1
|
Manit J, Kanjanaboos P, Naweephattana P, Naikaew A, Srathongsian L, Seriwattanachai C, Supruangnet R, Nakajima H, Eiamprasert U, Kiatisevi S. Towards device stability of perovskite solar cells through low-cost alkyl-terminated SFX-based hole transporting materials and carbon electrodes. Sci Rep 2024; 14:24167. [PMID: 39406790 PMCID: PMC11480455 DOI: 10.1038/s41598-024-74735-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Accepted: 09/30/2024] [Indexed: 10/19/2024] Open
Abstract
Developing cost-effective, high-efficiency, and stable hole transporting materials (HTMs) is crucial for replacing traditional spiro-OMeTAD in perovskite solar cells (PSCs) and achieving sustainable solar energy solutions. This work presents two novel air-stable HTMs based on a spiro[fluorene-9,9'-xanthene] (SFX) core functionalized with N-methylcarbazole (XC2-M) and N-hexylcarbazole (XC2-H) rings. These HTMs were synthesized via a straightforward, three-step process with good overall yields (∼40%) and low production costs. To further reduce device cost, carbon back electrodes were employed. The resulting PSCs, with a structure of FTO/SnO2/Cs0.05FA0.73MA0.22Pb(I0.77Br0.23)3/HTM/C achieved power conversion efficiencies (PCEs) of 13.5% (XC2-M) and 10.2% (XC2-H), comparable to the reference spiro-OMeTAD device (12.2%). The choice of alkyl chain on the HTM significantly impacts film morphology and device stability. The XC2-H device exhibited exceptional long-term stability, retaining approximately 90% of its initial PCE after 720 h of storage in 30-40% humidity air without encapsulation. This surpasses the performance of both the spiro-OMeTAD (55% retention) and XC2-M (68% retention) devices. The superior stability of XC2-H is attributed to its highly hydrophobic nature and the formation of a compact, smooth film due to interdigitation of the hexyl chains. The straightforward synthesis of XC2-H from commercially available materials offers a promising approach for large-scale PSC production.
Collapse
Affiliation(s)
- Jeeranun Manit
- Department of Chemistry, Faculty of Science, Mahidol University, Rama VI Rd, Ratchathewi, Bangkok, 10400, Thailand
| | - Pongsakorn Kanjanaboos
- School of Materials Science and Innovation, Faculty of Science, Mahidol University, Nakhon Pathom, 73170, Thailand
| | - Phiphob Naweephattana
- Department of Chemistry, Faculty of Science, Mahidol University, Rama VI Rd, Ratchathewi, Bangkok, 10400, Thailand
| | - Atittaya Naikaew
- School of Materials Science and Innovation, Faculty of Science, Mahidol University, Nakhon Pathom, 73170, Thailand
| | - Ladda Srathongsian
- School of Materials Science and Innovation, Faculty of Science, Mahidol University, Nakhon Pathom, 73170, Thailand
| | - Chaowaphat Seriwattanachai
- School of Materials Science and Innovation, Faculty of Science, Mahidol University, Nakhon Pathom, 73170, Thailand
| | | | - Hideki Nakajima
- Synchrotron Light Research Institute, Nakhon Ratchasima, 30000, Thailand
| | - Utt Eiamprasert
- Department of Chemistry, Faculty of Science and Technology, Rajamangala University of Technology Thanyaburi, Pathum Thani, 12110, Thailand
| | - Supavadee Kiatisevi
- Department of Chemistry, Faculty of Science, Mahidol University, Rama VI Rd, Ratchathewi, Bangkok, 10400, Thailand.
