1
|
Zhang G, Zhao S, Zhao Z, Jia C, Zhang Y, Xue J, Liu Y, Yang W. Synthesis and Evaluation of 18F-Labeled Phenylpiperazine-like Dopamine D3 Receptor Radioligands for Positron Emission Tomography Imaging. ACS Chem Neurosci 2024; 15:3459-3472. [PMID: 39276340 DOI: 10.1021/acschemneuro.4c00177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/17/2024] Open
Abstract
The dopamine D3 receptor (D3R) is important in the pathophysiology of various neuropsychiatric disorders, such as depression, bipolar disorder, schizophrenia, drug addiction, and Parkinson's disease. Positron emission tomography (PET) with innovative radioligands provides an opportunity to assess D3R in vivo and to elucidate D3R-related disease mechanisms. Herein, we present the synthesis of eight 18F-labeled phenylpiperazine-like D3R-selective radioligands possessing good radiochemical purity (>97%), in vitro stability (>95%), and befitting lipophilicity. Based on in vitro binding assays and static microPET studies, the phenylpiperazine-like radioligands [18F]FBPC01 and [18F]FBPC03 were chosen as lead radioligands targeting D3R. Molecular docking further elucidated their binding mechanism. Radiolabeling conditions were optimized and then applied to an automated radiolabeling process, affording products with high specific activity (>112 GBq/μmol). Dynamic rat PET study demonstrated the specific binding of [18F]FBPC01 and [18F]FBPC03 to D3R in the brain ventricles and the pituitary gland. Validated by dynamic PET data analysis, biodistribution study, and metabolism analysis, [18F]FBPC03 exhibited the highest PET signal-to-noise ratio, good D3R-specific binding in the brain ventricles and pituitary gland of rats with few off-target binding, negligible defluorination, and stable brain metabolism, which indicated that [18F]FBPC03 was a promising D3R radioligand.
Collapse
Affiliation(s)
- Ge Zhang
- Beijing Engineering Research Center of Radiographic Techniques and Equipment, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 10049, China
| | - Shilun Zhao
- Beijing Engineering Research Center of Radiographic Techniques and Equipment, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
- School of Nuclear Science and Technology, University of Chinese Academy of Sciences, Beijing 10049, China
| | - Zuoquan Zhao
- Theranostics and Translational Research Center, Institute of Clinical Medicine, Department of Nuclear Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100730, China
| | - Chenhao Jia
- Theranostics and Translational Research Center, Institute of Clinical Medicine, Department of Nuclear Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100730, China
| | - Yuxuan Zhang
- Jinan Laboratory of Applied Nuclear Science, Jinan 251401, China
| | - Jingquan Xue
- Beijing Engineering Research Center of Radiographic Techniques and Equipment, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
- Jinan Laboratory of Applied Nuclear Science, Jinan 251401, China
| | - Yu Liu
- Beijing Engineering Research Center of Radiographic Techniques and Equipment, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
- School of Nuclear Science and Technology, University of Chinese Academy of Sciences, Beijing 10049, China
- Jinan Laboratory of Applied Nuclear Science, Jinan 251401, China
| | - Wenjiang Yang
- Beijing Engineering Research Center of Radiographic Techniques and Equipment, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
- Jinan Laboratory of Applied Nuclear Science, Jinan 251401, China
| |
Collapse
|
2
|
Ji L, Fang Y, Tang J, Liu C, Huang C, Hu Q, Li Q, Chen Z. Synthesis and biological evaluation of 18F-labelled dopamine D 3 receptor selective ligands. Bioorg Med Chem Lett 2022; 62:128630. [PMID: 35182773 DOI: 10.1016/j.bmcl.2022.128630] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 02/13/2022] [Accepted: 02/14/2022] [Indexed: 12/29/2022]
Abstract
The dopamine D3 receptor (D3R) is highly expressed in the limbic regions of the brain and closely related to a variety of neurological disorders including Parkinson's disease, schizophrenia and drug-seeking behavior. In vivo imaging of D3R with radio-labelled tracers and positron emission tomography (PET) has become a powerful technique in related disorders. In this study, we synthesized three novel aromatically 18F-labelled phenylpiperazine-like D3R selective radioactive ligands ([18F]5b, [18F]8b and [18F]11b) and developed a simple, rapid and efficient 18F-labelling method by condition optimization. Radiosynthesis of [18F]5b, [18F]8b and [18F]11b was achieved by 18F-fluorination from nitroarene precursors. Final radiochemical purities of [18F]5b, [18F]8b and [18F]11b solution were > 99% and remained good stability (> 98% for up to 6 h) in PBS and FBS. PET imaging and cellular binding studies revealed that [18F]8b had a higher D3R affinity than [18F]5b and [18F]11b. Autoradiography and biodistribution studies of the brain showed that [18F]8b had medium intensity specific accumulation in the striatum and cortex. Meanwhile, the low skeletal uptake of [18F]8b revealed a good in vivo stability with negligible defluorination. These results indicated that [18F]8b might be a potential 18F-labelled D3R PET imaging agent.
