1
|
Wang P, Lv Y, Hou X, Yang X, Tao Q, Li G. Chitosan based fluorescent probe with AIE property for detection of Fe 3+ and bacteria. Int J Biol Macromol 2024; 279:135478. [PMID: 39250988 DOI: 10.1016/j.ijbiomac.2024.135478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 08/28/2024] [Accepted: 09/06/2024] [Indexed: 09/11/2024]
Abstract
Fluorescent probe with aggregation-induced emission (AIE) property has been widely used because of the advantages of high sensitivity, good selectivity and non-destructive testing. The development of fluorescent probe with good biocompatibility, photostability and biodegradability is of great significance in biomedicine and environmental detection. Herein, a novel type of fluorophore CS-TPE for detection of Fe3+ and bacteria was prepared by the Schiff base reaction of chitosan (CS) and 4-(1,2,2-triphenylethenyl) benzaldehyde (TPE-CHO). The fluorescence response mechanism of CS-TPE system was investigated by various characterization techniques. CS-TPE had an obvious AIE behavior with strong blue-green emissions at 473 nm and reaches the highest photoluminescence (PL) emission in 90 % H2O/ethanol mixtures. CS-TPE fluorescent probe exhibited sensitive quenching response to Fe3+, which can be used as a biosensor for detecting the concentration of Fe3+ with short response time (5 min), low detection limit (0.998 μM) and wide detection range (10-300 μM). Meanwhile, CS-TPE exhibited good antibacterial performance for S. aureus and E. coli. It is expected to realize the real-time fluorescence monitoring of metal ion detection and antibacterial process.
Collapse
Affiliation(s)
- Peiyao Wang
- School of Chemistry and Materials Science, Ludong University, Yantai 264025, China
| | - Yupeng Lv
- School of Chemistry and Materials Science, Ludong University, Yantai 264025, China; Shandong Laboratory of Advanced Materials and Green Manufacturing at Yantai, Yantai 264006, China
| | - Xinhui Hou
- School of Chemistry and Materials Science, Ludong University, Yantai 264025, China
| | - Xiaoluan Yang
- School of Chemistry and Materials Science, Ludong University, Yantai 264025, China
| | - Qian Tao
- School of Chemistry and Materials Science, Ludong University, Yantai 264025, China
| | - Guiying Li
- School of Chemistry and Materials Science, Ludong University, Yantai 264025, China; Shandong Laboratory of Advanced Materials and Green Manufacturing at Yantai, Yantai 264006, China.
| |
Collapse
|
2
|
Liu GJ, Zhang JD, Zhou W, Feng GL, Xing GW. Recent advances in sugar-based AIE luminogens and their applications in sensing and imaging. Chem Commun (Camb) 2024; 60:11899-11915. [PMID: 39323243 DOI: 10.1039/d4cc03850a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/27/2024]
Abstract
Most fluorogens with aggregation-induced emission (AIE) characteristics are hydrophobic and most common sugars are hydrophilic and naturally nontoxic. The combination of AIEgens and sugars can construct glycosyl AIEgens with the advantages of good water-solubility, low fluorescent background and satisfactory biocompatibility. Based on the specific reaction or binding with analytes to change the conjugate system or restrict intramolecular motions, glycosyl AIEgens can be used as powerful tools for detecting bioactive molecules or imaging living cells. In this feature article, we summarize recent advances in sugar-based AIE luminogens and their applications in biosensing and imaging. The sugar units could significantly increase the solubility, biocompatibility, target activity, and chemical modifying capacity and often decrease the background fluorescence of the AIE probes. Corresponding studies not only expand the application fields of AIEgens but also provide effective tools for broad carbohydrate research.
