1
|
Dou D, Diao Y, Sha W, Su R, Tong L, Li W, Leng L, Xie L, Yu Z, Song H, Shen Z, Zhu L, Zhao Z, Xie H, Chen Z, Li H, Xu Y. Discovery of Pteridine-7(8 H)-one Derivatives as Potent and Selective Inhibitors of Bruton's Tyrosine Kinase (BTK). J Med Chem 2022; 65:2694-2709. [PMID: 35099969 DOI: 10.1021/acs.jmedchem.1c02208] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Bruton's tyrosine kinase (BTK) is an attractive therapeutic target in the treatment of cancer, inflammation, and autoimmune diseases. Covalent and noncovalent BTK inhibitors have been developed, among which covalent BTK inhibitors have shown great clinical efficacy. However, some of them could produce adverse effects, such as diarrhea, rash, and platelet dysfunction, which are associated with the off-target inhibition of ITK and EGFR. In this study, we disclosed a series of pteridine-7(8H)-one derivatives as potent and selective covalent BTK inhibitors, which were optimized from 3z, an EGFR inhibitor previously reported by our group. Among them, compound 24a exhibited great BTK inhibition activity (IC50 = 4.0 nM) and high selectivity in both enzymatic (ITK >250-fold, EGFR >2500-fold) and cellular levels (ITK >227-fold, EGFR 27-fold). In U-937 xenograft models, 24a significantly inhibited tumor growth (TGI = 57.85%) at a 50 mg/kg dosage. Accordingly, 24a is a new BTK inhibitor worthy of further development.
Collapse
Affiliation(s)
- Dou Dou
- Shanghai Key Laboratory of New Drug Design, State Key Laboratory of Bioreactor Engineering, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Yanyan Diao
- Shanghai Key Laboratory of New Drug Design, State Key Laboratory of Bioreactor Engineering, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Wenjie Sha
- Shanghai Key Laboratory of New Drug Design, State Key Laboratory of Bioreactor Engineering, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Rongrong Su
- Shanghai Key Laboratory of New Drug Design, State Key Laboratory of Bioreactor Engineering, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Linjiang Tong
- Division of Anti-tumor Pharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Wenjie Li
- Shanghai Key Laboratory of New Drug Design, State Key Laboratory of Bioreactor Engineering, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Limin Leng
- Shanghai Key Laboratory of New Drug Design, State Key Laboratory of Bioreactor Engineering, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Lijuan Xie
- Shanghai Key Laboratory of New Drug Design, State Key Laboratory of Bioreactor Engineering, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Zhixiao Yu
- Shanghai Key Laboratory of New Drug Design, State Key Laboratory of Bioreactor Engineering, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Haoming Song
- Shanghai Key Laboratory of New Drug Design, State Key Laboratory of Bioreactor Engineering, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Zihao Shen
- Shanghai Key Laboratory of New Drug Design, State Key Laboratory of Bioreactor Engineering, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Lili Zhu
- Shanghai Key Laboratory of New Drug Design, State Key Laboratory of Bioreactor Engineering, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Zhenjiang Zhao
- Shanghai Key Laboratory of New Drug Design, State Key Laboratory of Bioreactor Engineering, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Hua Xie
- Division of Anti-tumor Pharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Zhuo Chen
- Shanghai Key Laboratory of New Drug Design, State Key Laboratory of Bioreactor Engineering, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Honglin Li
- Shanghai Key Laboratory of New Drug Design, State Key Laboratory of Bioreactor Engineering, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Yufang Xu
- Shanghai Key Laboratory of New Drug Design, State Key Laboratory of Bioreactor Engineering, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| |
Collapse
|
2
|
Progress in the development of small molecular inhibitors of the Bruton's tyrosine kinase (BTK) as a promising cancer therapy. Bioorg Med Chem 2021; 47:116358. [PMID: 34479103 DOI: 10.1016/j.bmc.2021.116358] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 07/24/2021] [Accepted: 07/30/2021] [Indexed: 12/18/2022]
Abstract
Bruton tyrosine kinase (BTK) is a key kinase in the B cell antigen receptor signal transduction pathway, which is involved in the regulation of the proliferation, differentiation and apoptosis of B cells. BTK has become a significant target for the treatment of hematological malignancies and autoimmune diseases. Ibrutinib, the first-generation BTK inhibitor, has made a great contribution to the treatment of B cell malignant tumors, but there are still some problems such as resistance or miss target of site mutation. Therefore, there is an imperative need to develop novel BTK inhibitors to overcome these problems. Besides, proteolysis targeting chimera (PROTAC) technology has been successfully applied to the development of BTK degradation agents, which has opened a fresh way for the BTK targeted treatment. This paper reviews the biological function of BTK, the discovery and development of BTK targeted drugs as a promising cancer therapy. It mainly reviews the binding sites and structural characteristics of BTK, structure-activity relationships, activity and drug resistance of BTK inhibitors, as well as potential treatment strategies to overcome the resistance of BTK, which provides a reference for the rational design and development of new powerful BTK inhibitors.