- Center of Sustainable Energy and Green Materials, Faculty of Science, Mahidol University, Putthamonthon, Nakhon Pathom, 73170, Thailand.
| |
Collapse
|
2
|
Velusamy A, Afraj SN, Guo YS, Ni JS, Huang HL, Su TY, Ezhumalai Y, Liu CL, Chiang CH, Chen MC, Wu CG. Bicyclopentadithiophene-Based Organic Semiconductor for Stable and High-Performance Perovskite Solar Cells Exceeding 22. ACS APPLIED MATERIALS & INTERFACES 2024; 16:6162-6175. [PMID: 38277509 PMCID: PMC10859901 DOI: 10.1021/acsami.3c15774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Revised: 12/30/2023] [Accepted: 01/09/2024] [Indexed: 01/28/2024]
Abstract
Well-performing organic-inorganic halide perovskites are susceptible to poor efficiency and instability due to their various defects at the interphases, grain boundaries (GBs), and surfaces. In this study, an in situ method is utilized for effectively passivating the under-coordinated Pb2+ defects of perovskite with new non-fullerene acceptors (NFAs) (INXBCDT; X = H, Cl, and Br) through their carbonyl and cyano functional groups during the antisolvent dripping process. It reveals that the bicyclopentadithiophene (BCDT) core with highly electron-withdrawing end-capping groups passivates GBs and boosts perovskite grain growth. This effective defect passivation decreases the trap density to increase the carrier recombination lifetime of the perovskite film. As a result, bromo-substituted dicyanomethylene indanone (INBr)-end-capped BCDT (INBrBCDT-b8; 3a)-passivated devices exhibit the highest power conversion efficiency (PCE) of 22.20% (vs those of 18.09% obtained for perovskite films without passivation) upon an optimized film preparation process. Note that devices treated with more soluble 2-ethylhexyl-substituted compounds (1a, 2a, and 3a) exhibit higher PCE than those treated with less soluble octyl-substituted compounds (1b, 2b, and 3b). It is also worth noting that BCDT is a cost-effective six-ring core that is easier to synthesize with a higher yield and therefore much cheaper than those with highly fused-ring cores. In addition, a long-term stability test in a glovebox for 1500 h reveals that the perovskite solar cells (PSCs) based on a perovskite absorber treated with compound 3a maintain ∼90% of their initial PCE. This is the first example of the simplest high-conjugation additive for perovskite film to achieve a PCE greater than 22% of the corresponding lead-based PSCs.
Collapse
Affiliation(s)
- Arulmozhi Velusamy
- Department
of Chemistry, National Central University, Taoyuan 32001, Taiwan
| | - Shakil N. Afraj
- Department
of Chemistry, National Central University, Taoyuan 32001, Taiwan
| | - Yu-Sheng Guo
- Department
of Chemistry, National Central University, Taoyuan 32001, Taiwan
| | - Jen-Shyang Ni
- Department
of Chemical and Materials Engineering, National
Kaohsiung University of Science and Technology, Kaohsiung 80778, Taiwan
| | - Hung-Lin Huang
- Department
of Chemistry, National Central University, Taoyuan 32001, Taiwan
| | - Ting-Yu Su
- Department
of Chemistry, National Central University, Taoyuan 32001, Taiwan
| | - Yamuna Ezhumalai
- Department
of Chemistry, National Central University, Taoyuan 32001, Taiwan
| | - Cheng-Liang Liu
- Department
of Materials Science and Engineering, National
Taiwan University, Taipei 10617, Taiwan
| | - Chien-Hung Chiang
- Department
of Chemistry, National Central University, Taoyuan 32001, Taiwan
| | - Ming-Chou Chen
- Department
of Chemistry, National Central University, Taoyuan 32001, Taiwan
| | - Chun-Guey Wu
- Department
of Chemistry, National Central University, Taoyuan 32001, Taiwan
| |
Collapse
|
3
|