Collapse
Affiliation(s)
- Guang-Jian Liu
- College of Chemistry, Beijing Normal University, Beijing, 100875, China.
| | - Jing-Dong Zhang
- College of Chemistry, Beijing Normal University, Beijing, 100875, China.
| | - Wei Zhou
- College of Chemistry, Beijing Normal University, Beijing, 100875, China.
| | - Gai-Li Feng
- College of Chemistry, Beijing Normal University, Beijing, 100875, China.
| | - Guo-Wen Xing
- College of Chemistry, Beijing Normal University, Beijing, 100875, China.
| |
Collapse
|
3
|
Ji S, Li J, Duan X, Zhang J, Zhang Y, Song M, Li S, Chen H, Ding D. Targeted Enrichment of Enzyme‐Instructed Assemblies in Cancer Cell Lysosomes Turns Immunologically Cold Tumors Hot. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202110512] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Shenglu Ji
- Frontiers Science Center for Cell Responses State Key Laboratory of Medicinal Chemical Biology Key Laboratory of Bioactive Materials Ministry of Education, and College of Life Sciences, Nankai University Tianjin 300071 China
- The Key Laboratory of Biomedical Materials School of Life Science and Technology Xinxiang Medical University Xinxiang 453003 China
| | - Jun Li
- Frontiers Science Center for Cell Responses State Key Laboratory of Medicinal Chemical Biology Key Laboratory of Bioactive Materials Ministry of Education, and College of Life Sciences, Nankai University Tianjin 300071 China
| | - Xingchen Duan
- Frontiers Science Center for Cell Responses State Key Laboratory of Medicinal Chemical Biology Key Laboratory of Bioactive Materials Ministry of Education, and College of Life Sciences, Nankai University Tianjin 300071 China
| | - Jingtian Zhang
- Frontiers Science Center for Cell Responses State Key Laboratory of Medicinal Chemical Biology Key Laboratory of Bioactive Materials Ministry of Education, and College of Life Sciences, Nankai University Tianjin 300071 China
| | - Yufan Zhang
- Frontiers Science Center for Cell Responses State Key Laboratory of Medicinal Chemical Biology Key Laboratory of Bioactive Materials Ministry of Education, and College of Life Sciences, Nankai University Tianjin 300071 China
| | - Mengqing Song
- The Key Laboratory of Biomedical Materials School of Life Science and Technology Xinxiang Medical University Xinxiang 453003 China
| | - Songge Li
- The Key Laboratory of Biomedical Materials School of Life Science and Technology Xinxiang Medical University Xinxiang 453003 China
| | - Hongli Chen
- The Key Laboratory of Biomedical Materials School of Life Science and Technology Xinxiang Medical University Xinxiang 453003 China
| | - Dan Ding
- Frontiers Science Center for Cell Responses State Key Laboratory of Medicinal Chemical Biology Key Laboratory of Bioactive Materials Ministry of Education, and College of Life Sciences, Nankai University Tianjin 300071 China
| |
Collapse
|
4
|
Ji S, Li J, Duan X, Zhang J, Zhang Y, Song M, Li S, Chen H, Ding D. Targeted Enrichment of Enzyme-Instructed Assemblies in Cancer Cell Lysosomes Turns Immunologically Cold Tumors Hot. Angew Chem Int Ed Engl 2021; 60:26994-27004. [PMID: 34643312 DOI: 10.1002/anie.202110512] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Indexed: 01/10/2023]
Abstract
Lysosome-relevant cell death induced by lysosomal membrane permeabilization (LMP) has recently attracted increasing attention. However, nearly no studies show that currently available LMP inducers can evoke immunogenic cell death (ICD) or convert immunologically cold tumors to hot. Herein, we report a LMP inducer named TPE-Py-pYK(TPP)pY, which can respond to alkaline phosphatase (ALP), leading to formation of nanoassembies along with fluorescence and singlet oxygen turn-on. TPE-Py-pYK(TPP)pY tends to accumulate in ALP-overexpressed cancer cell lysosomes as well as induce LMP and rupture of lysosomal membranes to massively evoke ICD. Such LMP-induced ICD effectively converts immunologically cold tumors to hot as evidenced by abundant CD8+ and CD4+ T cells infiltration into the cold tumors. Exposure of ALP-catalyzed nanoassemblies in cancer cell lysosomes to light further intensifies the processes of LMP, ICD and cold-to-hot tumor conversion. This work thus builds a new bridge between lysosome-relevant cell death and cancer immunotherapy.
