1
|
Gao R, Li W, Xu J, Guo J, Wang R, Zhang S, Zheng X, Wang J. Characteristics of Subtype and Molecular Transmission Networks among Newly Diagnosed HIV-1 Infections in Patients Residing in Taiyuan City, Shanxi Province, China, from 2021 to 2023. Viruses 2024; 16:1174. [PMID: 39066336 PMCID: PMC11281631 DOI: 10.3390/v16071174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Revised: 07/18/2024] [Accepted: 07/19/2024] [Indexed: 07/28/2024] Open
Abstract
The HIV-1 pandemic, spanning four decades, presents a significant challenge to global public health. This study aimed to understand the molecular transmission characteristics of newly reported HIV infections in Taiyuan, Shanxi Province, China, to analyze the characteristics of subtypes and the risk factors of the transmission network, providing a scientific basis for precise prevention and intervention measures. A total of 720 samples were collected from newly diagnosed HIV-1 patients residing in Taiyuan between 2021 and 2023. Sequencing of partial genes of the HIV-1 pol gene resulted in multiple sequence acquisitions and was conducted to analyze their subtypes and molecular transmission networks. Out of the samples, 584 pol sequences were obtained, revealing 17 HIV-1 subtypes, with CRF07_BC (48.29%), CRF01_AE (31.34%), and CRF79_0107 (7.19%) being the dominant subtypes. Using a genetic distance threshold of 1.5%, 49 molecular transmission clusters were generated from the 313 pol gene sequences. Univariate analysis showed significant differences in the HIV transmission molecular network in terms of HIV subtype and household registration (p < 0.05). Multivariate logistic regression analysis showed that CRF79_0107 subtype and its migrants were associated with higher proportions of sequences in the HIV transmission network. These findings provide a scientific foundation for the development of localized HIV-specific intervention strategies.
Collapse
Affiliation(s)
- Ruihong Gao
- Academy of Medical Sciences, Shanxi Medical University, 56 Xinjian South Road, Taiyuan 030001, Shanxi, China;
- School of Public Health, Shanxi Medical University, 56 Xinjian South Road, Taiyuan 030001, Shanxi, China
- Taiyuan Center for Disease Control and Prevention, No. 22, Huazhang West Street, Xiaodian District, Taiyuan 030012, Shanxi, China; (J.X.); (J.G.); (R.W.); (S.Z.); (X.Z.)
| | - Wentong Li
- Academy of Medical Sciences, Shanxi Medical University, 56 Xinjian South Road, Taiyuan 030001, Shanxi, China;
- School of Public Health, Shanxi Medical University, 56 Xinjian South Road, Taiyuan 030001, Shanxi, China
- Taiyuan Center for Disease Control and Prevention, No. 22, Huazhang West Street, Xiaodian District, Taiyuan 030012, Shanxi, China; (J.X.); (J.G.); (R.W.); (S.Z.); (X.Z.)
| | - Jihong Xu
- Taiyuan Center for Disease Control and Prevention, No. 22, Huazhang West Street, Xiaodian District, Taiyuan 030012, Shanxi, China; (J.X.); (J.G.); (R.W.); (S.Z.); (X.Z.)
| | - Jiane Guo
- Taiyuan Center for Disease Control and Prevention, No. 22, Huazhang West Street, Xiaodian District, Taiyuan 030012, Shanxi, China; (J.X.); (J.G.); (R.W.); (S.Z.); (X.Z.)
| | - Rui Wang
- Taiyuan Center for Disease Control and Prevention, No. 22, Huazhang West Street, Xiaodian District, Taiyuan 030012, Shanxi, China; (J.X.); (J.G.); (R.W.); (S.Z.); (X.Z.)
| | - Shuting Zhang
- Taiyuan Center for Disease Control and Prevention, No. 22, Huazhang West Street, Xiaodian District, Taiyuan 030012, Shanxi, China; (J.X.); (J.G.); (R.W.); (S.Z.); (X.Z.)
| | - Xiaonan Zheng
- Taiyuan Center for Disease Control and Prevention, No. 22, Huazhang West Street, Xiaodian District, Taiyuan 030012, Shanxi, China; (J.X.); (J.G.); (R.W.); (S.Z.); (X.Z.)
