1
|
Pisano F, Masmudi-Martín M, Andriani MS, Cid E, Kazemzadeh M, Pisanello M, Balena A, Collard L, Parras TJ, Bianco M, Baena P, Tantussi F, Grande M, Sileo L, Gentile F, De Angelis F, De Vittorio M, Menendez de la Prida L, Valiente M, Pisanello F. Vibrational fiber photometry: label-free and reporter-free minimally invasive Raman spectroscopy deep in the mouse brain. Nat Methods 2024:10.1038/s41592-024-02557-3. [PMID: 39741190 DOI: 10.1038/s41592-024-02557-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 10/31/2024] [Indexed: 01/02/2025]
Abstract
Optical approaches to monitor neural activity are transforming neuroscience, owing to a fast-evolving palette of genetically encoded molecular reporters. However, the field still requires robust and label-free technologies to monitor the multifaceted biomolecular changes accompanying brain development, aging or disease. Here, we have developed vibrational fiber photometry as a low-invasive method for label-free monitoring of the biomolecular content of arbitrarily deep regions of the mouse brain in vivo through spontaneous Raman spectroscopy. Using a tapered fiber probe as thin as 1 µm at its tip, we elucidate the cytoarchitecture of the mouse brain, monitor molecular alterations caused by traumatic brain injury, as well as detect markers of brain metastasis with high accuracy. We view our approach, which introduces a deep learning algorithm to suppress probe background, as a promising complement to the existing palette of tools for the optical interrogation of neural function, with application to fundamental and preclinical investigations of the brain and other organs.
Collapse
Affiliation(s)
- Filippo Pisano
- Istituto Italiano di Tecnologia, Center for Biomolecular Nanotechnologies, Arnesano, Italy.
- Department of Physics and Astronomy, University of Padova, Padova, Italy.
| | | | - Maria Samuela Andriani
- Istituto Italiano di Tecnologia, Center for Biomolecular Nanotechnologies, Arnesano, Italy
- Dipartimento di Ingegneria dell'Innovazione, Università del Salento, Lecce, Italy
| | - Elena Cid
- Instituto Cajal, CSIC, Madrid, Spain
| | | | | | - Antonio Balena
- Istituto Italiano di Tecnologia, Center for Biomolecular Nanotechnologies, Arnesano, Italy
- Laboratoire Kastler Brossel, Sorbonne University, CNRS, ENS-PSL University, Collège de France, Paris, France
| | - Liam Collard
- Istituto Italiano di Tecnologia, Center for Biomolecular Nanotechnologies, Arnesano, Italy
- RAISE Ecosystem, Genoa, Italy
| | | | - Marco Bianco
- Istituto Italiano di Tecnologia, Center for Biomolecular Nanotechnologies, Arnesano, Italy
| | | | - Francesco Tantussi
- Istituto Italiano di Tecnologia, Center for Convergent Technologies, Genoa, Italy
| | - Marco Grande
- Dipartimento di Ingegneria Elettrica e dell'Informazione, Bari, Italy
| | | | - Francesco Gentile
- Nanotechnology Research Center, Department of Experimental and Clinical Medicine, University of 'Magna Graecia' of Catanzaro, Catanzaro, Italy
| | - Francesco De Angelis
- Istituto Italiano di Tecnologia, Center for Convergent Technologies, Genoa, Italy
| | - Massimo De Vittorio
- Istituto Italiano di Tecnologia, Center for Biomolecular Nanotechnologies, Arnesano, Italy
- Dipartimento di Ingegneria dell'Innovazione, Università del Salento, Lecce, Italy
- RAISE Ecosystem, Genoa, Italy
| | | | | | - Ferruccio Pisanello
- Istituto Italiano di Tecnologia, Center for Biomolecular Nanotechnologies, Arnesano, Italy.
