1
|
Pohl R, Eichelberger L, Feder S, Haberl EM, Rein-Fischboeck L, McMullen N, Sinal CJ, Bruckmann A, Weiss TS, Beck M, Höring M, Krautbauer S, Liebisch G, Wiest R, Wanninger J, Buechler C. Hepatocyte expressed chemerin-156 does not protect from experimental non-alcoholic steatohepatitis. Mol Cell Biochem 2022; 477:2059-2071. [PMID: 35449483 PMCID: PMC9237010 DOI: 10.1007/s11010-022-04430-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 03/30/2022] [Indexed: 02/06/2023]
Abstract
Non-alcoholic steatohepatitis (NASH) is a rapidly growing liver disease. The chemoattractant chemerin is abundant in hepatocytes, and hepatocyte expressed prochemerin protected from NASH. Prochemerin is inactive and different active isoforms have been described. Here, the effect of hepatocyte expressed muChem-156, a highly active murine chemerin isoform, was studied in the methionine–choline deficient dietary model of NASH. Mice overexpressing muChem-156 had higher hepatic chemerin protein. Serum chemerin levels and the capability of serum to activate the chemerin receptors was unchanged showing that the liver did not release active chemerin. Notably, activation of the chemerin receptors by hepatic vein blood did not increase in parallel to total chemerin protein in patients with liver cirrhosis. In experimental NASH, muChem-156 had no effect on liver lipids. Accordingly, overexpression of active chemerin in hepatocytes or treatment of hepatocytes with recombinant chemerin did not affect cellular triglyceride and cholesterol levels. Importantly, overexpression of muChem-156 in the murine liver did not change the hepatic expression of inflammatory and profibrotic genes. The downstream targets of chemerin such as p38 kinase were neither activated in the liver of muChem-156 producing mice nor in HepG2, Huh7 and Hepa1-6 cells overexpressing this isoform. Recombinant chemerin had no effect on global gene expression of primary human hepatocytes and hepatic stellate cells within 24 h of incubation. Phosphorylation of p38 kinase was, however, increased upon short-time incubation of HepG2 cells with chemerin. These findings show that muChem-156 overexpression in hepatocytes does not protect from liver steatosis and inflammation.
Collapse
Affiliation(s)
- Rebekka Pohl
- Department of Internal Medicine I, Regensburg University Hospital, 93053, Regensburg, Germany
| | - Laura Eichelberger
- Department of Internal Medicine I, Regensburg University Hospital, 93053, Regensburg, Germany
| | - Susanne Feder
- Department of Internal Medicine I, Regensburg University Hospital, 93053, Regensburg, Germany
| | - Elisabeth M Haberl
- Department of Internal Medicine I, Regensburg University Hospital, 93053, Regensburg, Germany
| | - Lisa Rein-Fischboeck
- Department of Internal Medicine I, Regensburg University Hospital, 93053, Regensburg, Germany
| | - Nichole McMullen
- Department of Pharmacology, Dalhousie University, Halifax, NS, B3H 4R2, Canada
| | - Christopher J Sinal
- Department of Pharmacology, Dalhousie University, Halifax, NS, B3H 4R2, Canada
| | - Astrid Bruckmann
- Biochemistry Center Regensburg (BZR), Laboratory for RNA Biology, University of Regensburg, Regensburg, Germany
| | - Thomas S Weiss
- Children's University Hospital (KUNO), Regensburg University Hospital, 93053, Regensburg, Germany
| | - Michael Beck
- Department of Internal Medicine I, Regensburg University Hospital, 93053, Regensburg, Germany
| | - Marcus Höring
- Institute of Clinical Chemistry and Laboratory Medicine, Regensburg University Hospital, 93053, Regensburg, Germany
| | - Sabrina Krautbauer
- Department of Internal Medicine I, Regensburg University Hospital, 93053, Regensburg, Germany.,Institute of Clinical Chemistry and Laboratory Medicine, Regensburg University Hospital, 93053, Regensburg, Germany
| | - Gerhard Liebisch
- Institute of Clinical Chemistry and Laboratory Medicine, Regensburg University Hospital, 93053, Regensburg, Germany
| | - Reiner Wiest
- Department of Visceral Surgery and Medicine, University Inselspital, 3010, Bern, Switzerland
| | - Josef Wanninger
- Department of Internal Medicine I, Regensburg University Hospital, 93053, Regensburg, Germany
| | - Christa Buechler
- Department of Internal Medicine I, Regensburg University Hospital, 93053, Regensburg, Germany.