Collapse
Affiliation(s)
- Shenglu Ji
- Frontiers Science Center for Cell Responses, State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials, Ministry of Education, and College of Life Sciences, Nankai University, Tianjin, 300071, China.,The Key Laboratory of Biomedical Materials, School of Life Science and Technology, Xinxiang Medical University, Xinxiang, 453003, China
| | - Jun Li
- Frontiers Science Center for Cell Responses, State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials, Ministry of Education, and College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Xingchen Duan
- Frontiers Science Center for Cell Responses, State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials, Ministry of Education, and College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Jingtian Zhang
- Frontiers Science Center for Cell Responses, State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials, Ministry of Education, and College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Yufan Zhang
- Frontiers Science Center for Cell Responses, State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials, Ministry of Education, and College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Mengqing Song
- The Key Laboratory of Biomedical Materials, School of Life Science and Technology, Xinxiang Medical University, Xinxiang, 453003, China
| | - Songge Li
- The Key Laboratory of Biomedical Materials, School of Life Science and Technology, Xinxiang Medical University, Xinxiang, 453003, China
| | - Hongli Chen
- The Key Laboratory of Biomedical Materials, School of Life Science and Technology, Xinxiang Medical University, Xinxiang, 453003, China
| | - Dan Ding
- Frontiers Science Center for Cell Responses, State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials, Ministry of Education, and College of Life Sciences, Nankai University, Tianjin, 300071, China
| |
Collapse
|
5
|
Aggregation-Induced Emission Fluorescent Gels: Current Trends and Future Perspectives. Top Curr Chem (Cham) 2021; 379:9. [PMID: 33544283 DOI: 10.1007/s41061-020-00322-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Accepted: 12/22/2020] [Indexed: 12/26/2022]
Abstract
The development of fluorescent gels, if not the current focus, is at the center of recent efforts devoted to the invention of a new generation of gels. Fluorescent gels have numerous properties that are intrinsic to the gel structure, with additional light-emitting properties making them attractive for different applications. This review focuses on current studies associated with the development of fluorescent gels using aggregation-induced emission fluorophores (AIEgens) to ultimately suggest new directions for future research. Here, we discuss major drawbacks of the methodologies used frequently for the fabrication of fluorescent gels using traditional fluorophores compared to those using AIEgens. The fabrication strategies to develop AIE-based fluorescent gels, including physical mixing, soaking, self-assembly, noncovalent interactions, and permanent chemical reactions, are discussed thoroughly. New and recent findings on developing AIE-active gels are explained. Specifically, physically prepared AIE-based gels including supramolecular, ionic, and chemically prepared AIE-based gels are discussed. In addition, the intrinsic fluorescent properties of natural gels, known as clustering-triggered fluorescent gel, and new and recent relevant findings published in peer-reviewed journals are explained. This review also revealed the biomedical applications of AIE-based fluorescent hydrogels including drug delivery, biosensors, bioimaging, and tissue engineering. In conclusion, the current research situation and future directions are identified.