- RAISE Ecosystem, Genoa, Italy.
| |
Collapse
|
2
|
Brotherton EE, Chan DHH, Armes SP, Janani R, Sammon C, Wills JL, Tandy JD, Burchell MJ, Wozniakiewicz PJ, Alesbrook LS, Tabata M. Synthesis of Phenanthrene/Pyrene Hybrid Microparticles: Useful Synthetic Mimics for Polycyclic Aromatic Hydrocarbon-Based Cosmic Dust. J Am Chem Soc 2024; 146:20802-20813. [PMID: 39018427 PMCID: PMC11295189 DOI: 10.1021/jacs.4c04330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 06/22/2024] [Accepted: 06/24/2024] [Indexed: 07/19/2024]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are found throughout the interstellar medium and are important markers for the evolution of galaxies and both star and planet formation. They are also widely regarded as a major source of carbon, which has implications in the search for extraterrestrial life. Herein we construct a melting point phase diagram for a series of phenanthrene/pyrene binary mixtures to identify the eutectic composition (75 mol % phenanthrene) and its melting point (83 °C). The molten oil obtained on heating this eutectic composition to 90 °C in aqueous solution is homogenized in the presence of a water-soluble polymeric emulsifier. On cooling to 20 °C, polydisperse spherical phenanthrene/pyrene hybrid microparticles are obtained. Varying the stirring rate and emulsifier type enables the mean microparticle diameter to be adjusted from 11 to 279 μm. Importantly, the phenanthrene content of individual microparticles remains constant during processing, as expected for the eutectic composition. These new hybrid microparticles form impact craters and undergo partial fragmentation when fired into a metal target at 1 km s-1 using a light gas gun. When fired into an aerogel target at the same speed, microparticles are located at the ends of characteristic "carrot tracks". Autofluorescence is observed in both types of experiments, which at first sight suggests minimal degradation. However, Raman microscopy analysis of the aerogel-captured microparticles indicates prominent pyrene signals but no trace of the more volatile phenanthrene component. Such differential ablation during aerogel capture is expected to inform the in situ analysis of PAH-rich cosmic dust in future space missions.
Collapse
Affiliation(s)
- Emma E. Brotherton
- Dainton
Building, Department of Chemistry, University
of Sheffield, Brook Hill, Sheffield, South Yorkshire S3 7HF, U.K.
| | - Derek H. H. Chan
- Dainton
Building, Department of Chemistry, University
of Sheffield, Brook Hill, Sheffield, South Yorkshire S3 7HF, U.K.
| | - Steven P. Armes
- Dainton
Building, Department of Chemistry, University
of Sheffield, Brook Hill, Sheffield, South Yorkshire S3 7HF, U.K.
| | - Ronak Janani
- Materials
and Engineering Research Institute, Sheffield
Hallam University, Sheffield, South Yorkshire S1 1WB, U.K.
| | - Chris Sammon
- Materials
and Engineering Research Institute, Sheffield
Hallam University, Sheffield, South Yorkshire S1 1WB, U.K.
| | - Jessica L. Wills
- School
of Physics and Astronomy, University of
Kent, Canterbury, Kent CT2 7NH, U.K.
| | - Jon D. Tandy
- School
of Chemistry and Forensic Science, University
of Kent, Canterbury CT2 7NZ, U.K.
| | - Mark J. Burchell
- School
of Physics and Astronomy, University of
Kent, Canterbury, Kent CT2 7NH, U.K.
| | | | - Luke S. Alesbrook
- School
of Physics and Astronomy, University of
Kent, Canterbury, Kent CT2 7NH, U.K.