| |
Collapse
|
2
|
Jacenik D, Fichna J. Chemerin in immune response and gastrointestinal pathophysiology. Clin Chim Acta 2020; 504:146-153. [PMID: 32070869 DOI: 10.1016/j.cca.2020.02.008] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 02/09/2020] [Accepted: 02/10/2020] [Indexed: 02/07/2023]
Abstract
Chemerin is a multifunctional protein involved among others in adipogenesis, angiogenesis and lipid as well as glucose metabolism. Chemerin is an essential factor in promotion of chemotaxis of numerous immune cell types and plays an important role in several pathophysiologic conditions. Chemerin receptors are present on monocytes/macrophages, T cells, natural killer and dendritic cells as well as neutrophils. However, the role of chemerin and chemerin receptors in immune response and gastrointestinal diseases is still poorly understood. Accumulating, clinical and experimental studies observed disturbation of chemerin and chemerin receptors in a number of disorders including Barrett's esophagus, esophageal cancer, gastric cancer, hepatic dysfunction, irritable bowel syndrome, inflammatory bowel disease and colorectal cancer. Moreover, chemerin and chemerin receptors have been shown to regulate proliferation, migration and invasion of gastrointestinal and immune cells as well as cancer-associated fibroblasts. In this review we present the current state of knowledge about the contribution of chemerin to immune response and gastrointestinal disorders.
Collapse
Affiliation(s)
- Damian Jacenik
- University of Lodz, Faculty of Biology and Environmental Protection, Department of Cytobiochemistry, Pomorska St. 141/143, Lodz 90-236, Poland
| | - Jakub Fichna
- Medical University of Lodz, Faculty of Medicine, Department of Biochemistry, Mazowiecka St. 6/8, 92-215 Lodz, Poland.
| |
Collapse
|
3
|
Lv X, Zheng Q, Li M, Huang Z, Peng M, Sun J, Shi P. Clioquinol induces S-phase cell cycle arrest through the elevation of the calcium level in human neurotypic SH-SY5Y cells. Metallomics 2020; 12:173-182. [DOI: 10.1039/c9mt00260j] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Clioquinol elevates intracellular calcium levels in a non-chelating manner, leading to S-phase cell cycle arrest in human neurotypic SH-SY5Y cells.
Collapse
Affiliation(s)
- Xiaoguang Lv
- State Key Laboratory of Bioreactor Engineering
- East China University of Science and Technology
- Shanghai 200237
- China
| | - Qiaoqiao Zheng
- State Key Laboratory of Bioreactor Engineering
- East China University of Science and Technology
- Shanghai 200237
- China
| | - Ming Li
- State Key Laboratory of Bioreactor Engineering
- East China University of Science and Technology
- Shanghai 200237
- China
| | - Zhiwei Huang
- Key Lab of Science & Technology of Eco-textile
- Ministry of Education
- College of Chemistry
- Chemical Engineering and Biotechnology
- Donghua University
| | - Min Peng
- Qinghai Key Laboratory of Qinghai-Tibet Plateau Biological Resources
- Northwest Institute of Plateau Biology
- The Chinese Academy of Sciences
- Xining 810001
- China
| | - Jing Sun
- Qinghai Key Laboratory of Qinghai-Tibet Plateau Biological Resources
- Northwest Institute of Plateau Biology
- The Chinese Academy of Sciences
- Xining 810001
- China
| | - Ping Shi
- State Key Laboratory of Bioreactor Engineering
- East China University of Science and Technology
- Shanghai 200237
- China
| |
Collapse
|
4
|
More Than an Adipokine: The Complex Roles of Chemerin Signaling in Cancer. Int J Mol Sci 2019; 20:ijms20194778. [PMID: 31561459 PMCID: PMC6801800 DOI: 10.3390/ijms20194778] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Revised: 09/18/2019] [Accepted: 09/23/2019] [Indexed: 12/24/2022] Open
Abstract
Chemerin is widely recognized as an adipokine, with diverse biological roles in cellular differentiation and metabolism, as well as a leukocyte chemoattractant. Research investigating the role of chemerin in the obesity-cancer relationship has provided evidence both for pro- and anti-cancer effects. The tumor-promoting effects of chemerin primarily involve direct effects on migration, invasion, and metastasis as well as growth and proliferation of cancer cells. Chemerin can also promote tumor growth via the recruitment of tumor-supporting mesenchymal stromal cells and stimulation of angiogenesis pathways in endothelial cells. In contrast, the majority of evidence supports that the tumor-suppressing effects of chemerin are immune-mediated and result in a shift from immunosuppressive to immunogenic cell populations within the tumor microenvironment. Systemic chemerin and chemerin produced within the tumor microenvironment may contribute to these effects via signaling through CMKLR1 (chemerin1), GPR1 (chemerin2), and CCLR2 on target cells. As such, inhibition or activation of chemerin signaling could be beneficial as a therapeutic approach depending on the type of cancer. Additional studies are required to determine if obesity influences cancer initiation or progression through increased adipose tissue production of chemerin and/or altered chemerin processing that leads to changes in chemerin signaling in the tumor microenvironment.
Collapse
|