Collapse
Affiliation(s)
- Linyang Ji
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, School of Pharmacy, Xuzhou Medical University, Xuzhou 221004, China
| | - Yi Fang
- NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi 214063, China
| | - Jie Tang
- NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi 214063, China
| | - Chunyi Liu
- NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi 214063, China
| | - Caiyun Huang
- School of Pharmaceutical Science, Inner Mongolia Medical University, Hohhot 010110, China
| | - Qianyue Hu
- Department of Radiopharmaceuticals, School of Pharmacy, Nanjing Medical University, Nanjing 211166, China
| | - Qingming Li
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, School of Pharmacy, Xuzhou Medical University, Xuzhou 221004, China
| | - Zhengping Chen
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, School of Pharmacy, Xuzhou Medical University, Xuzhou 221004, China; NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi 214063, China.
| |
Collapse
|
3
|
Kilbourn MR. 11C- and 18F-Radiotracers for In Vivo Imaging of the Dopamine System: Past, Present and Future. Biomedicines 2021; 9:108. [PMID: 33499179 PMCID: PMC7912183 DOI: 10.3390/biomedicines9020108] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 01/17/2021] [Accepted: 01/19/2021] [Indexed: 12/17/2022] Open
Abstract
The applications of positron emission tomography (PET) imaging to study brain biochemistry, and in particular the aspects of dopamine neurotransmission, have grown significantly over the 40 years since the first successful in vivo imaging studies in humans. In vivo PET imaging of dopaminergic functions of the central nervous system (CNS) including dopamine synthesis, vesicular storage, synaptic release and receptor binding, and reuptake processes, are now routinely used for studies in neurology, psychiatry, drug abuse and addiction, and drug development. Underlying these advances in PET imaging has been the development of the unique radiotracers labeled with positron-emitting radionuclides such as carbon-11 and fluorine-18. This review focuses on a selection of the more accepted and utilized PET radiotracers currently available, with a look at their past, present and future.
Collapse
Affiliation(s)
- Michael R Kilbourn
- Department of Radiology, University of Michigan Medical School, Ann Arbor, MI 48105, USA
| |
Collapse
|
4
|
Liow JS, Morse CL, Lu S, Frankland M, Tye GL, Zoghbi SS, Gladding RL, Shaik AB, Innis RB, Newman AH, Pike VW. [ O- methyl- 11C] N-(4-(4-(3-Chloro-2-methoxyphenyl)-piperazin-1-yl)butyl)-1 H-indole-2-carboxamide ([ 11C]BAK4-51) Is an Efflux Transporter Substrate and Ineffective for PET Imaging of Brain D₃ Receptors in Rodents and Monkey. Molecules 2018; 23:molecules23112737. [PMID: 30360553 PMCID: PMC6278341 DOI: 10.3390/molecules23112737] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Revised: 10/15/2018] [Accepted: 10/18/2018] [Indexed: 11/16/2022] Open
Abstract
Selective high-affinity antagonists for the dopamine D₃ receptor (D₃R) are sought for treating substance use disorders. Positron emission tomography (PET) with an effective D₃R radioligand could be a useful tool for the development of such therapeutics by elucidating pharmacological specificity and target engagement in vivo. Currently, a D₃R-selective radioligand does not exist. The D₃R ligand, N-(4-(4-(3-chloro-2-methoxyphenyl)piperazin-1-yl)butyl)-1H-indole-2-carboxamide (BAK4-51, 1), has attractive properties for PET radioligand development, including full antagonist activity, very high D₃R affinity, D₃R selectivity, and moderate lipophilicity. We labeled 1 with the positron-emitter carbon-11 (t1/2 = 20.4 min) in the methoxy group for evaluation as a radioligand in animals with PET. However, [11C]1 was found to be an avid substrate for brain efflux transporters and lacked D₃R-specific signal in rodent and monkey brain in vivo.
Collapse
Affiliation(s)
- Jeih-San Liow
- Molecular Imaging Branch, National Institute of Mental Health, National Institutes of Health, Room B3C346, 10 Center Drive, Bethesda, MD 20892, USA.
| | - Cheryl L Morse
- Molecular Imaging Branch, National Institute of Mental Health, National Institutes of Health, Room B3C346, 10 Center Drive, Bethesda, MD 20892, USA.
| | - Shuiyu Lu
- Molecular Imaging Branch, National Institute of Mental Health, National Institutes of Health, Room B3C346, 10 Center Drive, Bethesda, MD 20892, USA.
| | - Michael Frankland
- Molecular Imaging Branch, National Institute of Mental Health, National Institutes of Health, Room B3C346, 10 Center Drive, Bethesda, MD 20892, USA.
| | - George L Tye
- Molecular Imaging Branch, National Institute of Mental Health, National Institutes of Health, Room B3C346, 10 Center Drive, Bethesda, MD 20892, USA.
| | - Sami S Zoghbi
- Molecular Imaging Branch, National Institute of Mental Health, National Institutes of Health, Room B3C346, 10 Center Drive, Bethesda, MD 20892, USA.
| | - Robert L Gladding
- Molecular Imaging Branch, National Institute of Mental Health, National Institutes of Health, Room B3C346, 10 Center Drive, Bethesda, MD 20892, USA.
| | - Anver B Shaik
- Medicinal Chemistry Section, Molecular Targets and Medications Discovery Branch, National Institute on Drug Abuse, National Institutes of Health, 333 Cassell Drive, Baltimore, MD 21224, USA.
| | - Robert B Innis
- Molecular Imaging Branch, National Institute of Mental Health, National Institutes of Health, Room B3C346, 10 Center Drive, Bethesda, MD 20892, USA.
| | - Amy H Newman
- Medicinal Chemistry Section, Molecular Targets and Medications Discovery Branch, National Institute on Drug Abuse, National Institutes of Health, 333 Cassell Drive, Baltimore, MD 21224, USA.
| | - Victor W Pike
- Molecular Imaging Branch, National Institute of Mental Health, National Institutes of Health, Room B3C346, 10 Center Drive, Bethesda, MD 20892, USA.
| |
Collapse
|