Collapse
|
6
|
Wang Y, Nie J, Fang W, Yang L, Hu Q, Wang Z, Sun JZ, Tang BZ. Sugar-Based Aggregation-Induced Emission Luminogens: Design, Structures, and Applications. Chem Rev 2020; 120:4534-4577. [DOI: 10.1021/acs.chemrev.9b00814] [Citation(s) in RCA: 107] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Yijia Wang
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
- Department of Chemistry, Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong 999077, China
| | - Jingyi Nie
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
- Department of Chemistry, Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong 999077, China
| | - Wen Fang
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
- Department of Chemistry, Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong 999077, China
| | - Ling Yang
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
- Department of Chemistry, Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong 999077, China
| | - Qiaoling Hu
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
- Department of Chemistry, Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong 999077, China
| | - Zhengke Wang
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
- Department of Chemistry, Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong 999077, China
| | - Jing Zhi Sun
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
- Department of Chemistry, Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong 999077, China
| | - Ben Zhong Tang
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
- Department of Chemistry, Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong 999077, China
| |
Collapse
|
7
|
Su S, Kang PM. Systemic Review of Biodegradable Nanomaterials in Nanomedicine. NANOMATERIALS (BASEL, SWITZERLAND) 2020; 10:E656. [PMID: 32244653 PMCID: PMC7221794 DOI: 10.3390/nano10040656] [Citation(s) in RCA: 125] [Impact Index Per Article: 31.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Revised: 03/20/2020] [Accepted: 03/25/2020] [Indexed: 12/12/2022]
Abstract
BACKGROUND Nanomedicine is a field of science that uses nanoscale materials for the diagnosis and treatment of human disease. It has emerged as an important aspect of the therapeutics, but at the same time, also raises concerns regarding the safety of the nanomaterials involved. Recent applications of functionalized biodegradable nanomaterials have significantly improved the safety profile of nanomedicine. OBJECTIVE Our goal is to evaluate different types of biodegradable nanomaterials that have been functionalized for their biomedical applications. METHOD In this review, we used PubMed as our literature source and selected recently published studies on biodegradable nanomaterials and their applications in nanomedicine. RESULTS We found that biodegradable polymers are commonly functionalized for various purposes. Their property of being naturally degraded under biological conditions allows these biodegradable nanomaterials to be used for many biomedical purposes, including bio-imaging, targeted drug delivery, implantation and tissue engineering. The degradability of these nanoparticles can be utilized to control cargo release, by allowing efficient degradation of the nanomaterials at the target site while maintaining nanoparticle integrity at off-target sites. CONCLUSION While each biodegradable nanomaterial has its advantages and disadvantages, with careful design and functionalization, biodegradable nanoparticles hold great future in nanomedicine.
Collapse
Affiliation(s)
| | - Peter M. Kang
- Cardiovascular Institute, Beth Israel Deaconess Medical Center and Harvard Medical School, 3 Blackfan Circle, CLS 910, Boston, MA 02215, USA;
| |
Collapse
|
8
|
Jia X, He J, Shen L, Chen J, Wei Z, Qin X, Niu D, Li Y, Shi J. Gradient Redox-Responsive and Two-Stage Rocket-Mimetic Drug Delivery System for Improved Tumor Accumulation and Safe Chemotherapy. NANO LETTERS 2019; 19:8690-8700. [PMID: 31698897 DOI: 10.1021/acs.nanolett.9b03340] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Recent drug delivery nanosystems for cancer treatment still suffer from the poor tumor accumulation and low therapeutic efficacy due to the complex in vivo biological barriers. To resolve these problems, in this work, a novel gradient redox-responsive and two-stage rocket-mimetic drug nanocarrier is designed and constructed for improved tumor accumulation and safe chemotherapy. The nanocarrier is constructed on the basis of the disulfide-doped organosilica-micellar hybrid nanoparticles and the following dual-functional modification with disulfide-bonded polyethylene glycol (PEG) and amido-bonded polyethylenimine (PEI). First, prolonged circulation duration in the bloodstream is guaranteed due to the shielding of the outer PEG chains. Once the nanocarrier accumulates at the tumoral extracellular microenvironment with low glutathione (GSH) concentrations, the first-stage redox-responsive behavior with the separation of PEG and the exposure of PEI is triggered, leading to the improved tumor accumulation and cellular internalization. Furthermore, with their endocytosis by tumor cells, a high concentration of GSH induces the second-stage redox-responsiveness with the degradation of silsesquioxane framework and the release of the encapsulated drugs. As a result, the rocket-mimetic drug carrier displays longer circulation duration in the bloodstream, higher tumor accumulation capability, and improved antitumor efficacy (which is 2.5 times higher than that with inseparable PEG). It is envisioned that the rocket-mimetic strategy can provide new solutions for improving tumor accumulation and safety of nanocarriers in further cancer chemotherapy.
