1
|
Wang FJ, Chen A, Ling SD, Xu JH. Continuous-flow diazotization of red base KD hydrochloride suspensions in a microreaction system. REACT CHEM ENG 2021. [DOI: 10.1039/d1re00075f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A continuous-flow microreaction system has been developed to perform the diazotization reaction of red base KD suspensions. The yield of the diazotization reaction could reach over 99% in 21.2 s under optimized conditions.
Collapse
Affiliation(s)
- Fa-Jun Wang
- The State Key Laboratory of Chemical Engineering
- Department of Chemical Engineering
- Tsinghua University
- Beijing 100084
- China
| | - An Chen
- The State Key Laboratory of Chemical Engineering
- Department of Chemical Engineering
- Tsinghua University
- Beijing 100084
- China
| | - Si-da Ling
- The State Key Laboratory of Chemical Engineering
- Department of Chemical Engineering
- Tsinghua University
- Beijing 100084
- China
| | - Jian-Hong Xu
- The State Key Laboratory of Chemical Engineering
- Department of Chemical Engineering
- Tsinghua University
- Beijing 100084
- China
| |
Collapse
|
2
|
Li J, Šimek H, Ilioae D, Jung N, Bräse S, Zappe H, Dittmeyer R, Ladewig BP. In situ sensors for flow reactors – a review. REACT CHEM ENG 2021. [DOI: 10.1039/d1re00038a] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
A comprehensive review on integrating microfluidic reactors with in situ sensors for reaction probing of chemical transformation.
Collapse
Affiliation(s)
- Jun Li
- Institute for Micro Process Engineering (IMVT), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, Eggenstein-Leopoldshafen, 76344, Germany
| | - Helena Šimek
- Institute of Biological and Chemical Systems (IBCS-FMS), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, Eggenstein-Leopoldshafen, 76344, Germany
| | - David Ilioae
- Gisela and Erwin Sick Laboratory for Micro-optics, Department of Microsystems Engineering, University of Freiburg, Germany
| | - Nicole Jung
- Institute of Biological and Chemical Systems (IBCS-FMS), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, Eggenstein-Leopoldshafen, 76344, Germany
| | - Stefan Bräse
- Institute of Biological and Chemical Systems (IBCS-FMS), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, Eggenstein-Leopoldshafen, 76344, Germany
| | - Hans Zappe
- Gisela and Erwin Sick Laboratory for Micro-optics, Department of Microsystems Engineering, University of Freiburg, Germany
| | - Roland Dittmeyer
- Institute for Micro Process Engineering (IMVT), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, Eggenstein-Leopoldshafen, 76344, Germany
| | - Bradley P. Ladewig
- Institute for Micro Process Engineering (IMVT), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, Eggenstein-Leopoldshafen, 76344, Germany
| |
Collapse
|
3
|
SILP Materials as Effective Catalysts in Selective Monofunctionalization of 1,1,3,3-Tetramethyldisiloxane. Catalysts 2020. [DOI: 10.3390/catal10121414] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Functionalized siloxanes are one of the most important classes of organosilicon compounds, thus the enhancement of current methods of its synthesis is an important issue. Herein, we present the selective and highly effective reaction between 1,1,3,3-tetramethyldisiloxane (TMDSO) and 1-octene (1-oct), using SILP (supported ionic liquid phase) materials containing a rhodium catalyst immobilized in three phosphonium ionic liquids (ILs) differing in the structure of cation. Studies have shown high potential for using SILP materials as catalysts due to their high catalytic activity and selectivity, easy separation process, and the possibility of reusing the catalyst in subsequent reaction cycles without adding a new portion of the catalyst. Using the most active SILP material SiO2/[P66614][NTf2]/[{Rh(μ-OSiMe3)(cod)}2] allows for reuse of the catalyst at least 50 times in an efficient and highly selective monofunctionalization of TMDSO.
Collapse
|
4
|
Wang FJ, Huang JP, Xu JH. Continuous-Flow Synthesis of the Azo Pigment Yellow 14 Using a Three-Stream Micromixing Process. Org Process Res Dev 2019. [DOI: 10.1021/acs.oprd.9b00286] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Fa-Jun Wang
- The State Key Laboratory of Chemical Engineering, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
| | - Jin-Pei Huang
- The State Key Laboratory of Chemical Engineering, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
| | - Jian-Hong Xu
- The State Key Laboratory of Chemical Engineering, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
| |
Collapse
|