| | - Makoto Tabata
- Department
of Physics, Chiba University, Chiba 2638522, Japan
| |
Collapse
|
3
|
Pavić I, Kaštelan N, Adamczyk A, Ivanda M. Enhancing Micro-Raman Spectroscopy: A Variable Spectral Resolution Instrument Using Zoom Lens Technology. SENSORS (BASEL, SWITZERLAND) 2024; 24:4284. [PMID: 39001063 PMCID: PMC11243961 DOI: 10.3390/s24134284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 06/26/2024] [Accepted: 06/29/2024] [Indexed: 07/16/2024]
Abstract
Raman spectroscopy is a powerful analytical technique based on the inelastic scattering of photons. Conventional macro-Raman spectrometers are suitable for mass analysis but often lack the spatial resolution required to accurately examine microscopic regions of interest. For this reason, the development of micro-Raman spectrometers has been driven forward. However, even with micro-Raman spectrometers, high resolution is required to gain better insight into materials that provide low-intensity Raman signals. Here, we show the development of a micro-Raman spectrometer with implemented zoom lens technology. We found that by replacing a second collimating mirror in the monochromator with a zoom lens, the spectral resolution could be continuously adjusted at different zoom factors, i.e., high resolution was achieved at a higher zoom factor and lower spectral resolution was achieved at a lower zoom factor. A quantitative analysis of a micro-Raman spectrometer was performed and the spectral resolution was analysed by FWHM using the Gaussian fit. Validation was also performed by comparing the results obtained with those of a high-grade laboratory Raman spectrometer. A quantitative analysis was also performed using the ANOVA method and by assessing the signal-to-noise ratio between the two systems.
Collapse
Affiliation(s)
- Ivan Pavić
- Department for Marine Electrical Engineering and Information Technologies, Faculty of Maritime Studies, Ruđera Boškovića 37, 21000 Split, Croatia; (I.P.); (N.K.)
| | - Nediljko Kaštelan
- Department for Marine Electrical Engineering and Information Technologies, Faculty of Maritime Studies, Ruđera Boškovića 37, 21000 Split, Croatia; (I.P.); (N.K.)
| | - Arkadiusz Adamczyk
- Faculty of Mechanical and Electrical Engineering, Polish Naval Academy, ul. Smidowicza 69, 81-127 Gdynia, Poland;
| | - Mile Ivanda
- Laboratory for Molecular Physics and Synthesis of New Materials, Ruđer Bošković Institute, Bijenička Cesta 54, 10000 Zagreb, Croatia
| |
Collapse
|
4
|
Liu Y, Li M, Liu H, Kang C, Yu X. Strategies and Progress of Raman Technologies for Cellular Uptake Analysis of the Drug Delivery Systems. Int J Nanomedicine 2023; 18:6883-6900. [PMID: 38026519 PMCID: PMC10674749 DOI: 10.2147/ijn.s435087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 11/06/2023] [Indexed: 12/01/2023] Open
Abstract
Nanoparticle (NP)-based drug delivery systems have the potential to significantly enhance the pharmacological and therapeutic properties of drugs. These systems enhance the bioavailability and biocompatibility of pharmaceutical agents via enabling targeted delivery to specific tissues or organs. However, the efficacy and safety of these systems are largely dependent on the cellular uptake and intracellular transport of NPs. Thus, it is crucial to monitor the intracellular behavior of NPs within a single cell. Yet, it is challenging due to the complexity and size of the cell. Recently, the development of the Raman instrumentation offers a versatile tool to allow noninvasive cellular measurements. The primary objective of this review is to highlight the most recent advancements in Raman techniques (spontaneous Raman scattering, bioorthogonal Raman scattering, coherence Raman scattering, and surface-enhanced Raman scattering) when it comes to assessing the internalization of NP-based drug delivery systems and their subsequent movement within cells.
