1
|
Chu N, Cong L, Yue J, Xu W, Xu S. Fluorescent Imaging Probe Targeting Mitochondria Based on Supramolecular Host-Guest Assembly and Disassembly. ACS OMEGA 2022; 7:34268-34277. [PMID: 36188319 PMCID: PMC9520549 DOI: 10.1021/acsomega.2c03766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 08/18/2022] [Indexed: 06/16/2023]
Abstract
Fluorescent dyes and probes play an indispensable role in bioimaging. The mitochondrion is one of the crucial organelles which takes charge of energy production and is the primary site of aerobic respiration in the cell. To illuminate mitochondria, a series of supramolecular fluorescent imaging probes were developed based on the host-guest assembly of 1,4-bis[2-(4-pyridyl)ethenyl]-benzene (BPEB) derivatives and cucurbituril[6] (CB[6]). These host-guest conjugates can be efficiently internalized into cells due to their water solubility and target mitochondria according to their positive charges. In response to the intracellular microenvironments, these conjugates start dynamic disassembly. The released BPEBs show a highly hydrophobic feature, which can crystallize to form fluorescent solids that illuminate the mitochondria. The intracellular disassembly of the host-guest probes was evidenced by fluorescence lifetime imaging in situ. These smart mitochondrion-targeting fluorescent imaging probes can be available to investigate the structures and functions of mitochondria, which are of great significance in the intracellular dynamic transformation of supramolecular assemblies.
Collapse
Affiliation(s)
- Ning Chu
- State
Key Laboratory of Supramolecular Structure and Materials, College
of Chemistry, Jilin University, Changchun 130012, P. R. China
- Institute
of Theoretical Chemistry, College of Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Lili Cong
- State
Key Laboratory of Supramolecular Structure and Materials, College
of Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Jing Yue
- State
Key Laboratory of Supramolecular Structure and Materials, College
of Chemistry, Jilin University, Changchun 130012, P. R. China
- College
of Chemical Engineering, Huanggang Normal
University, Huanggang, Hubei, 438000, P. R. China
| | - Weiqing Xu
- State
Key Laboratory of Supramolecular Structure and Materials, College
of Chemistry, Jilin University, Changchun 130012, P. R. China
- Institute
of Theoretical Chemistry, College of Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Shuping Xu
- State
Key Laboratory of Supramolecular Structure and Materials, College
of Chemistry, Jilin University, Changchun 130012, P. R. China
- Institute
of Theoretical Chemistry, College of Chemistry, Jilin University, Changchun 130012, P. R. China
- Center
for Supramolecular Chemical Biology, College of Chemistry, Jilin University, Changchun 130012, P. R.
China
| |
Collapse
|
2
|
Chen K, Hua ZY, Zhao JL, Redshaw C, Tao Z. Construction of cucurbit[n]uril-based supramolecular frameworks via host-guest inclusion and functional properties thereof. Inorg Chem Front 2022. [DOI: 10.1039/d2qi00513a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Frameworks utilizing cucurbit[n]uril-based chemistry build on the rapid developments in the fields of metal-organic frameworks (MOFs), covalent-organic frameworks (COFs), and supramolecular organic frameworks (SOFs), and as porous materials have found...
Collapse
|
3
|
Falconer RJ, Schuur B, Mittermaier AK. Applications of isothermal titration calorimetry in pure and applied research from 2016 to 2020. J Mol Recognit 2021; 34:e2901. [PMID: 33975380 DOI: 10.1002/jmr.2901] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 04/02/2021] [Accepted: 04/26/2021] [Indexed: 02/06/2023]
Abstract
The last 5 years have seen a series of advances in the application of isothermal titration microcalorimetry (ITC) and interpretation of ITC data. ITC has played an invaluable role in understanding multiprotein complex formation including proteolysis-targeting chimeras (PROTACS), and mitochondrial autophagy receptor Nix interaction with LC3 and GABARAP. It has also helped elucidate complex allosteric communication in protein complexes like trp RNA-binding attenuation protein (TRAP) complex. Advances in kinetics analysis have enabled the calculation of kinetic rate constants from pre-existing ITC data sets. Diverse strategies have also been developed to study enzyme kinetics and enzyme-inhibitor interactions. ITC has also been applied to study small molecule solvent and solute interactions involved in extraction, separation, and purification applications including liquid-liquid separation and extractive distillation. Diverse applications of ITC have been developed from the analysis of protein instability at different temperatures, determination of enzyme kinetics in suspensions of living cells to the adsorption of uremic toxins from aqueous streams.