Farokhi A, Shahroosvand H, Monache GD, Pilkington M, Nazeeruddin MK. The evolution of triphenylamine hole transport materials for efficient perovskite solar cells. Chem Soc Rev 2022; 51:5974-6064. [PMID: 35770784 DOI: 10.1039/d1cs01157j] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In recent years, the dramatic increase in power conversion efficiency (PCE) coupled with a decrease in the total cost of third-generation solar cells has led to a significant increase in the collaborative research efforts of academic and industrial researchers. Such interdisciplinary studies have afforded novel materials, which in many cases are now ready to be brought to the marketplace. Within this framework, the field of perovskite solar cells (PSCs) is currently an important area of research due to their extraordinary light-harvesting properties. In particular, PSCs prepared via facile synthetic procedures, containing hole transport materials (HTMs) with versatile triphenylamine (TPA) structural cores, amenable to functionalization, have become a focus of intense global research activity. To optimize the efficiency of the solar cells to achieve efficiencies closer to rival silicon-based technology, TPA building blocks must exhibit favourable electrochemical, photophysical, and photochemical properties that can be chemically tuned in a rational manner. Although PSCs based on TPA building blocks exhibit attractive properties such as high-power efficiencies, a reduction in their synthetic costs coupled with higher stabilities and environmental considerations still need to be addressed. Considering the above, a detailed summary of the most promising compounds and current methodologies employed to overcome the remaining challenges in this field is provided. The objective of this review is to provide guidance to readers on exploring new avenues for the discovery of efficient TPA derivatives, to aid in the future development and advancement of TPA-based PSCs for commercial applications.
Collapse
Affiliation(s)
- Afsaneh Farokhi
- Group for Molecular Engineering of Advanced Functional Materials (GMA), Chemistry Department, University of Zanjan, Zanjan, Iran.
| | - Hashem Shahroosvand
- Group for Molecular Engineering of Advanced Functional Materials (GMA), Chemistry Department, University of Zanjan, Zanjan, Iran.
| | - Gabriele Delle Monache
- Department of Chemistry, Brock University, 1812 Sir Isaac Brock Way, St Catharines, Ontario, L2S3A1, Canada.
| | - Melanie Pilkington
- Department of Chemistry, Brock University, 1812 Sir Isaac Brock Way, St Catharines, Ontario, L2S3A1, Canada.
| | - Mohammad Khaja Nazeeruddin
- Group for Molecular Engineering of Functional Materials, Institute of Chemical Sciences and Engineering, Ecole Polytechnique Fédérale de Lausanne, CH-1951 Sion, Switzerland.,Department of Materials Science and Engineering, City University of Hong Kong, Kowloon, Hong Kong.
| |
Collapse
|
4
|
Berens HRV, Mohammad K, Reiss GJ, Müller TJJ. 3,9-Disubstituted Bis[1]benzothieno[3,2- b;2',3'- e][1,4]thiazines with Low Oxidation Potentials and Enhanced Emission. J Org Chem 2021; 86:8000-8014. [PMID: 34101441 DOI: 10.1021/acs.joc.1c00397] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Dibrominated bis[1]benzothieno[3,2-b;2',3'-e][1,4]thiazines (BBTT) are efficiently synthesized and applied in Suzuki and Buchwald-Hartwig cross-coupling reactions to give access to 3,9-disubstituted BBTT derivatives with extended π-conjugation and enhanced electronic properties. For instance, 3,9-di(hetero)aryl substituted BBTT derivatives surpass their parent congeners phenothiazines with lower oxidation potentials and pronounced yellow to orange-red fluorescence (Φf ≈ 30-45%). In addition, 3,9-bis(di(hetero)arylamino substituted BBTT possess very high lying HOMO energy (EHOMO = -4.46 to -4.83 eV), a favorable property of hole transport molecules. A representative X-ray structure analysis reveals that the central BBTT core in these extended π-systems is essentially planarized. Upon protonation of a 3,9-bis(di(hetero)arylamino) substituted BBTT, the absorption color shifts from yellow to deep blue with a concomitant loss of the emission. The optical properties of these novel BBTT derivatives can be plausibly rationalized by time-dependent density functional theory (TD(DFT)) calculations and correlation between experimentally determined oxidation potentials and σp parameters as well as between photophysical data and the specific substituent parameter σp- by establishing electronic structure-property relationships.
