1
|
Pavlov DI, Yu X, Ryadun AA, Samsonenko DG, Dorovatovskii PV, Lazarenko VA, Sun N, Sun Y, Fedin VP, Potapov AS. Multiresponsive luminescent metal-organic framework for cooking oil adulteration detection and gallium(III) sensing. Food Chem 2024; 445:138747. [PMID: 38387317 DOI: 10.1016/j.foodchem.2024.138747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Revised: 02/04/2024] [Accepted: 02/11/2024] [Indexed: 02/24/2024]
Abstract
A new 3D metal-organic framework {[Cd16(tr2btd)10(dcdps)16(H2O)3(EtOH)]∙15DMF}n (MOF 1, tr2btd = 4,7-di(1,2,4-triazol-1-yl)benzo-2,1,3-thiadiazole, H2dcdps = 4,4'-sulfonyldibenzoic acid) was obtained and its luminescent properties were studied. MOF 1 exhibited bright blue-green luminescence with a high quantum yield of 74 % and luminescence quenching response to a toxic natural polyphenol gossypol and luminescence enhancement response to some trivalent metal cations (Fe3+, Cr3+, Al3+ and Ga3+). The limit of gossypol detection was 0.20 µM and the determination was not interfered by the components of the cottonseed oil. The limit of detection of gallium(III) was 1.1 µM. It was demonstrated that MOF 1 may be used for distinguishing between the genuine sunflower oil and oil adulterated by crude cottonseed oil through qualitative luminescent and quantitative visual gossypol determination.
Collapse
Affiliation(s)
- Dmitry I Pavlov
- Novosibirsk State University, 2 Pirogov Str., 630090 Novosibirsk, Russia; Nikolaev Institute of Inorganic Chemistry, Siberian Branch of the Russian Academy of Sciences, 3 Lavrentiev Ave., 630090 Novosibirsk, Russia
| | - Xiaolin Yu
- Novosibirsk State University, 2 Pirogov Str., 630090 Novosibirsk, Russia; Nikolaev Institute of Inorganic Chemistry, Siberian Branch of the Russian Academy of Sciences, 3 Lavrentiev Ave., 630090 Novosibirsk, Russia
| | - Alexey A Ryadun
- Novosibirsk State University, 2 Pirogov Str., 630090 Novosibirsk, Russia
| | - Denis G Samsonenko
- Novosibirsk State University, 2 Pirogov Str., 630090 Novosibirsk, Russia
| | - Pavel V Dorovatovskii
- National Research Centre "Kurchatov Institute", Kurchatov Square 1, Moscow 123182, Russia
| | - Vladimir A Lazarenko
- National Research Centre "Kurchatov Institute", Kurchatov Square 1, Moscow 123182, Russia
| | - Na Sun
- Key Laboratory of Inorganic Molecule-Based Chemistry of Liaoning Province, Shenyang University of Chemical Technology, Shenyang 110142, China
| | - Yaguang Sun
- Key Laboratory of Inorganic Molecule-Based Chemistry of Liaoning Province, Shenyang University of Chemical Technology, Shenyang 110142, China
| | - Vladimir P Fedin
- Novosibirsk State University, 2 Pirogov Str., 630090 Novosibirsk, Russia; Nikolaev Institute of Inorganic Chemistry, Siberian Branch of the Russian Academy of Sciences, 3 Lavrentiev Ave., 630090 Novosibirsk, Russia
| | - Andrei S Potapov
- Novosibirsk State University, 2 Pirogov Str., 630090 Novosibirsk, Russia; Nikolaev Institute of Inorganic Chemistry, Siberian Branch of the Russian Academy of Sciences, 3 Lavrentiev Ave., 630090 Novosibirsk, Russia.