| | - Jitao Wang
- School of Public Health, Shanxi Medical University, 56 Xinjian South Road, Taiyuan 030001, Shanxi, China
- Taiyuan Center for Disease Control and Prevention, No. 22, Huazhang West Street, Xiaodian District, Taiyuan 030012, Shanxi, China; (J.X.); (J.G.); (R.W.); (S.Z.); (X.Z.)
| |
Collapse
|
2
|
da Costa APL, Cardoso FJB, Molfetta FAD. An in silico molecular modeling approach of halolactone derivatives as potential inhibitors for human immunodeficiency virus type-1 reverse transcriptase enzyme. J Biomol Struct Dyn 2023; 41:1715-1729. [PMID: 34996334 DOI: 10.1080/07391102.2021.2024256] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Acquired Immune Deficiency Syndrome (AIDS) is an infectious disease caused by Human Immunodeficiency Virus (HIV) infection and its replication requires the Reverse Transcriptase (RT) enzyme. RT plays a key role in the HIV life cycle, making it one of the most important targets for designing new drugs. Thus, in order to increase therapeutic options against AIDS, halolactone derivatives (D-halolactone) that have been showed as potential non-nucleoside inhibitors of the RT enzyme were studied. In the present work, a series of D-halolactone were investigated by molecular modeling studies, combining Three-dimensional Quantitative Structure-Activity Relationship (3 D-QSAR), molecular docking and Molecular Dynamics (MD) techniques, to understand the molecular characteristics that promote biological activity. The internal and external validation parameters indicated that the 3 D-QSAR model has good predictive capacity and statistical significance. Contour maps provided useful information on the structural characteristics of compounds for anti-HIV-1 activity. The docking results showed that D-halolactone present good complementarity by the RT allosteric site. In MD simulations it was observed that the formation of enzyme-ligand complexes were favorable, and from the free energy decomposition it was found that Leu100, Val106, Tyr181, Try188, and Trp229 are key residues for stabilization in the enzymatic site. Thus, the results showed that the proposed models can be used to design promising HIV-1 RT inhibitors. Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Ana Paula Lima da Costa
- Laboratório de Modelagem Molecular, Instituto de Ciências Exatas e Naturais, Universidade Federal do Pará, Belém, Pará, Brazil
| | - Fábio José Bonfim Cardoso
- Laboratório de Modelagem Molecular, Instituto de Ciências Exatas e Naturais, Universidade Federal do Pará, Belém, Pará, Brazil
| | - Fábio Alberto de Molfetta
- Laboratório de Modelagem Molecular, Instituto de Ciências Exatas e Naturais, Universidade Federal do Pará, Belém, Pará, Brazil
| |
Collapse
|
3
|
Yin H, Chen X, Fu X, Ma Y, Xu Y, Zhang T, Liang S, Du S, Qi Y, Wang K. Efficient Chemical Synthesis and Oxidative Folding Studies of Scorpion Toxin Peptide WaTx. ACTA CHIMICA SINICA 2022. [DOI: 10.6023/a21120580] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
4
|
Huhmann S, Nyakatura EK, Rohrhofer A, Moschner J, Schmidt B, Eichler J, Roth C, Koksch B. Systematic Evaluation of Fluorination as Modification for Peptide-Based Fusion Inhibitors against HIV-1 Infection. Chembiochem 2021; 22:3443-3451. [PMID: 34605595 PMCID: PMC9297971 DOI: 10.1002/cbic.202100417] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Revised: 10/04/2021] [Indexed: 01/01/2023]
Abstract
With the emergence of novel viruses, the development of new antivirals is more urgent than ever. A key step in human immunodeficiency virus type 1 (HIV-1) infection is six-helix bundle formation within the envelope protein subunit gp41. Selective disruption of bundle formation by peptides has been shown to be effective; however, these drugs, exemplified by T20, are prone to rapid clearance from the patient. The incorporation of non-natural amino acids is known to improve these pharmacokinetic properties. Here, we evaluate a peptide inhibitor in which a critical Ile residue is replaced by fluorinated analogues. We characterized the influence of the fluorinated analogues on the biophysical properties of the peptide. Furthermore, we show that the fluorinated peptides can block HIV-1 infection of target cells at nanomolar levels. These findings demonstrate that fluorinated amino acids are appropriate tools for the development of novel peptide therapeutics.