Collapse
Affiliation(s)
- Yajuan Liu
- Key Laboratory of Molecular Target & Clinical Pharmacology, and the NMPA & State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, People’s Republic of China
| | - Mei Li
- School of Chemistry and Chemical Engineering, Guizhou University, Guiyang, 550025, People’s Republic of China
| | - Haisha Liu
- School of Chemistry and Chemical Engineering, Guizhou University, Guiyang, 550025, People’s Republic of China
| | - Chao Kang
- School of Chemistry and Chemical Engineering, Guizhou University, Guiyang, 550025, People’s Republic of China
| | - Xiyong Yu
- Key Laboratory of Molecular Target & Clinical Pharmacology, and the NMPA & State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, People’s Republic of China
| |
Collapse
|
5
|
Ezrre S, Reyna MA, Anguiano C, Avitia RL, Márquez H. Lab-on-a-Chip Platforms for Airborne Particulate Matter Applications: A Review of Current Perspectives. BIOSENSORS 2022; 12:191. [PMID: 35448251 PMCID: PMC9024784 DOI: 10.3390/bios12040191] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Revised: 03/12/2022] [Accepted: 03/16/2022] [Indexed: 06/14/2023]
Abstract
Lab-on-a-Chip (LoC) devices are described as versatile, fast, accurate, and low-cost platforms for the handling, detection, characterization, and analysis of a wide range of suspended particles in water-based environments. However, for gas-based applications, particularly in atmospheric aerosols science, LoC platforms are rarely developed. This review summarizes emerging LoC devices for the classification, measurement, and identification of airborne particles, especially those known as Particulate Matter (PM), which are linked to increased morbidity and mortality levels from cardiovascular and respiratory diseases. For these devices, their operating principles and performance parameters are introduced and compared while highlighting their advantages and disadvantages. Discussing the current applications will allow us to identify challenges and determine future directions for developing more robust LoC devices to monitor and analyze airborne PM.
Collapse
Affiliation(s)
- Sharon Ezrre
- Instituto de Ingeniería, Universidad Autónoma de Baja California (UABC), Mexicali 21100, Mexico;
| | - Marco A. Reyna
- Instituto de Ingeniería, Universidad Autónoma de Baja California (UABC), Mexicali 21100, Mexico;
| | - Citlalli Anguiano
- Facultad de Ingeniería, Universidad Autónoma de Baja California (UABC), Mexicali 21280, Mexico; (C.A.); (R.L.A.)
| | - Roberto L. Avitia
- Facultad de Ingeniería, Universidad Autónoma de Baja California (UABC), Mexicali 21280, Mexico; (C.A.); (R.L.A.)
| | - Heriberto Márquez
- Departamento de Óptica, Centro de Investigación Científica y de Educación Superior de Ensenada (CICESE), Ensenada 22860, Mexico;
| |
Collapse
|
6
|
Discrimination between Carbapenem-Resistant and Carbapenem-Sensitive Klebsiella pneumoniae Strains through Computational Analysis of Surface-Enhanced Raman Spectra: a Pilot Study. Microbiol Spectr 2022; 10:e0240921. [PMID: 35107359 PMCID: PMC8809336 DOI: 10.1128/spectrum.02409-21] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
In clinical settings, rapid and accurate diagnosis of antibiotic resistance is essential for the efficient treatment of bacterial infections. Conventional methods for antibiotic resistance testing are time consuming, while molecular methods such as PCR-based testing might not accurately reflect phenotypic resistance. Thus, fast and accurate methods for the analysis of bacterial antibiotic resistance are in high demand for clinical applications. In this pilot study, we isolated 7 carbapenem-sensitive Klebsiella pneumoniae (CSKP) strains and 8 carbapenem-resistant Klebsiella pneumoniae (CRKP) strains from clinical samples. Surface-enhanced Raman spectroscopy (SERS) as a label-free and noninvasive method was employed for discriminating CSKP strains from CRKP strains through computational analysis. Eight supervised machine learning algorithms were applied for sample analysis. According to the results, all supervised machine learning methods could successfully predict carbapenem sensitivity and resistance in K. pneumoniae, with a convolutional neural network (CNN) algorithm on top of all other methods. Taken together, this pilot study confirmed the application potentials of surface-enhanced Raman spectroscopy in fast and accurate discrimination of Klebsiella pneumoniae strains with different antibiotic resistance profiles. IMPORTANCE With the low-cost, label-free, and nondestructive features, Raman spectroscopy is becoming an attractive technique with great potential to discriminate bacterial infections. In this pilot study, we analyzed surfaced-enhanced Raman spectroscopy (SERS) spectra via supervised machine learning algorithms, through which we confirmed the application potentials of the SERS technique in rapid and accurate discrimination of Klebsiella pneumoniae strains with different antibiotic resistance profiles.