| |
Collapse
|
2
|
Burlak PV, Samsonenko DG, Kovalenko KA, Fedin VP. Series of Cadmium-Organic Frameworks Based on Mixed Flexible and Rigid Ligands: Single-Crystal-to-Single-Crystal Transformations, Sorption, and Luminescence Properties. Inorg Chem 2023; 62:18087-18097. [PMID: 37861690 DOI: 10.1021/acs.inorgchem.3c02277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2023]
Abstract
Here, we present a series of Cd(II) coordination polymers containing two types of ligands: sterically rigid terephthalate derivatives (bdc-NO22- and bdc-Br2-) and flexible bis(2-methylimidazolyl)propane (bmip). The combination of two types of ligands is used to obtain and characterize compounds by single crystal and powder X-ray diffraction, FT-IR, elemental analysis, and TGA. Guest exchange results in structural transformations. 2-fold interpenetrated 1·DMF and 2·DMF rapidly undergo to 4-fold interpenetrated 1·Et2O, 1·EtOH, and 1·H2O, or 2·Et2O, respectively. Also, changes in the coordinating numbers and length of the N,N'-donor bmip ligand were observed according to single crystal X-ray analysis. Activated guest-free compounds [Cd(bdc-NO2)(bmip)] (1) and [Cd(bdc-Br)(bmip)] (2) are shown to be porous with a BET surface area of 103 and 283 m2·g-1, respectively. Moreover, both compounds demonstrate gate-opening behavior of ethylene adsorption isotherms at low pressures (<1 bar) and highly selective adsorption of benzene over cyclohexane or lower alcohols. Also, both compounds demonstrate a strong dependence of the maximum of the photoluminescence emission on an excitation wavelength. As a result, the photoluminescence color changes from white to red and from blue to red through green and yellow for compounds 1 and 2, respectively, with excitation wavelength changing from 360 to 540 nm.
Collapse
Affiliation(s)
- Pavel V Burlak
- Nikolaev Institute of Inorganic Chemistry SB RAS, 3 Akad. Lavrentiev Av., 630090 Novosibirsk, Russian Federation
| | - Denis G Samsonenko
- Nikolaev Institute of Inorganic Chemistry SB RAS, 3 Akad. Lavrentiev Av., 630090 Novosibirsk, Russian Federation
| | - Konstantin A Kovalenko
- Nikolaev Institute of Inorganic Chemistry SB RAS, 3 Akad. Lavrentiev Av., 630090 Novosibirsk, Russian Federation
| | - Vladimir P Fedin
- Nikolaev Institute of Inorganic Chemistry SB RAS, 3 Akad. Lavrentiev Av., 630090 Novosibirsk, Russian Federation
| |
Collapse
|
3
|
Tang Y, Yao XQ. SYNTHESIS, CRYSTAL STRUCTURE, AND LUMINESCENT PROPERTY OF A NEW HETEROMETALLIC COMPOUND BASED ON A LARGE π-CONJUGATED DICARBOXYLATE LIGAND. J STRUCT CHEM+ 2022. [DOI: 10.1134/s0022476622110191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
4
|
Structural Diversity and Carbon Dioxide Sorption Selectivity of Zinc(II) Metal-Organic Frameworks Based on Bis(1,2,4-triazol-1-yl)methane and Terephthalic Acid. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27196481. [PMID: 36235016 PMCID: PMC9571910 DOI: 10.3390/molecules27196481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 09/26/2022] [Accepted: 09/27/2022] [Indexed: 11/09/2022]
Abstract
A three-component reaction between the 1,4-benzenedicarboxylic (terephthalic) acid (H2bdc), bis(1,2,4-triazol-1-yl)methane (btrm) and zinc nitrate was studied, and three new coordination polymers were isolated by a careful selection of the reaction conditions. Coordination polymers {[Zn3(DMF)(btrm)(bdc)3]·nDMF}∞ and {[Zn3(btrm)(bdc)3]·nDMF}∞ containing trinuclear {Zn3(bdc)3} secondary building units are joined by btrm auxiliary linkers into three-dimensional metal–organic frameworks. The coordination polymer {[Zn(bdc)(btrm)]∙nDMF}∞ consists of Zn2+ cations joined by bdc2− and btrm linkers into a two-fold interpenetrated network. Upon activation, MOF [Zn3(btrm)(bdc)3]∞ demonstrated CO2/N2 adsorption selectivity with an ideal adsorbed solution theory (IAST) factor of 21. All three MOF demonstrated photoluminescence with a maximum near 435–440 nm upon excitation at 330 nm.