Collapse
Affiliation(s)
- Henning R V Berens
- Institut für Organische Chemie und Makromolekulare Chemie, Heinrich-Heine-Universität Düsseldorf, Universitätsstrasse 1, D-40225 Düsseldorf, Germany
| | - Kausar Mohammad
- Institut für Organische Chemie und Makromolekulare Chemie, Heinrich-Heine-Universität Düsseldorf, Universitätsstrasse 1, D-40225 Düsseldorf, Germany
| | - Guido J Reiss
- Institut für Anorganische Chemie und Strukturchemie, Heinrich-Heine-Universität Düsseldorf, Universitätsstrasse 1, D-40225 Düsseldorf, Germany
| | - Thomas J J Müller
- Institut für Organische Chemie und Makromolekulare Chemie, Heinrich-Heine-Universität Düsseldorf, Universitätsstrasse 1, D-40225 Düsseldorf, Germany
| |
Collapse
|
5
|
Meng D, Wang R, Lin JB, Yang JL, Nuryyeva S, Lin YC, Yuan S, Wang ZK, Zhang E, Xiao C, Zhu D, Jiang L, Zhao Y, Li Z, Zhu C, Houk KN, Yang Y. Chlorinated Spiroconjugated Fused Extended Aromatics for Multifunctional Organic Electronics. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2006120. [PMID: 33586281 DOI: 10.1002/adma.202006120] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 01/06/2021] [Indexed: 06/12/2023]
Abstract
The synthesis of a new molecule, SFIC-Cl, is reported, which features enhanced π-electron delocalization by spiroconjugation and narrowed bandgap by chlorination. SFIC-Cl is integrated into a single-crystal transistor (OFET) and organic light-emitting diode (OLED). The material demonstrates remarkable transport abilities across various solution-processed OFETs and retains efficient radiance in a near-infrared OLED emitting light at 700 nm. Furthermore, the intermolecular multi-dimensional connection of SFIC-Cl enables the fabrication of a single-component large-area (2 × 2 cm2 ) near-infrared OLED by spin-coating. The SFIC-Cl-acceptor-based solar cell shows excellent power conversion efficiency of 10.16% resulting from the broadened and strong absorption and well-matched energy levels. The study demonstrates that chlorinated spiroconjugated fused systems offer a novel direction toward the development of high-performance organic semiconductor materials for hybrid organic electronic devices.
Collapse
Affiliation(s)
- Dong Meng
- Department of Materials Science and Engineering and California NanoSystems Institute, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Rui Wang
- Department of Materials Science and Engineering and California NanoSystems Institute, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Janice B Lin
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Jonathan Lee Yang
- Department of Chemistry, University of California, Berkeley, Berkeley, CA, 94720, USA
| | - Selbi Nuryyeva
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Yu-Che Lin
- Department of Materials Science and Engineering and California NanoSystems Institute, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Shuai Yuan
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, 215123, China
| | - Zhao-Kui Wang
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, 215123, China
| | - Elizabeth Zhang
- Department of Materials Science and Engineering and California NanoSystems Institute, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Chengyi Xiao
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering & State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Danlei Zhu
- Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Lang Jiang
- Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Yepin Zhao
- Department of Materials Science and Engineering and California NanoSystems Institute, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Zhenxing Li
- State Key Laboratory of Heavy Oil Processing College of New Energy and Materials China University of Petroleum (Beijing), Beijing, 102249, China
| | - Chenhui Zhu
- Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, CA, 94704, USA
| | - Kendall N Houk
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Yang Yang
- Department of Materials Science and Engineering and California NanoSystems Institute, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| |
Collapse
|
6
|