Collapse
|
3
|
Liu J, Chen C, Wang D, Zhang J, Zhang T. Emerging small-molecule inhibitors of the Bruton's tyrosine kinase (BTK): Current development. Eur J Med Chem 2021; 217:113329. [PMID: 33740548 DOI: 10.1016/j.ejmech.2021.113329] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 02/12/2021] [Accepted: 02/21/2021] [Indexed: 12/29/2022]
Abstract
Therapy based on Bruton's tyrosine kinase (BTK) inhibitors one of the major treatment options currently recommended for lymphoma patients. The first generation of BTK inhibitor, Ibrutinib, achieved remarkable progress in the treatment of B-cell malignancies, but still has problems with drug-resistance or off-target induced serious side effects. Therefore, numerous new BTK inhibitors were developed to address this unmet medical need. In parallel, the effect of BTK inhibitors against immune-related diseases has been evaluated in clinical trials. This review summarizes recent progress in the research and development of BTK inhibitors, with a focus on structural characteristics and structure-activity relationships. The structure-refinement process of representative pharmacophores as well as their effects on binding affinity, biological activity and pharmacokinetics profiles were analyzed. The advantages and disadvantages of reversible/irreversible BTK inhibitors and their potential implications were discussed to provide a reference for the rational design and development of novel potent BTK inhibitors.
Collapse
Affiliation(s)
- Jiakuo Liu
- Pharmaceutical Department, PLA Strategic Support Force Medical Center, No.9 Anxiangbeili Road, Chaoyang District, Beijing, 100101, PR China
| | - Chengjuan Chen
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100050, PR China
| | - Dongmei Wang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100050, PR China
| | - Jie Zhang
- Pharmaceutical Department, PLA Strategic Support Force Medical Center, No.9 Anxiangbeili Road, Chaoyang District, Beijing, 100101, PR China.
| | - Tiantai Zhang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100050, PR China.
| |
Collapse
|
4
|
Li X, Payne DT, Ampolu B, Bland N, Brown JT, Dutton MJ, Fitton CA, Gulliver A, Hale L, Hamza D, Jones G, Lane R, Leach AG, Male L, Merisor EG, Morton MJ, Quy AS, Roberts R, Scarll R, Schulz-Utermoehl T, Stankovic T, Stevenson B, Fossey JS, Agathanggelou A. Derivatisation of parthenolide to address chemoresistant chronic lymphocytic leukaemia. MEDCHEMCOMM 2019; 10:1379-1390. [PMID: 32952998 PMCID: PMC7478165 DOI: 10.1039/c9md00297a] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Accepted: 07/03/2019] [Indexed: 12/13/2022]
Abstract
Parthenolide is a natural product that exhibits anti-leukaemic activity, however, its clinical use is limited by its poor bioavailability. It may be extracted from feverfew and protocols for growing, extracting and derivatising it are reported. A novel parthenolide derivative with good bioavailability and pharmacological properties was identified through a screening cascade based on in vitro anti-leukaemic activity and calculated "drug-likeness" properties, in vitro and in vivo pharmacokinetics studies and hERG liability testing. In vitro studies showed the most promising derivative to have comparable anti-leukaemic activity to DMAPT, a previously described parthenolide derivative. The newly identified compound was shown to have pro-oxidant activity and in silico molecular docking studies indicate a prodrug mode of action. A synthesis scheme is presented for the production of amine 7 used in the generation of 5f.
