1
|
Załuski M, Karcz T, Drabczyńska A, Vielmuth C, Olejarz-Maciej A, Głuch-Lutwin M, Mordyl B, Siwek A, Satała G, Müller CE, Kieć-Kononowicz K. Xanthine-Dopamine Hybrid Molecules as Multitarget Drugs with Potential for the Treatment of Neurodegenerative Diseases. Biomolecules 2023; 13:1079. [PMID: 37509114 PMCID: PMC10377586 DOI: 10.3390/biom13071079] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 06/28/2023] [Accepted: 06/30/2023] [Indexed: 07/30/2023] Open
Abstract
Multitarget drugs based on a hybrid dopamine-xanthine core were designed as potential drug candidates for the treatment of neurodegenerative diseases. Monoamine oxidase B (MAO-B) inhibitors with significant ancillary A2A adenosine receptor (A2AAR) antagonistic properties were further developed to exhibit additional phosphodiesterase-4 and -10 (PDE4/10) inhibition and/or dopamine D2 receptor (D2R) agonistic activity. While all of the designed compounds showed MAO-B inhibition in the nanomolar range mostly combined with submicromolar A2AAR affinity, significant enhancement of PDE-inhibitory and D2R-agonistic activity was additionally reached for some compounds through various structural modifications. The final multitarget drugs also showed promising antioxidant properties in vitro. In order to evaluate their potential neuroprotective effect, representative ligands were tested in a cellular model of toxin-induced neurotoxicity. As a result, protective effects against oxidative stress in neuroblastoma cells were observed, confirming the utility of the applied strategy. Further evaluation of the newly developed multitarget ligands in preclinical models of Alzheimer's and Parkinson's diseases is warranted.
Collapse
Affiliation(s)
- Michał Załuski
- Department of Technology and Biotechnology of Drugs, Faculty of Pharmacy, Jagiellonian University Medical College, 30-688 Krakow, Poland
| | - Tadeusz Karcz
- Department of Technology and Biotechnology of Drugs, Faculty of Pharmacy, Jagiellonian University Medical College, 30-688 Krakow, Poland
| | - Anna Drabczyńska
- Department of Technology and Biotechnology of Drugs, Faculty of Pharmacy, Jagiellonian University Medical College, 30-688 Krakow, Poland
| | - Christin Vielmuth
- PharmaCenter Bonn, Pharmaceutical Institute, Pharmaceutical & Medicinal Chemistry, University of Bonn, D-53121 Bonn, Germany
| | - Agnieszka Olejarz-Maciej
- Department of Technology and Biotechnology of Drugs, Faculty of Pharmacy, Jagiellonian University Medical College, 30-688 Krakow, Poland
| | - Monika Głuch-Lutwin
- Department of Pharmacobiology, Faculty of Pharmacy, Jagiellonian University Medical College, 30-688 Krakow, Poland
| | - Barbara Mordyl
- Department of Pharmacobiology, Faculty of Pharmacy, Jagiellonian University Medical College, 30-688 Krakow, Poland
| | - Agata Siwek
- Department of Pharmacobiology, Faculty of Pharmacy, Jagiellonian University Medical College, 30-688 Krakow, Poland
| | - Grzegorz Satała
- Department of Medicinal Chemistry, Maj Institute of Pharmacology, Polish Academy of Sciences, 31-343 Krakow, Poland
| | - Christa E Müller
- PharmaCenter Bonn, Pharmaceutical Institute, Pharmaceutical & Medicinal Chemistry, University of Bonn, D-53121 Bonn, Germany
| | - Katarzyna Kieć-Kononowicz
- Department of Technology and Biotechnology of Drugs, Faculty of Pharmacy, Jagiellonian University Medical College, 30-688 Krakow, Poland
| |
Collapse
|
2
|
New Triazine Derivatives as Serotonin 5-HT 6 Receptor Ligands. Molecules 2023; 28:molecules28031108. [PMID: 36770774 PMCID: PMC9919591 DOI: 10.3390/molecules28031108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 01/18/2023] [Accepted: 01/19/2023] [Indexed: 01/24/2023] Open