Collapse
|
5
|
Burlak PV, Kovalenko KA, Samsonenko DG, Fedin VP. Cadmium(II)-Organic Frameworks Containing the 1,3-Bis(2-methylimidazolyl)propane Ligand. RUSS J COORD CHEM+ 2022. [DOI: 10.1134/s1070328422080024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
6
|
Structural and Thermal Investigations of Co(II) and Ni(II) Coordination Polymers Based on biphenyl-4,4'-dioxydiacetate Linker. MATERIALS 2021; 14:ma14133545. [PMID: 34202006 PMCID: PMC8269505 DOI: 10.3390/ma14133545] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 06/08/2021] [Accepted: 06/18/2021] [Indexed: 11/29/2022]
Abstract
Two coordination polymers, [Co(µ4-L)(H2O)2]n (1) and [Ni(µ-L)(H2O)4]n (2), were solvothermally assembled from the corresponding metal(II) chlorides and biphenyl-4,4-dioxydiacetic acid (H2L) as a flexible dicarboxylate linker. The cobalt(II) compound 1 featured a layer-pillared 3D metal-organic network with a cds topology, while the nickel(II) derivative 2 represented a linear chain 1D coordination polymer with a 2C1 topology. The µ4− and µ-L2− linkers exhibited different denticity and coordination modes in the synthesized compounds, thus contributing to their structural diversity. The dimensionality of 1 and 2 had an influence on their thermal stability and decomposition processes, which were investigated in detail by TG-DSC and TG-FTIR methods. Thermal decomposition products of coordination polymers were also analyzed by PXRD, confirming the formation of Co3O4/CoO and NiO as final materials. The obtained compounds broaden a family of coordination polymers assembled from flexible dicarboxylate linkers.
Collapse
|
7
|
Barsukova MO, Kovalenko KA, Nizovtsev AS, Sapianik AA, Samsonenko DG, Dybtsev DN, Fedin VP. Isomeric Scandium-Organic Frameworks with High Hydrolytic Stability and Selective Adsorption of Acetylene. Inorg Chem 2021; 60:2996-3005. [PMID: 33586423 DOI: 10.1021/acs.inorgchem.0c03159] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Two solvent-controlled topological isomers of scandium-organic frameworks [Sc(Hpzc)(pzc)]·DMF·2H2O (1·DMF·2H2O) and [Sc(Hpzc)(pzc)]·DMA·4H2O (2·DMA·4H2O) were synthesized using 2,5-pyrazinedicarboxylate (pzc2-) (DMF = dimethylformamide; DMA = dimethylacetamide). Despite the isomeric nature of the obtained metal-organic frameworks (MOFs), they possess different structural features and unique adsorption properties toward gases and iodine. The compound 1 has widely spread among MOF structures a dia topology with ultranarrow channels, which together with inner surface functionalization leads to enhanced CO2 adsorption and high selectivity factors in CO2/CH4 and CO2/N2 gas mixtures (25.9 and 35.6, respectively, 1/1 v/v). Moreover, a rare preferable adsorption of CO2 over C2H2 was demonstrated. The biporous isomeric framework 2 has a crb topology inherent in zeolites. A remarkable adsorption affinity to C2H2 with the ideal adsorbed solution theory selectivity factor of 127.1 for a C2H2/C2H4 mixture (1/99 v/v) was achieved for 2. Both compounds have exceptional chemical stability in a wide range of pH from acidic to basic media.
Collapse
Affiliation(s)
- Marina O Barsukova
- Nikolaev Institute of Inorganic Chemistry, Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia.,Functional Materials, Design, Discovery & Development, Advanced Membrane & Porous Materials Center, King Abdullah University of Science and Technology, 23955-6900 Thuwal, Kingdom of Saudi Arabia
| | - Konstantin A Kovalenko
- Nikolaev Institute of Inorganic Chemistry, Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia
| | - Anton S Nizovtsev
- Nikolaev Institute of Inorganic Chemistry, Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia
| | - Aleksandr A Sapianik
- Nikolaev Institute of Inorganic Chemistry, Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia.,Functional Materials, Design, Discovery & Development, Advanced Membrane & Porous Materials Center, King Abdullah University of Science and Technology, 23955-6900 Thuwal, Kingdom of Saudi Arabia
| | - Denis G Samsonenko
- Nikolaev Institute of Inorganic Chemistry, Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia
| | - Danil N Dybtsev
- Nikolaev Institute of Inorganic Chemistry, Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia
| | - Vladimir P Fedin
- Nikolaev Institute of Inorganic Chemistry, Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia
