1
|
Suthar J, Alvarez-Fernandez A, Osarfo-Mensah E, Angioletti-Uberti S, Williams GR, Guldin S. Amplified EQCM-D detection of extracellular vesicles using 2D gold nanostructured arrays fabricated by block copolymer self-assembly. NANOSCALE HORIZONS 2023; 8:460-472. [PMID: 36825603 PMCID: PMC10042438 DOI: 10.1039/d2nh00424k] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 01/23/2023] [Indexed: 06/14/2023]
Abstract
Extracellular vesicles (EVs) are routinely released from nearly all cell types as transport vehicles and for cell communication. Crucially, they contain biomolecular content for the identification of health and disease states that can be detected from readily accessible physiological fluids, including urine, plasma, or saliva. Despite their clinical utility within noninvasive diagnostic platforms such as liquid biopsies, the currently available portfolio of analytical approaches are challenged by EV heterogeneity in size and composition, as well as the complexity of native biofluids. Quartz crystal microbalance with dissipation monitoring (QCM-D) has recently emerged as a powerful alternative for the phenotypic detection of EVs, offering multiple modes of analyte discrimination by frequency and dissipation. While providing rich data for sensor development, further progress is required to reduce detection limits and fully exploit the technique's potential within biosensing. Herein, we investigate the impact of nanostructuring the sensor electrode surface for enhancing its detection capabilities. We employ self-assembly of the block copolymer polystyrene-block-poly(4-vinylpyridine) to create well defined 2D gold islands via selective impregnation of the pyridine domain with gold precursors and subsequent removal of the template. When matched to the EV length scale, we find a 4-fold improvement in sensitivity despite a 4-fold reduction in area for analyte and ligand anchoring in comparison to a flat sensor surface. Creation of tailored and confined sensing regions interspersed by non-binding silica provides optimal spatial orientation for EV capture with reduced steric effects and negative cooperativity of grafted antibodies, offering a promising route for facilitated binding and enhanced performance of sensor platforms.
Collapse
Affiliation(s)
- Jugal Suthar
- Department of Chemical Engineering, University College London, Torrington Place, London, WC1E 7JE, UK.
- UCL School of Pharmacy, University College London, 29-39 Brunswick Square, Bloomsbury, London, WC1N 1AX, UK
| | - Alberto Alvarez-Fernandez
- Department of Chemical Engineering, University College London, Torrington Place, London, WC1E 7JE, UK.
| | - Esther Osarfo-Mensah
- Department of Chemical Engineering, University College London, Torrington Place, London, WC1E 7JE, UK.
- Department of Materials, Imperial College London, Exhibition Road, London, SW7 2AZ, UK
| | | | - Gareth R Williams
- UCL School of Pharmacy, University College London, 29-39 Brunswick Square, Bloomsbury, London, WC1N 1AX, UK
| | - Stefan Guldin
- Department of Chemical Engineering, University College London, Torrington Place, London, WC1E 7JE, UK.
| |
Collapse
|
2
|
Li L, Xu Z, Li W. Emergence of Connected Binary Spherical Structures from the Self-assembly of an AB 2C Four-Arm Star Terpolymer. Macromolecules 2022. [DOI: 10.1021/acs.macromol.2c01919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Luyang Li
- State Key Laboratory of Molecular Engineering of Polymers, Key Laboratory of Computational Physical Sciences, Department of Macromolecular Science, Fudan University, Shanghai 200433, China
| | - Zhanwen Xu
- State Key Laboratory of Molecular Engineering of Polymers, Key Laboratory of Computational Physical Sciences, Department of Macromolecular Science, Fudan University, Shanghai 200433, China
| | - Weihua Li
- State Key Laboratory of Molecular Engineering of Polymers, Key Laboratory of Computational Physical Sciences, Department of Macromolecular Science, Fudan University, Shanghai 200433, China
| |
Collapse
|
3
|
Liquid Phase Infiltration of Block Copolymers. Polymers (Basel) 2022; 14:polym14204317. [PMID: 36297895 PMCID: PMC9612101 DOI: 10.3390/polym14204317] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 10/10/2022] [Accepted: 10/11/2022] [Indexed: 11/11/2022] Open
Abstract
Novel materials with defined composition and structures at the nanoscale are increasingly desired in several research fields spanning a wide range of applications. The development of new approaches of synthesis that provide such control is therefore required in order to relate the material properties to its functionalities. Self-assembling materials such as block copolymers (BCPs), in combination with liquid phase infiltration (LPI) processes, represent an ideal strategy for the synthesis of inorganic materials into even more complex and functional features. This review provides an overview of the mechanism involved in the LPI, outlining the role of the different polymer infiltration parameters on the resulting material properties. We report newly developed methodologies that extend the LPI to the realisation of multicomponent and 3D inorganic nanostructures. Finally, the recently reported implementation of LPI into different applications such as photonics, plasmonics and electronics are highlighted.