Abstract
Since the number of people with Alzheimer's disease (AD) continues to rise, new and effective drugs are urgently needed to not only slow down the progression of the disease, but to stop or even prevent its development. Serotonin 5-HT6 receptor (5-HT6R) ligands are still a promising therapeutic target for the treatment of AD. 1,3,5-Triazine derivatives, as novel structures lacking an indole or a sulfone moiety, have proven to be potent ligands for this receptor. In present work, new derivatives of the compound MST4 (4-((2-isopropyl-5-methylphenoxy)methyl)-6-(4-methylpiperazin-1-yl)-1,3,5-triazin-2-amine), the potent 5-HT6R antagonist (Ki = 11 nM) with promising ADMET and in vivo properties, were designed. The synthesized compounds were tested for their affinity towards 5-HT6R and other receptor (off)targets (serotonin 5-HT2A, 5-HT7 and dopamine D2). Based on the new results, 4-(2-tert-butylphenoxy)-6-(4-methylpiperazin-1-yl)-1,3,5-triazin-2-amine (3) was selected for extended in vitro studies as a potent and selective 5-HT6R ligand (Ki = 13 nM). Its ability to permeate the blood-brain barrier (BBB) and its hepatotoxicity were evaluated. In addition, X-ray crystallography and solubility studies were also performed. The results obtained confirm that 6-(4-methylpiperazin-1-yl)-1,3,5-triazin-2-amine derivatives, especially compound 3, are promising structures for further pharmacological studies as 5-HT6R ligands.
Collapse
|
3
|
Muzychka LV, Verves EV, Yaremchuk IO, Zinchenko AM, Shishkina SV, Semenyuta IV, Hodyna DM, Metelytsia LO, Kovalishyn V, Smolii OB. Synthesis, QSAR modeling, and molecular docking of novel fused 7-deazaxanthine derivatives as adenosine A 2A receptor antagonists. Chem Biol Drug Des 2022; 100:1025-1032. [PMID: 34651417 DOI: 10.1111/cbdd.13975] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 09/21/2021] [Accepted: 10/10/2021] [Indexed: 01/25/2023]
Abstract
Predictive QSAR models for the search of new adenosine A2A receptor antagonists were developed by using OCHEM platform. The predictive ability of the regression models has coefficient of determination q2 = 0.65-0.71 with cross-validation and independent test set. The inhibition activities of novel fused 7-deazaxanthine compounds were predicted by the developed QSAR models. A preparative method for the synthesis of pyrimido[5',4':4,5]pyrrolo[1,2-a][1,4]diazepine derivatives was developed, and 11 new adenosine A2A receptor antagonists were obtained. Preliminary investigations into the toxicology of fused 7-deazaxanthine compounds toward commonly used model organism to assess toxicity invertebrate cladoceran D. magna were also described.
Collapse
Affiliation(s)
- Liubov V Muzychka
- Department of Chemistry of Natural Compounds, V.P. Kukhar Institute of Bioorganic Chemistry and Petrochemistry, NAS of Ukraine, Kyiv, Ukraine
| | - Evgenii V Verves
- Department of Chemistry of Natural Compounds, V.P. Kukhar Institute of Bioorganic Chemistry and Petrochemistry, NAS of Ukraine, Kyiv, Ukraine.,Enamine Ltd, Kyiv, Ukraine
| | - Iryna O Yaremchuk
- Department of Chemistry of Natural Compounds, V.P. Kukhar Institute of Bioorganic Chemistry and Petrochemistry, NAS of Ukraine, Kyiv, Ukraine
| | - Anna M Zinchenko
- Department of Chemistry of Natural Compounds, V.P. Kukhar Institute of Bioorganic Chemistry and Petrochemistry, NAS of Ukraine, Kyiv, Ukraine
| | - Svitlana V Shishkina
- Department of X-ray Diffraction Studies and Quantum Chemistry, STC "Institute for Single Crystals", NAS of Ukraine, Kharkiv, Ukraine
| | - Ivan V Semenyuta
