
- Department of Chemical and Biomedical Engineering, FAMU-FSU College of Engineering, Tallahassee, FL 32310, USA;
- National High Magnetic Field Laboratory, Tallahassee, FL 32310, USA
| | - David Quashie
- Department of Chemical and Biomedical Engineering, FAMU-FSU College of Engineering, Tallahassee, FL 32310, USA;
- National High Magnetic Field Laboratory, Tallahassee, FL 32310, USA
| | - Yoontae Kim
- American Dental Association Science & Research Institute, Gaithersburg, MD 20899, USA;
| | - Jamel Ali
- Department of Chemical and Biomedical Engineering, FAMU-FSU College of Engineering, Tallahassee, FL 32310, USA;
- National High Magnetic Field Laboratory, Tallahassee, FL 32310, USA
| |
Collapse
|