Collapse
Affiliation(s)
- Xiaobo Jia
- Lab of Low-Dimensional Materials Chemistry, Key Laboratory for Ultrafine Materials of Ministry of Education, Shanghai Engineering Research Center of Hierarchical Nanomaterials, School of Materials Science and Engineering , East China University of Science and Technology , Shanghai 200237 , P. R. China
| | - Jianping He
- Lab of Low-Dimensional Materials Chemistry, Key Laboratory for Ultrafine Materials of Ministry of Education, Shanghai Engineering Research Center of Hierarchical Nanomaterials, School of Materials Science and Engineering , East China University of Science and Technology , Shanghai 200237 , P. R. China
| | - Luying Shen
- Lab of Low-Dimensional Materials Chemistry, Key Laboratory for Ultrafine Materials of Ministry of Education, Shanghai Engineering Research Center of Hierarchical Nanomaterials, School of Materials Science and Engineering , East China University of Science and Technology , Shanghai 200237 , P. R. China
| | - Jianzhuang Chen
- Lab of Low-Dimensional Materials Chemistry, Key Laboratory for Ultrafine Materials of Ministry of Education, Shanghai Engineering Research Center of Hierarchical Nanomaterials, School of Materials Science and Engineering , East China University of Science and Technology , Shanghai 200237 , P. R. China
| | - Zhenyang Wei
- Lab of Low-Dimensional Materials Chemistry, Key Laboratory for Ultrafine Materials of Ministry of Education, Shanghai Engineering Research Center of Hierarchical Nanomaterials, School of Materials Science and Engineering , East China University of Science and Technology , Shanghai 200237 , P. R. China
| | - Xing Qin
- Lab of Low-Dimensional Materials Chemistry, Key Laboratory for Ultrafine Materials of Ministry of Education, Shanghai Engineering Research Center of Hierarchical Nanomaterials, School of Materials Science and Engineering , East China University of Science and Technology , Shanghai 200237 , P. R. China
| | - Dechao Niu
- Lab of Low-Dimensional Materials Chemistry, Key Laboratory for Ultrafine Materials of Ministry of Education, Shanghai Engineering Research Center of Hierarchical Nanomaterials, School of Materials Science and Engineering , East China University of Science and Technology , Shanghai 200237 , P. R. China
| | - Yongsheng Li
- Lab of Low-Dimensional Materials Chemistry, Key Laboratory for Ultrafine Materials of Ministry of Education, Shanghai Engineering Research Center of Hierarchical Nanomaterials, School of Materials Science and Engineering , East China University of Science and Technology , Shanghai 200237 , P. R. China
| | - Jianlin Shi
- Lab of Low-Dimensional Materials Chemistry, Key Laboratory for Ultrafine Materials of Ministry of Education, Shanghai Engineering Research Center of Hierarchical Nanomaterials, School of Materials Science and Engineering , East China University of Science and Technology , Shanghai 200237 , P. R. China
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics , Chinese Academy of Sciences , Shanghai 200050 , P. R. China
| |
Collapse
|
9
|
Choi W, Lim NY, Choi H, Seo ML, Ahn J, Jung JH. Self-Assembled Triphenylphosphonium-Conjugated Dicyanostilbene Nanoparticles and Their Fluorescence Probes for Reactive Oxygen Species. NANOMATERIALS (BASEL, SWITZERLAND) 2018; 8:E1034. [PMID: 30545092 PMCID: PMC6316551 DOI: 10.3390/nano8121034] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Revised: 12/07/2018] [Accepted: 12/10/2018] [Indexed: 12/28/2022]
Abstract
We report self-assembled novel triphenylphosphonium-conjugated dicyanostilbene-based as selective fluorescence turn-on probes for ¹O₂ and ClO-. Mono- or di-triphenylphosphonium-conjugated dicyanostilbene derivatives 1 and 2 formed spherical structures with diameters of ca. 27 and 56.5 nm, respectively, through π-π interaction between dicyanostilbene groups. Self-assembled 1 showed strong fluorescent emission upon the addition of ¹O₂ and ClO- compared to other ROS (O₂-, •OH, NO, TBHP, H₂O₂, GSH), metal ions (K⁺, Na⁺), and amino acids (cysteine and histidine). Upon addition of ¹O₂ and ClO-, the spherical structure of 1 changed to a fiber structure (8-nm wide; 300-nm long). Upon addition of ¹O₂ and ClO-, the chemical structural conversion of 1 was determined by FAB-Mass, NMR, IR and Zeta potential analysis, and the strong emission of the self-assembled 1 was due to an aggregation-induced emission enhancement. This self-assembled material was the first for selective ROS as a fluorescence turn-on probe. Thus, a nanostructure change-derived turn-on sensing strategy for ¹O₂ or ClO- may offer a new approach to developing methods for specific guest molecules in biological and environmental subjects.