- Department of Medical and Biological Researches, V.P. Kukhar Institute of Bioorganic Chemistry and Petrochemistry, NAS of Ukraine, Kyiv, Ukraine
| | - Diana M Hodyna
- Department of Medical and Biological Researches, V.P. Kukhar Institute of Bioorganic Chemistry and Petrochemistry, NAS of Ukraine, Kyiv, Ukraine
| | - Larysa O Metelytsia
- Department of Medical and Biological Researches, V.P. Kukhar Institute of Bioorganic Chemistry and Petrochemistry, NAS of Ukraine, Kyiv, Ukraine
| | - Vasyl Kovalishyn
- Department of Medical and Biological Researches, V.P. Kukhar Institute of Bioorganic Chemistry and Petrochemistry, NAS of Ukraine, Kyiv, Ukraine
| | - Oleg B Smolii
- Department of Chemistry of Natural Compounds, V.P. Kukhar Institute of Bioorganic Chemistry and Petrochemistry, NAS of Ukraine, Kyiv, Ukraine
| |
Collapse
|
4
|
Di Matteo P, Bortolami M, Feroci M, Scarano V, Petrucci R. Electrochemical Transformations of Methylxanthines in Non‐Aqueous Medium. ChemElectroChem 2021. [DOI: 10.1002/celc.202100320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Paola Di Matteo
- Department of Chemical Engineering Materials Environment Sapienza University of Rome Via Eudossiana 18 00184 Rome Italy
| | - Martina Bortolami
- Department of Basic and Applied Sciences for Engineering Sapienza University of Rome Via del Castro Laurenziano 7 00161 Rome Italy
| | - Marta Feroci
- Department of Basic and Applied Sciences for Engineering Sapienza University of Rome Via del Castro Laurenziano 7 00161 Rome Italy
| | - Vincenzo Scarano
- Department of Basic and Applied Sciences for Engineering Sapienza University of Rome Via del Castro Laurenziano 7 00161 Rome Italy
| | - Rita Petrucci
- Department of Basic and Applied Sciences for Engineering Sapienza University of Rome Via del Castro Laurenziano 7 00161 Rome Italy
| |
Collapse
|
5
|
Petrucci R, Feroci M, Mattiello L, Chiarotto I. Xanthine Scaffold: Available Synthesis Routes to Deliver Diversity by Derivatization. MINI-REV ORG CHEM 2021. [DOI: 10.2174/1570193x17999200507103141] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The functionalization of the skeletal systems of heterocycles represents a significant goal
for the development of new compounds. The heterocyclic molecule xanthine (3,7-dihydro-1Hpurine-
2,6-dione) is a purine base with a bicyclic ring skeleton and four different nitrogen atoms,
three of them are -NH groups. The principal derivatives are the well known natural methylxanthines
(e.g., caffeine, theophylline and theobromine) that have prominent physiological effects at a very low
dose. The natural methylated xanthines, theophylline, theobromine and caffeine, are present in different
plants such as the tea, cocoa and coffee species. For this reason natural xanthines can be considered
as bio-based and renewable starting materials; their use in organic synthesis is strongly recommended
in order to carry out sustainable chemistry. Essentially, the xanthine scaffold led to the
preparation of numerous compounds very attractive in the pharmaceutical field, and these drugs are
commercialized for a wide range of biological activities. The scope of this mini-review is to consider
the use of natural xanthines as starting material in chemical transformations carried out in organic
solvents, without the intent to be exhaustive of all the synthetically chemical applications. More information
on the chemical and electrochemical reactivity of this structural core in an organic solvent
can be useful for the scientific community. The effectiveness of natural xanthines can be improved
by modifying the structures of these already biologically active compounds.