Collapse
Affiliation(s)
- Susanne Huhmann
- Freie Universität BerlinDepartment of Biology, Chemistry and PharmacyInstitute of Chemistry and BiochemistryArnimallee 2014195BerlinGermany
| | - Elisabeth K. Nyakatura
- Freie Universität BerlinDepartment of Biology, Chemistry and PharmacyInstitute of Chemistry and BiochemistryArnimallee 2014195BerlinGermany
- Antibody Engineering Tri-Institutional Therapeutics Discovery Institute417 East 68th Street, 19 Floor North, P: 646-888-2003New YorkNY 10021USA
| | - Anette Rohrhofer
- Institute of Clinical Microbiology and HygieneRegensburg University HospitalFranz-Josef-Strauß-Allee 1193053RegensburgGermany
| | - Johann Moschner
- Freie Universität BerlinDepartment of Biology, Chemistry and PharmacyInstitute of Chemistry and BiochemistryArnimallee 2014195BerlinGermany
| | - Barbara Schmidt
- Institute of Clinical Microbiology and HygieneRegensburg University HospitalFranz-Josef-Strauß-Allee 1193053RegensburgGermany
| | - Jutta Eichler
- Friedrich-Alexander-Universität Erlangen-NürnbergDepartment Chemie und PharmazieNikolaus-Fiebiger-Str. 1091058ErlangenGermany
| | - Christian Roth
- Max Planck Institute of Colloids and InterfacesBiomolecular SystemsArnimallee 2214195BerlinGermany
| | - Beate Koksch
- Freie Universität BerlinDepartment of Biology, Chemistry and PharmacyInstitute of Chemistry and BiochemistryArnimallee 2014195BerlinGermany
| |
Collapse
|
6
|
Wang Y, Chang J, Wang J, Zhong P, Zhang Y, Lai CC, He Y. 3D-QSAR Studies of S-DABO Derivatives as Non-nucleoside HIV-1 Reverse Transcriptase Inhibitors. LETT DRUG DES DISCOV 2019. [DOI: 10.2174/1570180815666180810112321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Background:
S-dihydro-alkyloxy-benzyl-oxopyrimidines (S-DABOs) as non-nucleoside
reverse transcriptase inhibitors have received considerable attention during the last decade due to
their high potency against HIV-1.
Methods:
In this study, three-dimensional quantitative structure-activity relationship (3D-QSAR) of
a series of 38 S-DABO analogues developed in our lab was studied using Comparative Molecular
Field Analysis (CoMFA) and Comparative Molecular Similarity Indices Analysis (CoMSIA). The
Docking/MMFF94s computational protocol based on the co-crystallized complex (PDB ID: 1RT2)
was used to determine the most probable binding mode and to obtain reliable conformations for
molecular alignment. Statistically significant CoMFA (q2=0.766 and r2=0.949) and CoMSIA
(q2=0.827 and r2=0.974) models were generated using the training set of 30 compounds on the basis
of hybrid docking-based and ligand-based alignment.
Results:
The predictive ability of CoMFA and CoMSIA models was further validated using a test
set of eight compounds with predictive r2
pred values of 0.843 and 0.723, respectively.
Conclusion:
The information obtained from the 3D contour maps can be used in designing new SDABO
derivatives with improved HIV-1 inhibitory activity.
Collapse
Affiliation(s)
- Yueping Wang
- Department of Applied Chemistry, Faculty of Science, Kunming University of Science and Technology, Kunming, Yunnan, 650500, China
| | - Jie Chang
- Department of Applied Chemistry, Faculty of Science, Kunming University of Science and Technology, Kunming, Yunnan, 650500, China
| | - Jiangyuan Wang
- Key Laboratory of Medicinal Chemistry for Natural Resource, (Ministry of Education), School of Chemical Science and Technology, Yunnan University, Kunming Yunnan, 650091, China
| | - Peng Zhong
- Department of Applied Chemistry, Faculty of Science, Kunming University of Science and Technology, Kunming, Yunnan, 650500, China
| | - Yufang Zhang
- Key Laboratory of Medicinal Chemistry for Natural Resource, (Ministry of Education), School of Chemical Science and Technology, Yunnan University, Kunming Yunnan, 650091, China
| | - Christopher Cong Lai
- Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702, United States
| | - Yanping He
- Key Laboratory of Medicinal Chemistry for Natural Resource, (Ministry of Education), School of Chemical Science and Technology, Yunnan University, Kunming Yunnan, 650091, China
| |
Collapse
|