Collapse
|
7
|
Primavera R, Bellotti E, Di Mascolo D, Di Francesco M, Wang J, Kevadiya BD, De Pascale A, Thakor AS, Decuzzi P. Insulin Granule-Loaded MicroPlates for Modulating Blood Glucose Levels in Type-1 Diabetes. ACS APPLIED MATERIALS & INTERFACES 2021; 13:53618-53629. [PMID: 34751556 PMCID: PMC8603355 DOI: 10.1021/acsami.1c16768] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Type-1 diabetes (T1DM) is a chronic metabolic disorder resulting from the autoimmune destruction of β cells. The current standard of care requires multiple, daily injections of insulin and accurate monitoring of blood glucose levels (BGLs); in some cases, this results in diminished patient compliance and increased risk of hypoglycemia. Herein, we engineered hierarchically structured particles comprising a poly(lactic-co-glycolic) acid (PLGA) prismatic matrix, with a 20 × 20 μm base, encapsulating 200 nm insulin granules. Five configurations of these insulin-microPlates (INS-μPLs) were realized with different heights (5, 10, and 20 μm) and PLGA contents (10, 40, and, 60 mg). After detailed physicochemical and biopharmacological characterizations, the tissue-compliant 10H INS-μPL, realized with 10 mg of PLGA, presented the most effective release profile with ∼50% of the loaded insulin delivered at 4 weeks. In diabetic mice, a single 10H INS-μPL intraperitoneal deposition reduced BGLs to that of healthy mice within 1 h post-implantation (167.4 ± 49.0 vs 140.0 ± 9.2 mg/dL, respectively) and supported normoglycemic conditions for about 2 weeks. Furthermore, following the glucose challenge, diabetic mice implanted with 10H INS-μPL successfully regained glycemic control with a significant reduction in AUC0-120min (799.9 ± 134.83 vs 2234.60 ± 82.72 mg/dL) and increased insulin levels at 7 days post-implantation (1.14 ± 0.11 vs 0.38 ± 0.02 ng/mL), as compared to untreated diabetic mice. Collectively, these results demonstrate that INS-μPLs are a promising platform for the treatment of T1DM to be further optimized with the integration of smart glucose sensors.
Collapse
Affiliation(s)
- Rosita Primavera
- Laboratory
of Nanotechnology for Precision Medicine, Fondazione Istituto Italiano di Tecnologia, Via Morego 30, Genoa 16163, Italy
- Interventional
Regenerative Medicine and Imaging Laboratory, Department of Radiology, Stanford University, Palo Alto, California 94304, United States
| | - Elena Bellotti
- Laboratory
of Nanotechnology for Precision Medicine, Fondazione Istituto Italiano di Tecnologia, Via Morego 30, Genoa 16163, Italy
| | - Daniele Di Mascolo
- Laboratory
of Nanotechnology for Precision Medicine, Fondazione Istituto Italiano di Tecnologia, Via Morego 30, Genoa 16163, Italy
| | - Martina Di Francesco
- Laboratory
of Nanotechnology for Precision Medicine, Fondazione Istituto Italiano di Tecnologia, Via Morego 30, Genoa 16163, Italy
| | - Jing Wang
- Interventional
Regenerative Medicine and Imaging Laboratory, Department of Radiology, Stanford University, Palo Alto, California 94304, United States
| | - Bhavesh D. Kevadiya
- Interventional
Regenerative Medicine and Imaging Laboratory, Department of Radiology, Stanford University, Palo Alto, California 94304, United States
| | - Angelo De Pascale
- Unit
of Endocrinology, Department of Internal Medicine & Medical Specialist
(DIMI), University of Genoa, 16136 Genoa, Italy
| | - Avnesh S. Thakor
- Interventional
Regenerative Medicine and Imaging Laboratory, Department of Radiology, Stanford University, Palo Alto, California 94304, United States
| | - Paolo Decuzzi
- Laboratory
of Nanotechnology for Precision Medicine, Fondazione Istituto Italiano di Tecnologia, Via Morego 30, Genoa 16163, Italy
| |
Collapse
|
8
|