Collapse
Affiliation(s)
- Rita Petrucci
- Dept. Basic and Applied Sciences for Engineering (SBAI), Sapienza University of Rome, via del Castro Laurenziano, 7, 00161, Rome, Italy
| | - Marta Feroci
- Dept. Basic and Applied Sciences for Engineering (SBAI), Sapienza University of Rome, via del Castro Laurenziano, 7, 00161, Rome, Italy
| | - Leonardo Mattiello
- Dept. Basic and Applied Sciences for Engineering (SBAI), Sapienza University of Rome, via del Castro Laurenziano, 7, 00161, Rome, Italy
| | - Isabella Chiarotto
- Dept. Basic and Applied Sciences for Engineering (SBAI), Sapienza University of Rome, via del Castro Laurenziano, 7, 00161, Rome, Italy
| |
Collapse
|
6
|
Załuski M, Schabikowski J, Jaśko P, Bryła A, Olejarz-Maciej A, Kaleta M, Głuch-Lutwin M, Brockmann A, Hinz S, Zygmunt M, Kuder K, Latacz G, Vielmuth C, Müller CE, Kieć-Kononowicz K. 8-Benzylaminoxanthine scaffold variations for selective ligands acting on adenosine A 2A receptors. Design, synthesis and biological evaluation. Bioorg Chem 2020; 101:104033. [PMID: 32629282 DOI: 10.1016/j.bioorg.2020.104033] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 06/01/2020] [Accepted: 06/15/2020] [Indexed: 11/24/2022]
Abstract
A library of 34 novel compounds based on a xanthine scaffold was explored in biological studies for interaction with adenosine receptors (ARs). Structural modifications of the xanthine core were introduced in the 8-position (benzylamino and benzyloxy substitution) as well as at N1, N3, and N7 (small alkyl residues), thereby improving affinity and selectivity for the A2A AR. The compounds were characterized by radioligand binding assays, and our study resulted in the development of the potent A2A AR ligands including 8-((6-chloro-2-fluoro-3-methoxybenzyl)amino)-1-ethyl-3,7-dimethyl-3,7-dihydro-1H-purine-2,6-dione (12d; Ki human A2AAR: 68.5 nM) and 8-((2-chlorobenzyl)amino)-1-ethyl-3,7-dimethyl-3,7-dihydro-1H-purine-2,6-dione (12h; Ki human A2AAR: 71.1 nM). Moreover, dual A1/A2AAR ligands were identified in the group of 1,3-diethyl-7-methylxanthine derivatives. Compound 14b displayed Ki values of 52.2 nM for the A1AR and 167 nM for the A2AAR. Selected A2AAR ligands were further evaluated as inactive for inhibition of monoamine oxidase A, B and isoforms of phosphodiesterase-4B1, -10A, which represent classical targets for xanthine derivatives. Therefore, the developed 8-benzylaminoxanthine scaffold seems to be highly selective for AR activity and relevant for potent and selective A2A ligands. Compound 12d with high selectivity for ARs, especially for the A2AAR subtype, evaluated in animal models of inflammation has shown anti-inflammatory activity. Investigated compounds were found to display high selectivity and may therefore be of high interest for further development as drugs for treating cancer or neurodegenerative diseases.
Collapse
Affiliation(s)
- Michał Załuski
- Department of Technology and Biotechnology of Drugs, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30688 Kraków, Poland
| | - Jakub Schabikowski
- Department of Technology and Biotechnology of Drugs, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30688 Kraków, Poland
| | - Piotr Jaśko
- Department of Pharmacodynamics, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30688 Kraków, Poland
| | - Adrian Bryła
- Department of Pharmacodynamics, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30688 Kraków, Poland
| | - Agnieszka Olejarz-Maciej
- Department of Technology and Biotechnology of Drugs, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30688 Kraków, Poland
| | - Maria Kaleta
- Department of Technology and Biotechnology of Drugs, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30688 Kraków, Poland
| | - Monika Głuch-Lutwin
- Department of Pharmacobiology, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30688 Kraków, Poland
| | - Andreas Brockmann
- PharmaCenter Bonn, Pharmaceutical Institute, Pharmaceutical & Medicinal Chemistry, University of Bonn, An der Immenburg 4, 53121 Bonn, Germany
| | - Sonja Hinz
- PharmaCenter Bonn, Pharmaceutical Institute, Pharmaceutical & Medicinal Chemistry, University of Bonn, An der Immenburg 4, 53121 Bonn, Germany
| | - Małgorzata Zygmunt
- Department of Pharmacodynamics, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30688 Kraków, Poland
| | - Kamil Kuder
- Department of Technology and Biotechnology of Drugs, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30688 Kraków, Poland
| | - Gniewomir Latacz
- Department of Technology and Biotechnology of Drugs, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30688 Kraków, Poland
| | - Christin Vielmuth
- PharmaCenter Bonn, Pharmaceutical Institute, Pharmaceutical & Medicinal Chemistry, University of Bonn, An der Immenburg 4, 53121 Bonn, Germany
| | - Christa E Müller
- PharmaCenter Bonn, Pharmaceutical Institute, Pharmaceutical & Medicinal Chemistry, University of Bonn, An der Immenburg 4, 53121 Bonn, Germany
| | - Katarzyna Kieć-Kononowicz
- Department of Technology and Biotechnology of Drugs, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30688 Kraków, Poland.