Chang YM, Li CW, Lu YL, Wu MS, Li H, Lin YS, Lu CW, Chen CP, Chang YJ. Spherical Hole-Transporting Interfacial Layer Passivated Defect for Inverted NiO x-Based Planar Perovskite Solar Cells with High Efficiency of over 20. ACS APPLIED MATERIALS & INTERFACES 2021; 13:6450-6460. [PMID: 33527837 DOI: 10.1021/acsami.0c18245] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
In this study, we achieved a facile and low-cost (18-22 USD/g) synthesis of spiro[fluorene-9,9-phenanthren-10-one]-based interfacial layer materials (MSs; designated MS-PC, MS-PA, MS-OC, and MS-OA). Carbazoles and dimethylacridine substituents with an extended π-conjugation achieved through ortho- or para-orientations were used as donors at the spiro[fluorene-9,9'-phenanthren-10'-one] moiety. Highly efficient and stable inverted perovskite solar cells (PSCs) with the device architecture of ITO/NiOx/MSs/perovskite/PC61BM/BCP/Ag can be achieved to improve the surface morphology of NiOx when MSs are adopted as the interfacial layer. During a morphological study, the ortho-orientated donor of MS-OC and MS-OA has spherical structures indicated that the films were smooth and that the films of perovskite deposited on them had large grain size and uniformity. The photoluminescence properties of the perovskite layers on the NiOx/MSs were showed better hole-transporting capabilities than the bare NiOx. The dual-functional interfacial layer has shown defect passivation effect, it not only improved the surface morphology of NiOx but also enlarged the perovskite layer grain size. The best PSC device performance of the NiOx/MS-OC was characterized by 22.34 mA cm-2 short-circuit current density (Jsc), 1.128 V open-circuit voltage (Voc), and 80.8% fill factor (FF), resulting in 20.34% power conversion efficiency (PCE). The NiOx/MS-OC PSCs showed good long-term device stability, even retained the original PCE of 93.16% after 370 days under argon (25 °C). Owing to the superior perovskite morphologies of the NiOx/MSs, the resulting devices outperformed the bare NiOx-based PSCs.
Collapse
Affiliation(s)
- Yi-Min Chang
- Department of Chemistry, Tunghai University, Taichung 40704, Taiwan
| | - Chia-Wei Li
- Department of Material Engineering, Ming Chi University of Technology, New Taipei City 243, Taiwan
| | - Yu-Lin Lu
- Department of Applied Chemistry, Providence University, Taichung 43301, Taiwan
| | - Meng-Shian Wu
- Department of Applied Chemistry, Providence University, Taichung 43301, Taiwan
| | - Hsin Li
- Department of Chemistry, Tunghai University, Taichung 40704, Taiwan
| | - Ying-Sheng Lin
- Department of Chemistry, Tunghai University, Taichung 40704, Taiwan
| | - Chin-Wei Lu
- Department of Applied Chemistry, Providence University, Taichung 43301, Taiwan
| | - Chih-Ping Chen
- Department of Material Engineering, Ming Chi University of Technology, New Taipei City 243, Taiwan
| | - Yuan Jay Chang
- Department of Chemistry, Tunghai University, Taichung 40704, Taiwan
| |
Collapse
|
7
|
Yanagi T, Tanaka T, Yorimitsu H. Asymmetric systematic synthesis, structures, and (chir)optical properties of a series of dihetero[8]helicenes. Chem Sci 2021; 12:2784-2793. [PMID: 34164042 PMCID: PMC8179410 DOI: 10.1039/d1sc00044f] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Accepted: 01/28/2021] [Indexed: 01/22/2023] Open
Abstract
A series of dihetero[8]helicenes have been systematically synthesized in enantiomerically enriched forms by utilizing the characteristic transformations of the organosulfur functionality. The synthetic route begins with assembling a ternaphthyl common synthetic intermediate from 2-naphthol and bissulfinylnaphthalene through an extended Pummerer reaction followed by facile multi-gram-scale resolution. The subsequent cyclization reactions into dioxa- and dithia[8]helicenes take place with excellent axial-to-helical chirality conversion. Dithia[8]helicene is further transformed into the nitrogen and the carbon analogs by replacing the two endocyclic sulfur atoms via SNAr-based skeletal reconstruction. The efficient systematic synthesis has enabled comprehensive evaluation of physical properties, which has clarified the effect of the endocyclic atoms on their structures and (chir)optical properties as well as the unexpected conformational stability of the common helical framework.