Collapse
Affiliation(s)
- Xingjian Li
- School of Chemistry, University of Birmingham, Edgbaston, Birmingham, West Midlands B15 2TT, UK.
| | - Daniel T Payne
- School of Chemistry, University of Birmingham, Edgbaston, Birmingham, West Midlands B15 2TT, UK.
| | - Badarinath Ampolu
- Sygnature Discovery, The Discovery Building, BioCity, Pennyfoot Street, Nottingham, NG1 1GR, UK
| | - Nicholas Bland
- Sygnature Discovery, The Discovery Building, BioCity, Pennyfoot Street, Nottingham, NG1 1GR, UK
| | - Jane T Brown
- Sygnature Discovery, The Discovery Building, BioCity, Pennyfoot Street, Nottingham, NG1 1GR, UK
| | - Mark J Dutton
- School of Chemistry, University of Birmingham, Edgbaston, Birmingham, West Midlands B15 2TT, UK.
| | - Catherine A Fitton
- Institute for Cancer and Genomic Sciences, University of Birmingham, Edgbaston, Birmingham, West Midlands B15 2TT, UK.
| | - Abigail Gulliver
- Winterbourne Botanic Garden, University of Birmingham, 58 Edgbaston Park Road, Edgbaston, Birmingham, West Midlands B15 2RT, UK
| | - Lee Hale
- Winterbourne Botanic Garden, University of Birmingham, 58 Edgbaston Park Road, Edgbaston, Birmingham, West Midlands B15 2RT, UK
| | - Daniel Hamza
- Sygnature Discovery, The Discovery Building, BioCity, Pennyfoot Street, Nottingham, NG1 1GR, UK
| | - Geraint Jones
- Sygnature Discovery, The Discovery Building, BioCity, Pennyfoot Street, Nottingham, NG1 1GR, UK
| | - Rebecca Lane
- Sygnature Discovery, The Discovery Building, BioCity, Pennyfoot Street, Nottingham, NG1 1GR, UK
| | - Andrew G Leach
- School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Byrom Street, Liverpool, L3 3AF, UK
| | - Louise Male
- X-Ray Crystallography Facility, School of Chemistry, University of Birmingham, Edgbaston, Birmingham, West Midlands B15 2TT, UK
| | - Elena G Merisor
- Sygnature Discovery, The Discovery Building, BioCity, Pennyfoot Street, Nottingham, NG1 1GR, UK
| | - Michael J Morton
- ApconiX Ltd, Alderly Park, Nether Alderly, Cheshire, SK10 4TG, UK
| | - Alex S Quy
- School of Chemistry, University of Birmingham, Edgbaston, Birmingham, West Midlands B15 2TT, UK.
| | - Ruth Roberts
- ApconiX Ltd, Alderly Park, Nether Alderly, Cheshire, SK10 4TG, UK
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham, West Midlands B15 2TT, UK
| | - Rosanna Scarll
- Institute for Cancer and Genomic Sciences, University of Birmingham, Edgbaston, Birmingham, West Midlands B15 2TT, UK.
| | | | - Tatjana Stankovic
- Institute for Cancer and Genomic Sciences, University of Birmingham, Edgbaston, Birmingham, West Midlands B15 2TT, UK.