Optimization of High-Density Fe-Au Nano-Arrays for Surface-Enhanced Raman Spectroscopy of Biological Samples. BIOSENSORS-BASEL 2021; 11:bios11060181. [PMID: 34198940 PMCID: PMC8229969 DOI: 10.3390/bios11060181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 05/26/2021] [Accepted: 06/02/2021] [Indexed: 11/19/2022]
Abstract
The method of realizing nanostructures using porous alumina templates has attracted interest due to the precise geometry and cheap cost of nanofabrication. In this work, nanoporous alumina membranes were utilized to realize a forest of nanowires, providing a bottom-up nanofabrication method suitable for surface-enhanced Raman spectroscopy (SERS). Gold and iron were electroplated through the straight channels of the membrane. The resulting nanowires are, indeed, made of an active element for plasmonic resonance and SERS as the hexagonal distribution of the nanowires and the extreme high density of the nanowires allows to excite the plasmon and detect the Raman signal. The method to reduce the distance between pores and, consequently, the distance of the nanowires after electrodeposition is optimized here. Indeed, it has been predicted that the light intensity enhancement factor is up to 1012 when the gap is small than 10 nm. Measurements of Raman signal of thiol groups drying on the gold nanowires show that the performance of the device is improved. As the thiol group can be linked to proteins, the device has the potential of a biosensor for the detection of a few biomolecules. To assess the performance of the device and demonstrate its ability to analyze biological solutions, we used it as SERS substrates to examine solutions of IgG in low abundance ranges. The results of the test indicate that the sensor can convincingly detect biomolecules in physiologically relevant ranges.
Collapse
|
9
|
Cell Theranostics on Mesoporous Silicon Substrates. Pharmaceutics 2020; 12:pharmaceutics12050481. [PMID: 32466284 PMCID: PMC7284777 DOI: 10.3390/pharmaceutics12050481] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 05/20/2020] [Accepted: 05/21/2020] [Indexed: 11/17/2022] Open
Abstract
The adhesion, proliferation, and migration of cells over nanomaterials is regulated by a cascade of biochemical signals that originate at the interface of a cell with a substrate and propagate through the cytoplasm to the nucleus. The topography of the substrate plays a major role in this process. Cell adhesion molecules (CAMs) have a characteristic size of some nanometers and a range of action of some tens of nanometers. Controlling details of a surface at the nanoscale-the same dimensional over which CAMs operate-offers ways to govern the behavior of cells and create organoids or tissues with heretofore unattainable precision. Here, using electrochemical procedures, we generated mesoporous silicon surfaces with different values of pore size (PS≈11 nm and PS≈21 nm), roughness (Ra≈7 nm and Ra≈13 nm), and fractal dimension (Df≈2.48 and Df≈2.15). Using electroless deposition, we deposited over these substrates thin layers of gold nanoparticles. Resulting devices feature (i) nanoscale details for the stimulation and control of cell assembly, (ii) arrays of pores for drug loading/release, (iii) layers of nanostructured gold for the enhancement of the electromagnetic signal in Raman spectroscopy (SERS). We then used these devices as cell culturing substrates. Upon loading with the anti-tumor drug PtCl (O,O'-acac)(DMSO) we examined the rate of adhesion and growth of breast cancer MCF-7 cells under the coincidental effects of surface geometry and drug release. Using confocal imaging and SERS spectroscopy we determined the relative importance of nano-topography and delivery of therapeutics on cell growth-and how an unbalance between these competing agents can accelerate the development of tumor cells.
Collapse
|