Collapse
|
4
|
Cummins C, Flamant Q, Dwivedi R, Alvarez-Fernandez A, Demazy N, Bentaleb A, Pound-Lana G, Zelsmann M, Barois P, Hadziioannou G, Baron A, Fleury G, Ponsinet V. An Ultra-Thin Near-Perfect Absorber via Block Copolymer Engineered Metasurfaces. J Colloid Interface Sci 2021; 609:375-383. [PMID: 34902674 DOI: 10.1016/j.jcis.2021.11.163] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Revised: 11/16/2021] [Accepted: 11/26/2021] [Indexed: 10/19/2022]
Abstract
Producing ultrathin light absorber layers is attractive towards the integration of lightweight planar components in electronic, photonic, and sensor devices. In this work, we report the experimental demonstration of a thin gold (Au) metallic metasurface with near-perfect visible absorption (∼95 %). Au nanoresonators possessing heights from 5 - 15 nm with sub-50 nm diameters were engineered by block copolymer (BCP) templating. The Au nanoresonators were fabricated on an alumina (Al2O3) spacer layer and a reflecting Au mirror, in a film-coupled nanoparticle design. The BCP nanopatterning strategy to produce desired heights of Au nanoresonators was tailored to achieve near-perfect absorption at ≈ 600 nm. The experimental insight described in this work is a step forward towards realizing large area flat optics applications derived from subwavelength-thin metasurfaces.
Collapse
Affiliation(s)
- Cian Cummins
- Univ. Bordeaux, CNRS UMR 5031, Centre de Recherche Paul Pascal, 115 Avenue Schweitzer, 33600 Pessac, France; Univ. Bordeaux, CNRS, Bordeaux INP, LCPO, UMR 5629, F-33600 Pessac, France.
| | - Quentin Flamant
- Univ. Bordeaux, CNRS UMR 5031, Centre de Recherche Paul Pascal, 115 Avenue Schweitzer, 33600 Pessac, France
| | - Ranjeet Dwivedi
- Univ. Bordeaux, CNRS UMR 5031, Centre de Recherche Paul Pascal, 115 Avenue Schweitzer, 33600 Pessac, France
| | - Alberto Alvarez-Fernandez
- Department of Chemical Engineering, University College London, Torrington Place, London WC1E 7JE, U.K
| | - Nils Demazy
- Univ. Bordeaux, CNRS, Bordeaux INP, LCPO, UMR 5629, F-33600 Pessac, France
| | - Ahmed Bentaleb
- Univ. Bordeaux, CNRS UMR 5031, Centre de Recherche Paul Pascal, 115 Avenue Schweitzer, 33600 Pessac, France
| | - Gwenaelle Pound-Lana
- University of Grenoble Alpes, CNRS, CEA/LETI Minatec, Grenoble INP, LTM, 38000 Grenoble, France
| | - Marc Zelsmann
- University of Grenoble Alpes, CNRS, CEA/LETI Minatec, Grenoble INP, LTM, 38000 Grenoble, France
| | - Philippe Barois
- Univ. Bordeaux, CNRS UMR 5031, Centre de Recherche Paul Pascal, 115 Avenue Schweitzer, 33600 Pessac, France
| | | | - Alexandre Baron
- Univ. Bordeaux, CNRS UMR 5031, Centre de Recherche Paul Pascal, 115 Avenue Schweitzer, 33600 Pessac, France
| | - Guillaume Fleury
- Univ. Bordeaux, CNRS, Bordeaux INP, LCPO, UMR 5629, F-33600 Pessac, France.
| | - Virginie Ponsinet
- Univ. Bordeaux, CNRS UMR 5031, Centre de Recherche Paul Pascal, 115 Avenue Schweitzer, 33600 Pessac, France.