| |
Collapse
|
8
|
He YC, Wang Y, Zhao FH, Wang YC, Wang KX, Yang HK, Xu N. Syntheses, structures and properties of two Ni(II) coordination polymers based on an anionic ligand deprotonated 5-((3-carboxyphenoxy)methyl)benzene-1,3-dioic acid and different neutral ligands. Inorganica Chim Acta 2020. [DOI: 10.1016/j.ica.2020.119930] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
9
|
Wang D, Wang T, Zhao P, Shi Z, Zhao Q. Physical characterizations, Hirshfeld surface analysis and luminescent properties of Cd(II) and Pb(II) coordination polymers based on 3-(1,2,4-triazol-1-yl)-benzoic acid. Inorganica Chim Acta 2020. [DOI: 10.1016/j.ica.2020.119657] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
10
|
Kuznetsova A, Matveevskaya V, Pavlov D, Yakunenkov A, Potapov A. Coordination Polymers Based on Highly Emissive Ligands: Synthesis and Functional Properties. MATERIALS (BASEL, SWITZERLAND) 2020; 13:E2699. [PMID: 32545737 PMCID: PMC7345804 DOI: 10.3390/ma13122699] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 06/03/2020] [Accepted: 06/10/2020] [Indexed: 12/13/2022]
Abstract
Coordination polymers are constructed from metal ions and bridging ligands, linking them into solid-state structures extending in one (1D), two (2D) or three dimensions (3D). Two- and three-dimensional coordination polymers with potential voids are often referred to as metal-organic frameworks (MOFs) or porous coordination polymers. Luminescence is an important property of coordination polymers, often playing a key role in their applications. Photophysical properties of the coordination polymers can be associated with intraligand, metal-centered, guest-centered, metal-to-ligand and ligand-to-metal electron transitions. In recent years, a rapid growth of publications devoted to luminescent or fluorescent coordination polymers can be observed. In this review the use of fluorescent ligands, namely, 4,4'-stilbenedicarboxylic acid, 1,3,4-oxadiazole, thiazole, 2,1,3-benzothiadiazole, terpyridine and carbazole derivatives, naphthalene diimides, 4,4',4''-nitrilotribenzoic acid, ruthenium(II) and iridium(III) complexes, boron-dipyrromethene (BODIPY) derivatives, porphyrins, for the construction of coordination polymers are surveyed. Applications of such coordination polymers based on their photophysical properties will be discussed. The review covers the literature published before April 2020.
Collapse
Affiliation(s)
- Anastasia Kuznetsova
- Kizhner Research Center, National Research Tomsk Polytechnic University, 30 Lenin Ave., 634050 Tomsk, Russia; (A.K.); (V.M.); (D.P.); (A.Y.)
| | - Vladislava Matveevskaya
- Kizhner Research Center, National Research Tomsk Polytechnic University, 30 Lenin Ave., 634050 Tomsk, Russia; (A.K.); (V.M.); (D.P.); (A.Y.)
| | - Dmitry Pavlov
- Kizhner Research Center, National Research Tomsk Polytechnic University, 30 Lenin Ave., 634050 Tomsk, Russia; (A.K.); (V.M.); (D.P.); (A.Y.)
- Nikolaev Institute of Inorganic Chemistry, Siberian Branch of the Russian Academy of Sciences, 3 Lavrentiev Ave., 630090 Novosibirsk, Russia
| | - Andrei Yakunenkov
- Kizhner Research Center, National Research Tomsk Polytechnic University, 30 Lenin Ave., 634050 Tomsk, Russia; (A.K.); (V.M.); (D.P.); (A.Y.)
- Nikolaev Institute of Inorganic Chemistry, Siberian Branch of the Russian Academy of Sciences, 3 Lavrentiev Ave., 630090 Novosibirsk, Russia
| | - Andrei Potapov
- Nikolaev Institute of Inorganic Chemistry, Siberian Branch of the Russian Academy of Sciences, 3 Lavrentiev Ave., 630090 Novosibirsk, Russia
| |
Collapse
|
11
|
Five coordination polymers based on two asymmetric Semi-rigid carboxylate organic ligands and N-donor 4, 4′-di (1H-imidazol-1-yl)-1, 1′-biphenyl ligand: Solvent-induced synthesis, crystal structures, magnetic and dye absorption properties. Inorganica Chim Acta 2020. [DOI: 10.1016/j.ica.2019.119356] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
12
|
Li YL, Zheng LP, Nie H, Wang YF, Yao JH, Li J, Li JJ, Zhou XL, Wang HF, Wang HY. Synthesis, structure, sorption and luminescence propesrties of one dual functional Zn(Ⅱ) metal–organic framework. J Mol Struct 2020. [DOI: 10.1016/j.molstruc.2019.127427] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
13
|