Collapse
Affiliation(s)
- Robert J Falconer
- School of Chemical Engineering & Advanced Materials, University of Adelaide, Adelaide, South Australia, Australia
| | - Boelo Schuur
- Faculty of Science and Technology, University of Twente, Enschede, Netherlands
| | | |
Collapse
|
4
|
Shan PH, Zhao J, Deng XY, Lin RL, Bian B, Tao Z, Xiao X, Liu JX. Selective recognition and determination of phenylalanine by a fluorescent probe based on cucurbit[8]uril and palmatine. Anal Chim Acta 2020; 1104:164-171. [PMID: 32106948 DOI: 10.1016/j.aca.2020.01.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Revised: 12/23/2019] [Accepted: 01/02/2020] [Indexed: 01/06/2023]
Abstract
This paper demonstrated a simple and validated fluorescence enhancing method to selectively recognize and discriminate the amino acid phenylalanine (Phe). 1H NMR spectroscopy reveal that the palmatine (PAL) can be encapsulated into the cucurbit [8]uril (Q [8]) in aqueous solution to form stable 1:2 host-guest inclusion complex PAL2@Q [8], which exhibits moderate intensity fluorescence property. Interestingly, the addition of the Phe into the inclusion complex PAL2@Q [8] leads to dramatically enhancing of the fluorescence intensity. In contrast, the addition of any other natural amino acids into the inclusion complex PAL2@Q [8] gives no fluorescence variation. Furthermore, it is easy to detect the concentration of Phe in target aqueous solution according to the linear relationship between fluorescence intensity and concentration of the Phe.
Collapse
Affiliation(s)
- Pei-Hui Shan
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Guizhou University, Guiyang 550025, China; Key Laboratory of Macrocyclic and Supramolecular Chemistry of Guizhou Province, Guizhou University, Guiyang, 550025, China
| | - Jie Zhao
- Key Laboratory of Macrocyclic and Supramolecular Chemistry of Guizhou Province, Guizhou University, Guiyang, 550025, China
| | - Xin-Yu Deng
- Key Laboratory of Macrocyclic and Supramolecular Chemistry of Guizhou Province, Guizhou University, Guiyang, 550025, China
| | - Rui-Lian Lin
- College of Chemistry and Chemical Engineering, Anhui University of Technology, Maanshan, 243002, China
| | - Bing Bian
- College of Chemical and Environmental Engineering, Shandong University of Science and Technology, Qingdao, 266590, China
| | - Zhu Tao
- Key Laboratory of Macrocyclic and Supramolecular Chemistry of Guizhou Province, Guizhou University, Guiyang, 550025, China
| | - Xin Xiao
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Guizhou University, Guiyang 550025, China; Key Laboratory of Macrocyclic and Supramolecular Chemistry of Guizhou Province, Guizhou University, Guiyang, 550025, China.
| | - Jing-Xin Liu
- College of Chemistry and Chemical Engineering, Anhui University of Technology, Maanshan, 243002, China.
| |
Collapse
|
5
|
Xu W, Deng X, Xiao X, Bian B, Chen Q, Dalgarno SJ, Tao Z, Redshaw C. Supramolecular assemblies controlled by cucurbit[ n]uril size ( n = 6, 7, 8 and 10). NEW J CHEM 2020. [DOI: 10.1039/d0nj00087f] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The differing cavity size of the Q[n] determines the binding interactions between the benzyl substituted 4-pyrrolidinopyridinium salt and each Q[n]. Single crystal X-ray diffraction of the guest as well as two host–guest complexes is reported.