| |
Collapse
|
5
|
Cummins C, Alvarez-Fernandez A, Bentaleb A, Hadziioannou G, Ponsinet V, Fleury G. Strategy for Enhancing Ultrahigh-Molecular-Weight Block Copolymer Chain Mobility to Access Large Period Sizes (>100 nm). LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:13872-13880. [PMID: 33175555 DOI: 10.1021/acs.langmuir.0c02261] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Assembling ultrahigh-molecular-weight (UHMW) block copolymers (BCPs) in rapid time scales is perceived as a grand challenge in polymer science due to slow kinetics. Through surface engineering and identifying a nonvolatile solvent (propylene glycol methyl ether acetate, PGMEA), we showcase the impressive ability of a series of lamellar poly(styrene)-block-poly(2-vinylpyridine) (PS-b-P2VP) BCPs to self-assemble directly after spin-coating. In particular, we show the formation of large-period (≈111 nm) lamellar structures from a neat UHMW PS-b-P2VP BCP. The significant influence of solvent-polymer solubility parameters are explored to enhance the polymer chain mobility. After optimization using solvent vapor annealing, increased feature order of ultralarge-period PS-b-P2VP BCP patterns in 1 h is achieved. Isolated metallic and dielectric features are also demonstrated to exemplify the promise that large BCP periods offer for functional applications. The methods described in this article center on industry-compatible patterning schemes, solvents, and deposition techniques. Thus, our straightforward UHMW BCP strategy potentially paves a viable and practical path forward for large-scale integration in various sectors, e.g., photonic band gaps, polarizers, and membranes that demand ultralarge period sizes.
Collapse
Affiliation(s)
- Cian Cummins
- CNRS, Univ. Bordeaux, Centre de Recherche Paul Pascal, UMR 5031, 115 Avenue Schweitzer, 33600 Pessac, France
- Univ. Bordeaux, CNRS, Bordeaux INP, LCPO, UMR 5629, F-33600 Pessac, France
| | - Alberto Alvarez-Fernandez
- Department of Chemical Engineering, University College London, Torrington Place, London WC1E 7JE, U.K
| | - Ahmed Bentaleb
- CNRS, Univ. Bordeaux, Centre de Recherche Paul Pascal, UMR 5031, 115 Avenue Schweitzer, 33600 Pessac, France
| | | | - Virginie Ponsinet
- CNRS, Univ. Bordeaux, Centre de Recherche Paul Pascal, UMR 5031, 115 Avenue Schweitzer, 33600 Pessac, France
| | - Guillaume Fleury
- Univ. Bordeaux, CNRS, Bordeaux INP, LCPO, UMR 5629, F-33600 Pessac, France
| |
Collapse
|
6
|
Alvarez-Fernandez A, Nallet F, Fontaine P, Cummins C, Hadziioannou G, Barois P, Fleury G, Ponsinet V. Large area Al 2O 3-Au raspberry-like nanoclusters from iterative block-copolymer self-assembly. RSC Adv 2020; 10:41088-41097. [PMID: 35519210 PMCID: PMC9057902 DOI: 10.1039/d0ra08730k] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Accepted: 10/28/2020] [Indexed: 12/12/2022] Open
Abstract
In the field of functional nanomaterials, core-satellite nanoclusters have recently elicited great interest due to their unique optoelectronic properties. However, core-satellite synthetic routes to date are hampered by delicate and multistep reaction conditions and no practical method has been reported for the ordering of these structures onto a surface monolayer. Herein we show a reproducible and simplified thin film process to fabricate bimetallic raspberry nanoclusters using block copolymer (BCP) lithography. The fabricated inorganic raspberry nanoclusters consisted of a ∼36 nm alumina core decorated with ∼15 nm Au satellites after infusing multilayer BCP nanopatterns. A series of cylindrical BCPs with different molecular weights allowed us to dial in specific nanodot periodicities (from 30 to 80 nm). Highly ordered BCP nanopatterns were then selectively infiltrated with alumina and Au species to develop multi-level bimetallic raspberry features. Microscopy and X-ray reflectivity analysis were used at each fabrication step to gain further mechanistic insights and understand the infiltration process. Furthermore, grazing-incidence small-angle X-ray scattering studies of infiltrated films confirmed the excellent order and vertical orientation over wafer scale areas of Al2O3/Au raspberry nanoclusters. We believe our work demonstrates a robust strategy towards designing hybrid nanoclusters since BCP blocks can be infiltrated with various low cost salt-based precursors. The highly controlled nanocluster strategy disclosed here could have wide ranging uses, in particular for metasurface and optical based sensor applications.