| |
Collapse
|
7
|
Kuder KJ, Załuski M, Schabikowski J, Latacz G, Olejarz‐Maciej A, Jaśko P, Doroz‐Płonka A, Brockmann A, Müller CE, Kieć‐Kononowicz K. Novel, Dual Target‐Directed Annelated Xanthine Derivatives Acting on Adenosine Receptors and Monoamine Oxidase B. ChemMedChem 2020; 15:772-786. [DOI: 10.1002/cmdc.201900717] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 03/04/2020] [Indexed: 01/12/2023]
Affiliation(s)
- Kamil J. Kuder
- Department of Technology and Biotechnology of DrugsJagiellonian University Medical College Medyczna 9 30-688 Kraków Poland
| | - Michał Załuski
- Department of Technology and Biotechnology of DrugsJagiellonian University Medical College Medyczna 9 30-688 Kraków Poland
| | - Jakub Schabikowski
- Department of Technology and Biotechnology of DrugsJagiellonian University Medical College Medyczna 9 30-688 Kraków Poland
| | - Gniewomir Latacz
- Department of Technology and Biotechnology of DrugsJagiellonian University Medical College Medyczna 9 30-688 Kraków Poland
| | - Agnieszka Olejarz‐Maciej
- Department of Technology and Biotechnology of DrugsJagiellonian University Medical College Medyczna 9 30-688 Kraków Poland
| | - Piotr Jaśko
- Department of Technology and Biotechnology of DrugsJagiellonian University Medical College Medyczna 9 30-688 Kraków Poland
| | - Agata Doroz‐Płonka
- Department of Technology and Biotechnology of DrugsJagiellonian University Medical College Medyczna 9 30-688 Kraków Poland
| | - Andreas Brockmann
- PharmaCenter Bonn, Pharmaceutical InstitutePharmaceutical Chemistry University of Bonn An der Immenburg 4 53121 Bonn Germany
| | - Christa E. Müller
- PharmaCenter Bonn, Pharmaceutical InstitutePharmaceutical Chemistry University of Bonn An der Immenburg 4 53121 Bonn Germany
| | - Katarzyna Kieć‐Kononowicz
- Department of Technology and Biotechnology of DrugsJagiellonian University Medical College Medyczna 9 30-688 Kraków Poland
| |
Collapse
|
8
|
Abstract
Controlled potential electrolyses of caffeine (CAF) were carried out at a Pt electrode in undried acetonitrile (ACN) and ACN-H2O and the products of the anodic oxidation were analyzed by HPLC-PDA-ESI-MS/MS. A higher current efficiency occurred in ACN-H2O, but an analogous chromatographic outline was found in both media, evidencing a reactive pathway of the electrogenerated radical cation CAF•+ with water, added or in trace, as nucleophile. No dimeric forms were evidenced, excluding any coupling reactions. Neither was 1,3,7-trimethyluric acid found, reported in the literature as the main oxidative route for CAF in water. Four main chromatographic peaks were evidenced, assigned to four proposed structures on the base of chromatographic and spectral data: a 4,5-diol derivative and an oxazolidin-2-one derivative were assigned as principal oxidation products, supporting a mechanism proposed in a previous work for the primary anodic oxidation of the methylxanthines olefinic C4 = C5 bond. Two highly polar degradation products were also tentatively assigned, that seemed generating along two different pathways, one opening the imidazolic moiety and another one opening the purinic one.
Collapse
|