Collapse
Affiliation(s)
- Weitao Xu
- Key Laboratory of Macrocyclic and Supramolecular Chemistry of Guizhou Province
- Guizhou University
- Guiyang 550025
- China
| | - Xinyu Deng
- Key Laboratory of Macrocyclic and Supramolecular Chemistry of Guizhou Province
- Guizhou University
- Guiyang 550025
- China
| | - Xin Xiao
- Key Laboratory of Macrocyclic and Supramolecular Chemistry of Guizhou Province
- Guizhou University
- Guiyang 550025
- China
| | - Bing Bian
- College of Chemical and Environmental Engineering
- Shandong University of Science and Technology
- Qingdao 266590
- P. R. China
| | - Qing Chen
- Key Laboratory of Macrocyclic and Supramolecular Chemistry of Guizhou Province
- Guizhou University
- Guiyang 550025
- China
| | - Scott J. Dalgarno
- Institute of Chemical Sciences
- School of Engineering and Physical Sciences
- Heriot-Watt University
- Edinburgh EH14 4AS
- UK
| | - Zhu Tao
- Key Laboratory of Macrocyclic and Supramolecular Chemistry of Guizhou Province
- Guizhou University
- Guiyang 550025
- China
| | - Carl Redshaw
- Department of Chemistry and Biochemistry
- University of Hull
- Hull HU6 7RX
- UK
| |
Collapse
|
6
|
Yang M, Huang Y, Liu M, Yang MX, Wang Q, Zeng X, Xiao X, Tao Z. Specific Recognition of Hg
2+
and other Cations by a Hoechst33258@inverted Cucurbit[7]uril Fluorescence Probe Using Different pH Media. ChemistrySelect 2019. [DOI: 10.1002/slct.201901717] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Meixiang Yang
- Key Laboratory of Macrocyclic and Supramolecular Chemistry of Guizhou ProvinceGuizhou University Guiyang 550025 China
| | - Ying Huang
- The Engineering and Research Center for Southwest Bio-Pharmaceutical Resources of National Education Ministry of ChinaGuizhou University Guiyang 550025 China
| | - Ming Liu
- Key Laboratory of Macrocyclic and Supramolecular Chemistry of Guizhou ProvinceGuizhou University Guiyang 550025 China
| | - Mei X. Yang
- Key Laboratory of Macrocyclic and Supramolecular Chemistry of Guizhou ProvinceGuizhou University Guiyang 550025 China
| | - Qin Wang
- Key Laboratory of Macrocyclic and Supramolecular Chemistry of Guizhou ProvinceGuizhou University Guiyang 550025 China
| | - Xi Zeng
- Key Laboratory of Macrocyclic and Supramolecular Chemistry of Guizhou ProvinceGuizhou University Guiyang 550025 China
| | - Xin Xiao
- Key Laboratory of Macrocyclic and Supramolecular Chemistry of Guizhou ProvinceGuizhou University Guiyang 550025 China
| | - Zhu Tao
- Key Laboratory of Macrocyclic and Supramolecular Chemistry of Guizhou ProvinceGuizhou University Guiyang 550025 China
| |
Collapse
|
7
|
Xu W, Kan J, Yang B, Prior TJ, Bian B, Xiao X, Tao Z, Redshaw C. A Study of the Interaction Between Cucurbit[8]uril and Alkyl-Substituted 4-Pyrrolidinopyridinium Salts. Chem Asian J 2019; 14:235-242. [PMID: 30462888 DOI: 10.1002/asia.201801498] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Revised: 11/20/2018] [Indexed: 01/14/2023]
Abstract
The interaction between cucuribit[8]uril (Q[8]) and a series of 4-pyrrolidinopyridinium salts bearing aliphatic substituents at the pyridinium nitrogen, namely 4-(C4 H8 N)C5 H5 NRBr, where R=Et (g1), n-butyl (g2), n-pentyl (g3), n-hexyl (g4), n-octyl (g5), n-dodecyl (g6), has been studied in aqueous solution by 1 H NMR spectroscopy, electronic absorption spectroscopy, isothermal titration calorimetry and mass spectrometry. Single crystal X-ray diffraction revealed the structure of the host-guest complexes for g1, g2, g3, and g5. In each case, the Q[8] contains two guest molecules in a centrosymmetric dimer. The orientation of the guest molecule changes as the alkyl chain increases in length. Interestingly, in the solid state, the inclusion complexes identified are different from those observed in solution, and furthermore, in the case of g3, Q[8] exhibits two different interactions with the guest. In solution, the length of the alkyl chain plays a significant role in determining the type of host-guest interaction present.