Collapse
Affiliation(s)
- Wonjin Choi
- Department of Chemistry and Research Institute of Natural Science, Gyeongsang National University, Jinju 52828, Korea.
| | - Na Young Lim
- Department of Chemistry and Research Institute of Natural Science, Gyeongsang National University, Jinju 52828, Korea.
| | - Heekyoung Choi
- Department of Chemistry and Research Institute of Natural Science, Gyeongsang National University, Jinju 52828, Korea.
| | - Moo Lyong Seo
- Department of Chemistry and Research Institute of Natural Science, Gyeongsang National University, Jinju 52828, Korea.
| | - Junho Ahn
- Composites Research Division, Korea Institute of Materials Science, Changwon 51508, Korea.
| | - Jong Hwa Jung
- Department of Chemistry and Research Institute of Natural Science, Gyeongsang National University, Jinju 52828, Korea.
| |
Collapse
|
10
|
Luo M, Li Q, Wang D, Ge C, Wang J, Nan K, Lin S. Fabrication of chitosan based nanocomposite with legumain sensitive properties using charge driven self-assembly strategy. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2018; 29:142. [PMID: 30121849 DOI: 10.1007/s10856-018-6149-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Accepted: 08/10/2018] [Indexed: 06/08/2023]
Abstract
Chitosan (CS) based nanoparticles (NPs) have several advantages in delivering drugs. They are usually prepared in a micro-emulsion solvent system but this route can leave significant levels of potentially harmful organic solvent residue in the NPs. In this study, we prepared CS based nanocomposites using charge driven self-assembly in an aqueous buffer, thus avoiding the use of organic solvents. Doxorubicin (DOX) was covalently attached to positive charged CS with a legumain substrate peptide to confer targeted drug release property, since legumain is often overexpressed in tumors or tumor associated micro environments. This DOX prodrug solution interacted with negative charged methoxyl poly (ethylene glycol)-block-poly (glutamic acid) copolymer (PEG-PGA) in an aqueous buffer forming nanocomposite with a regular morphology. The particle size and zeta potential of these NPs was regulated by the addition of different PEG-PGA concentrations into the DOX prodrug solution. Due to its potential for legumain triggered release, this DOX NP exhibited enhanced cytotoxicity against choroidal melanoma cell line (Mum-2C) and reduced cytotoxicity on normal human corneal epithelial cells (HCEC), suggesting a good potential for enhanced targeted delivery of chemotherapeutic agents. A chitosan based nanocomposite with legumain sensitive properties are rapidly controllable prepared in aqueous buffer by charge driven self-assembly strategy, without using micro-emulsion solvent system and cross-linking agents.
Collapse
Affiliation(s)
- Mengmeng Luo
- School of Ophthalmology & Optometry and Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
| | - Qing Li
- School of Ophthalmology & Optometry and Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
- Wenzhou Institute of Biomaterials and Engineering, Chinese Academy of Science, Wenzhou, 325000, China
| | - Dongmei Wang
- School of Ophthalmology & Optometry and Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
| | - Chaoxiang Ge
- School of Ophthalmology & Optometry and Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
| | - Jingjie Wang
- School of Ophthalmology & Optometry and Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Wenzhou Medical University, Wenzhou, 325027, China
| | - Kaihui Nan
- School of Ophthalmology & Optometry and Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China.
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Wenzhou Medical University, Wenzhou, 325027, China.
| | - Sen Lin
- School of Ophthalmology & Optometry and Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China.
- Wenzhou Institute of Biomaterials and Engineering, Chinese Academy of Science, Wenzhou, 325000, China.
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Wenzhou Medical University, Wenzhou, 325027, China.
| |
Collapse
|