Collapse
Affiliation(s)
- Alberto Alvarez-Fernandez
- CNRS, Univ. Bordeaux, Centre de Recherche Paul Pascal, UMR 5031 115 Avenue Schweitzer 33600 Pessac France
- CNRS, Univ. Bordeaux, Bordeaux INP, LCPO, UMR 5629 F-33600 Pessac France
- Department of Chemical Engineering, University College London Torrington Place London WC1E 7JE UK
| | - Frédéric Nallet
- CNRS, Univ. Bordeaux, Centre de Recherche Paul Pascal, UMR 5031 115 Avenue Schweitzer 33600 Pessac France
| | - Philippe Fontaine
- Synchrotron SOLEIL L'Orme des Merisiers, Saint-Aubin-BP 48 F-91192 Gif-sur Yvette Cedex France
| | - Cian Cummins
- CNRS, Univ. Bordeaux, Centre de Recherche Paul Pascal, UMR 5031 115 Avenue Schweitzer 33600 Pessac France
- CNRS, Univ. Bordeaux, Bordeaux INP, LCPO, UMR 5629 F-33600 Pessac France
| | | | - Philippe Barois
- CNRS, Univ. Bordeaux, Centre de Recherche Paul Pascal, UMR 5031 115 Avenue Schweitzer 33600 Pessac France
| | - Guillaume Fleury
- CNRS, Univ. Bordeaux, Bordeaux INP, LCPO, UMR 5629 F-33600 Pessac France
| | - Virginie Ponsinet
- CNRS, Univ. Bordeaux, Centre de Recherche Paul Pascal, UMR 5031 115 Avenue Schweitzer 33600 Pessac France
| |
Collapse
|
7
|
Alvarez-Fernandez A, Reid B, Suthar J, Choy SY, Jara Fornerod M, Mac Fhionnlaoich N, Yang L, Schmidt-Hansberg B, Guldin S. Fractionation of block copolymers for pore size control and reduced dispersity in mesoporous inorganic thin films. NANOSCALE 2020; 12:18455-18462. [PMID: 32941587 DOI: 10.1039/d0nr05132b] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Mesoporous inorganic thin films are promising materials architectures for a variety of applications, including sensing, catalysis, protective coatings, energy generation and storage. In many cases, precise control over a bicontinuous porous network on the 10 nm length scale is crucial for their operation. A particularly promising route for structure formation utilizes block copolymer (BCP) micelles in solution as sacrificial structure-directing agents for the co-assembly of inorganic precursors. This method offers pore size control via the molecular weight of the pore forming block and is compatible with a broad materials library. On the other hand, the molecular weight dependence impedes continuous pore tuning and the intrinsic polymer dispersity presents challenges to the pore size homogeneity. To this end, we demonstrate how chromatographic fractionation of BCPs provides a powerful method to control the pore size and dispersity of the resulting mesoporous thin films. We apply a semi-preparative size exclusion chromatographic fractionation to a polydisperse poly(isobutylene)-block-poly(ethylene oxide) (PIB-b-PEO) BCP obtained from scaled-up synthesis. The isolation of BCP fractions with distinct molecular weight and narrowed dispersity allowed us to not only tune the characteristic pore size from 9.1 ± 1.5 to 14.1 ± 2.1 nm with the identical BCP source material, but also significantly reduce the pore size dispersity compared to the non-fractionated BCP. Our findings offer a route to obtain a library of monodisperse BCPs from a polydisperse feedstock and provide important insights on the direct relationship between macromolecular characteristics and the resulting structure-directed mesopores, in particular related to dispersity.
Collapse
Affiliation(s)
- Alberto Alvarez-Fernandez
- Department of Chemical Engineering, University College London, Torrington Place, London, WC1E 7JE, UK.
| | - Barry Reid
- Department of Chemical Engineering, University College London, Torrington Place, London, WC1E 7JE, UK.
| | - Jugal Suthar
- Department of Chemical Engineering, University College London, Torrington Place, London, WC1E 7JE, UK. and UCL School of Pharmacy, University College London, 29-39 Brunswick Square, Bloomsbury, London, WC1N 1AX, UK
| | - Swan Yia Choy
- Department of Chemical Engineering, University College London, Torrington Place, London, WC1E 7JE, UK.
| | - Maximiliano Jara Fornerod
- Department of Chemical Engineering, University College London, Torrington Place, London, WC1E 7JE, UK.
| | - Niamh Mac Fhionnlaoich
- Department of Chemical Engineering, University College London, Torrington Place, London, WC1E 7JE, UK.
| | - Lixu Yang
- Department of Chemical Engineering, University College London, Torrington Place, London, WC1E 7JE, UK.
| | - Benjamin Schmidt-Hansberg
- BASF SE, Process Research & Chemical Engineering, Coating & Film Processing, Carl-Bosch-Strasse 38, 67056 Ludwigshafen am Rhein, Germany
| | - Stefan Guldin
- Department of Chemical Engineering, University College London, Torrington Place, London, WC1E 7JE, UK.
| |
Collapse
|