Collapse
Affiliation(s)
- Tomoyuki Yanagi
- Department of Chemistry, Graduate School of Science, Kyoto University Japan
| | - Takayuki Tanaka
- Department of Chemistry, Graduate School of Science, Kyoto University Japan
| | - Hideki Yorimitsu
- Department of Chemistry, Graduate School of Science, Kyoto University Japan
| |
Collapse
|
8
|
Liu QL, Ren BY, Sun YG, Xie LH, Huang W. Research Progress of Hole Transport Materials Based on Spiro Aromatic-Skeleton in Perovskite Solar Cells. ACTA CHIMICA SINICA 2021. [DOI: 10.6023/a21060253] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
9
|
Li X, Sun N, Li Z, Chen J, Sun Q, Wang H, Hao Y. A low-cost asymmetric carbazole-based hole-transporting material for efficient perovskite solar cells. NEW J CHEM 2021. [DOI: 10.1039/d0nj02943b] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Perovskite solar cells (PSCs) have reached their highest efficiency with the state-of-the-art hole-transporting material (HTM) spiro-OMeTAD.
Collapse
Affiliation(s)
- Xueqiao Li
- Key Laboratory of Advanced Transducers and Intelligent Control System
- Ministry of Education and Shanxi Province
- Taiyuan University of Technology
- Taiyuan
- P. R. China
| | - Na Sun
- Key Laboratory of Advanced Transducers and Intelligent Control System
- Ministry of Education and Shanxi Province
- Taiyuan University of Technology
- Taiyuan
- P. R. China
| | - Zhanfeng Li
- Key Laboratory of Advanced Transducers and Intelligent Control System
- Ministry of Education and Shanxi Province
- Taiyuan University of Technology
- Taiyuan
- P. R. China
| | - Jinbo Chen
- Key Laboratory of Advanced Transducers and Intelligent Control System
- Ministry of Education and Shanxi Province
- Taiyuan University of Technology
- Taiyuan
- P. R. China
| | - Qinjun Sun
- College of Physics and Optoelectronics
- Taiyuan University of Technology
- Taiyuan
- P. R. China
| | - Hua Wang
- Key Laboratory of Interface Science and Engineering in Advanced Materials
- Taiyuan University of Technology
- Taiyuan
- P. R. China
| | - Yuying Hao
- College of Physics and Optoelectronics
- Taiyuan University of Technology
- Taiyuan
- P. R. China
| |
Collapse
|
10
|
Gataullin RR. Advances in the Synthesis of Benzo‐Fused Spiro Nitrogen Heterocycles: New Approaches and Modification of Old Strategies. Helv Chim Acta 2020. [DOI: 10.1002/hlca.202000137] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Rail R. Gataullin
- Ufa Federal Research Centre Ufa Institute of Chemistry of the Russian Academy of Sciences Prospect Oktyabrya, 71 Ufa 450054 Russian Federation
| |
Collapse
|
11
|
Wang L, Zhang J, Liu P, Xu B, Zhang B, Chen H, Inge AK, Li Y, Wang H, Cheng YB, Kloo L, Sun L. Design and synthesis of dopant-free organic hole-transport materials for perovskite solar cells. Chem Commun (Camb) 2018; 54:9571-9574. [DOI: 10.1039/c8cc04026e] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Two novel dopant-free hole-transport materials for perovskite solar cells with spiro[dibenzo[c,h]xanthene-7,9′-fluorene] skeletons were prepared via facile synthesis routes.
Collapse
|