1
|
Pasadas F, El Grour T, G. Marin E, Medina-Rull A, Toral-Lopez A, Cuesta-Lopez J, G. Ruiz F, El Mir L, Godoy A. Compact Modeling of Two-Dimensional Field-Effect Biosensors. SENSORS (BASEL, SWITZERLAND) 2023; 23:s23041840. [PMID: 36850440 PMCID: PMC9958801 DOI: 10.3390/s23041840] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 02/01/2023] [Accepted: 02/01/2023] [Indexed: 05/27/2023]
Abstract
A compact model able to predict the electrical read-out of field-effect biosensors based on two-dimensional (2D) semiconductors is introduced. It comprises the analytical description of the electrostatics including the charge density in the 2D semiconductor, the site-binding modeling of the barrier oxide surface charge, and the Stern layer plus an ion-permeable membrane, all coupled with the carrier transport inside the biosensor and solved by making use of the Donnan potential inside the ion-permeable membrane formed by charged macromolecules. This electrostatics and transport description account for the main surface-related physical and chemical processes that impact the biosensor electrical performance, including the transport along the low-dimensional channel in the diffusive regime, electrolyte screening, and the impact of biological charges. The model is implemented in Verilog-A and can be employed on standard circuit design tools. The theoretical predictions obtained with the model are validated against measurements of a MoS2 field-effect biosensor for streptavidin detection showing excellent agreement in all operation regimes and leading the way for the circuit-level simulation of biosensors based on 2D semiconductors.
Collapse
Affiliation(s)
- Francisco Pasadas
- Pervasive Electronics Advanced Research Laboratory (PEARL), Departamento de Electrónica y Tecnología de Computadores, Universidad de Granada, 18071 Granada, Spain
| | - Tarek El Grour
- Laboratory of Physics of Materials and Nanomaterials Applied at Environment (LaPhyMNE) LR05ES14, Faculty of Sciences of Gabes, Gabes University, Erriadh City, Zrig, 6072 Gabes, Tunisia
| | - Enrique G. Marin
- Pervasive Electronics Advanced Research Laboratory (PEARL), Departamento de Electrónica y Tecnología de Computadores, Universidad de Granada, 18071 Granada, Spain
| | - Alberto Medina-Rull
- Pervasive Electronics Advanced Research Laboratory (PEARL), Departamento de Electrónica y Tecnología de Computadores, Universidad de Granada, 18071 Granada, Spain
| | - Alejandro Toral-Lopez
- Pervasive Electronics Advanced Research Laboratory (PEARL), Departamento de Electrónica y Tecnología de Computadores, Universidad de Granada, 18071 Granada, Spain
| | - Juan Cuesta-Lopez
- Pervasive Electronics Advanced Research Laboratory (PEARL), Departamento de Electrónica y Tecnología de Computadores, Universidad de Granada, 18071 Granada, Spain
| | - Francisco G. Ruiz
- Pervasive Electronics Advanced Research Laboratory (PEARL), Departamento de Electrónica y Tecnología de Computadores, Universidad de Granada, 18071 Granada, Spain
| | - Lassaad El Mir
- Laboratory of Physics of Materials and Nanomaterials Applied at Environment (LaPhyMNE) LR05ES14, Faculty of Sciences of Gabes, Gabes University, Erriadh City, Zrig, 6072 Gabes, Tunisia
| | - Andrés Godoy
- Pervasive Electronics Advanced Research Laboratory (PEARL), Departamento de Electrónica y Tecnología de Computadores, Universidad de Granada, 18071 Granada, Spain
| |
Collapse
|
2
|
Toral-Lopez A, Kokh DB, Marin EG, Wade RC, Godoy A. Graphene BioFET sensors for SARS-CoV-2 detection: a multiscale simulation approach. NANOSCALE ADVANCES 2022; 4:3065-3072. [PMID: 36133524 PMCID: PMC9418999 DOI: 10.1039/d2na00357k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 06/13/2022] [Indexed: 06/01/2023]
Abstract
Biological Field-Effect Transistors (BioFETs) have already demonstrated enormous potential for detecting minute amounts of ions and molecules. The use of two-dimensional (2D) materials has been shown to boost their performance and to enable the design of new applications. This combination deserves special interest in the current pandemic caused by the SARS-CoV-2 virus which demands fast, reliable and cheap detection methods. However, in spite of the experimental advances, there is a lack of a comprehensive and in-depth computational approach to capture the mechanisms underlying the sensor behaviour. Here, we present a multiscale platform that combines detailed atomic models of the molecules with mesoscopic device-level simulations. The fine-level description exploited in this approach accounts for the charge distribution of the receptor, its reconfiguration when the target binds to it, and the consequences in terms of sensitivity on the transduction mechanism. The results encourage the further exploration of improved sensor designs and 2D materials combined with diverse receptors selected to achieve the desired specificity.
Collapse
Affiliation(s)
- A Toral-Lopez
- Departamento de Electrónica y Tecnología de Computadores, Facultad de Ciencias, Universidad de Granada Spain
| | - D B Kokh
- Molecular and Cellular Modeling Group, Heidelberg Institute for Theoretical Studies Schloss-Wolfsbrunnenweg 35 69118 Heidelberg Germany
| | - E G Marin
- Departamento de Electrónica y Tecnología de Computadores, Facultad de Ciencias, Universidad de Granada Spain
| | - R C Wade
- Molecular and Cellular Modeling Group, Heidelberg Institute for Theoretical Studies Schloss-Wolfsbrunnenweg 35 69118 Heidelberg Germany
- Center for Molecular Biology (ZMBH), DKFZ-ZMBH Alliance, Heidelberg University Im Neuenheimer Feld 282 69120 Heidelberg Germany
- Interdisciplinary Center for Scientific Computing (IWR), Heidelberg University Im Neuenheimer Feld 205 Heidelberg Germany
| | - A Godoy
- Departamento de Electrónica y Tecnología de Computadores, Facultad de Ciencias, Universidad de Granada Spain
| |
Collapse
|