Lysova AA, Samsonenko DG, Dorovatovskii PV, Lazarenko VA, Khrustalev VN, Kovalenko KA, Dybtsev DN, Fedin VP. Tuning the Molecular and Cationic Affinity in a Series of Multifunctional Metal-Organic Frameworks Based on Dodecanuclear Zn(II) Carboxylate Wheels. J Am Chem Soc 2019; 141:17260-17269. [PMID: 31584810 DOI: 10.1021/jacs.9b08322] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
A series of new zinc(II)-thiophene-2,5-dicarboxylate (tdc) MOFs based on novel dodecanuclear wheel-shaped building blocks has been synthesized in almost quantative yields. Single-crystal X-ray diffraction analyses reveal 3D porous frameworks with a complex composition [Zn12(tdc)6(glycolate)6(dabco)3] where glycolate is a deprotonated polyatomic alcohol (ethylene glycol, EgO2, 1; 1,2-propanediol, PrO2, 2; 1,2-butanediol, BuO2, 3; 1,2-pentanediol, PeO2, 4; glycerol, GlO2, 5) and dabco is 1,4-diazo[2.2.2.]bicyclooctane. All compounds 1-5 are isostructural except for pendant groups of the diols decorating the surface of channels. The adsorption of small gases (N2, CO2, CH4, C2H2, C2H4, C2H6) and larger hydrocarbons (benzene, cyclohexane) both in liquid and vapor phases was thoroughly investigated for all compounds. The zero-coverage adsorption enthalpies, Henry constants, and selectivity factors by various models are calculated and discussed. The versatile adsorption functionality of the title series results from the variable nature of the diol and could be tailored for a specific adsorbate system. For example, 1 shows excellent selectivity of benzene over cyclohexane (20:1 for vapors, 92:1 for liquid phase), while 4 demonstrates unprecedented adsorption preference of cyclohexane over benzene (selectivity up to 5:1). The compound 5 demonstrates great adsorption selectivity for CO2/N2 (up to 75.1), CO2/CH4 (up to 7.7), C2H2/CH4 (up to 14.2), and C2H4/CH4 (up to 9.4). Also, due to polar nature of the pores, 5 features size-selective sorption of alkaline metal cations in order Li+ > Na+ > K+ > Cs+ as well as a notable luminescent response for cesium(I) ions and urea.
Collapse
Affiliation(s)
- Anna A Lysova
- Nikolaev Institute of Inorganic Chemistry , Siberian Branch of the Russian Academy of Sciences , Novosibirsk 630090 , Russia.,Novosibirsk State University , Novosibirsk 630090 , Russia
| | - Denis G Samsonenko
- Nikolaev Institute of Inorganic Chemistry , Siberian Branch of the Russian Academy of Sciences , Novosibirsk 630090 , Russia.,Novosibirsk State University , Novosibirsk 630090 , Russia
| | - Pavel V Dorovatovskii
- National Research Center "Kurchatov Institute" , Kurchatov Square 1 , Moscow 123182 , Russia
| | - Vladimir A Lazarenko
- National Research Center "Kurchatov Institute" , Kurchatov Square 1 , Moscow 123182 , Russia
| | - Victor N Khrustalev
- Peoples' Friendship University of Russia (RUDN University) , Miklukho-Maklay Street 6 , Moscow 117198 , Russia
| | - Konstantin A Kovalenko
- Nikolaev Institute of Inorganic Chemistry , Siberian Branch of the Russian Academy of Sciences , Novosibirsk 630090 , Russia.,Novosibirsk State University , Novosibirsk 630090 , Russia
| | - Danil N Dybtsev
- Nikolaev Institute of Inorganic Chemistry , Siberian Branch of the Russian Academy of Sciences , Novosibirsk 630090 , Russia.,Novosibirsk State University , Novosibirsk 630090 , Russia
| | - Vladimir P Fedin
- Nikolaev Institute of Inorganic Chemistry , Siberian Branch of the Russian Academy of Sciences , Novosibirsk 630090 , Russia.,Novosibirsk State University , Novosibirsk 630090 , Russia
| |
Collapse
|
14
|
Mingabudinova LR, Zalogina AS, Krasilin AA, Petrova MI, Trofimov P, Mezenov YA, Ubyivovk EV, Lönnecke P, Nominé A, Ghanbaja J, Belmonte T, Milichko VA. Laser printing of optically resonant hollow crystalline carbon nanostructures from 1D and 2D metal-organic frameworks. NANOSCALE 2019; 11:10155-10159. [PMID: 31038502 DOI: 10.1039/c9nr02167a] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Using a hybrid approach involving a slow diffusion method to synthesize 1D and 2D MOFs followed by their treatment with femtosecond infrared laser radiation, we generated 100-600 nm well-defined hollow spheres and hemispheres of graphite. This ultra-fast technique extends the library of shapes of crystalline MOF derivatives appropriate for all-dielectric nanophotonics.
Collapse
Affiliation(s)
- Leila R Mingabudinova
- Physics and Chemistry of Nanostructures Group, Ghent University, B-9000 Gent, Belgium
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|