| | - Brett Stevenson
- Sygnature Discovery, The Discovery Building, BioCity, Pennyfoot Street, Nottingham, NG1 1GR, UK
| | - John S Fossey
- School of Chemistry, University of Birmingham, Edgbaston, Birmingham, West Midlands B15 2TT, UK.
| | - Angelo Agathanggelou
- Institute for Cancer and Genomic Sciences, University of Birmingham, Edgbaston, Birmingham, West Midlands B15 2TT, UK.
| |
Collapse
|
5
|
Li X, Shi B, Teng Y, Cheng Y, Yang H, Li J, Wang L, He S, You Q, Xiang H. Design, synthesis and biological evaluation of novel 2-phenyl pyrimidine derivatives as potent Bruton's tyrosine kinase (BTK) inhibitors. MEDCHEMCOMM 2019; 10:294-299. [PMID: 30881616 DOI: 10.1039/c8md00413g] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Accepted: 12/23/2018] [Indexed: 12/27/2022]
Abstract
BTK is an effective target for the treatment of B-cell malignant tumors and autoimmune diseases. In this work, a series of 2-phenyl pyrimidine derivatives were prepared and their preliminary in vitro activities on B-cell leukemia cells as well as the BTK enzyme were determined. The results showed that compound 11g displayed the best inhibitory activity on BTK with an inhibition rate of 82.76% at 100 nM and excellent anti-proliferation activity on three B-cell leukemia lines (IC50 = 3.66 μM, 6.98 μM, and 5.39 μM against HL60, Raji and Ramos, respectively). Besides, the flow cytometry analysis results indicated that 11g inhibited the proliferation of the Raji cells in a dose- and time-dependent manner, and blocked the Ramos cells at the G0/G1 phase, which is in accordance with the positive control ibrutinib. The mechanism investigation demonstrated that 11g could inhibit the phosphorylation of BTK and its downstream substrate phospholipase γ2 (PLCγ2). All these results showed that 11g was a promising lead compound that merited further optimization as a novel class of BTK inhibitor for the treatment of B-cell lymphoblastic leukemia.
Collapse
Affiliation(s)
- Xinyu Li
- Jiangsu Key Laboratory of Drug Design and Optimization , China Pharmaceutical University , Nanjing 210009 , China . ; ; Tel: +86 025 83271096
| | - Binyu Shi
- Jiangsu Key Laboratory of Drug Design and Optimization , China Pharmaceutical University , Nanjing 210009 , China . ; ; Tel: +86 025 83271096
| | - Yu Teng
- Jiangsu Key Laboratory of Drug Design and Optimization , China Pharmaceutical University , Nanjing 210009 , China . ; ; Tel: +86 025 83271096
| | - Yu Cheng
- Jiangsu Key Laboratory of Drug Design and Optimization , China Pharmaceutical University , Nanjing 210009 , China . ; ; Tel: +86 025 83271096
| | - Huizhu Yang
- Jiangsu Key Laboratory of Drug Design and Optimization , China Pharmaceutical University , Nanjing 210009 , China . ; ; Tel: +86 025 83271096
| | - Jiurong Li
- Jiangsu Key Laboratory of Drug Design and Optimization , China Pharmaceutical University , Nanjing 210009 , China . ; ; Tel: +86 025 83271096
| | - Lianjian Wang
- Jiangsu Key Laboratory of Drug Design and Optimization , China Pharmaceutical University , Nanjing 210009 , China . ; ; Tel: +86 025 83271096
| | - Siying He
- Jiangsu Key Laboratory of Drug Design and Optimization , China Pharmaceutical University , Nanjing 210009 , China . ; ; Tel: +86 025 83271096
| | - Qidong You
- Jiangsu Key Laboratory of Drug Design and Optimization , China Pharmaceutical University , Nanjing 210009 , China . ; ; Tel: +86 025 83271096
| | - Hua Xiang
- Jiangsu Key Laboratory of Drug Design and Optimization , China Pharmaceutical University , Nanjing 210009 , China . ; ; Tel: +86 025 83271096
| |
Collapse
|