Collapse
Affiliation(s)
- Weitao Xu
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Macrocyclic and Supramolecular Chemistry of Guizhou Province, Guizhou University, Guiyang, 550025, P. R. China
| | - Jinglan Kan
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Normal University, Jinan, 250014, P. R. China
| | - Bo Yang
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Macrocyclic and Supramolecular Chemistry of Guizhou Province, Guizhou University, Guiyang, 550025, P. R. China
| | - Timothy J Prior
- Chemistry, Department of Chemistry and Biochemistry, University of Hull, Hull, HU6 7RX, U.K
| | - Bing Bian
- College of Chemistry and Environmental Engineering, Shandong University of Science and Technology, Qingdao, 266590, P. R. China
| | - Xin Xiao
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Macrocyclic and Supramolecular Chemistry of Guizhou Province, Guizhou University, Guiyang, 550025, P. R. China
| | - Zhu Tao
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Macrocyclic and Supramolecular Chemistry of Guizhou Province, Guizhou University, Guiyang, 550025, P. R. China
| | - Carl Redshaw
- Chemistry, Department of Chemistry and Biochemistry, University of Hull, Hull, HU6 7RX, U.K
| |
Collapse
|
8
|
Xu W, Liu M, Escaño MC, Redshaw C, Bian B, Fan Y, Tao Z, Xiao X. Alkyl substituted 4-pyrrolidinopyridinium salts encapsulated in the cavity of cucurbit[10]uril. NEW J CHEM 2019. [DOI: 10.1039/c9nj01089k] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
The interaction between cucuribit[10]uril (Q[10]) and a series of 4-pyrrolidinopyridinium salts bearing aliphatic substituents at the pyridinium nitrogen, namely 4-(C4H8N)C5H5NRBr, where R = Et (g1), n-butyl (g2), n-pentyl (g3), n-hexyl (g4), n-octyl (g5), n-dodecyl (g6), has been studied in aqueous solution by 1H NMR spectroscopy, electronic absorption spectroscopy and mass spectrometry.
Collapse
Affiliation(s)
- Weitao Xu
- Key Laboratory of Macrocyclic and Supramolecular Chemistry of Guizhou Province
- Guizhou University
- Guiyang 550025
- China
| | - Ming Liu
- Key Laboratory of Macrocyclic and Supramolecular Chemistry of Guizhou Province
- Guizhou University
- Guiyang 550025
- China
| | - Mary Clare Escaño
- Research Center for Development of Far-Infrared Region
- University of Fukui
- Fukui 910-8507
- Japan
| | - Carl Redshaw
- Department of Chemistry & Biochemistry
- University of Hull
- Hull HU6 7RX
- UK
| | - Bing Bian
- College of Chemistry and Environmental Engineering
- Shandong University of Science and Technology
- Qingdao 266590
- China
| | - Ying Fan
- Key Laboratory of Macrocyclic and Supramolecular Chemistry of Guizhou Province
- Guizhou University
- Guiyang 550025
- China
| | - Zhu Tao
- Key Laboratory of Macrocyclic and Supramolecular Chemistry of Guizhou Province
- Guizhou University
- Guiyang 550025
- China
| | - Xin Xiao
- Key Laboratory of Macrocyclic and Supramolecular Chemistry of Guizhou Province
- Guizhou University
- Guiyang 550025
- China
| |
Collapse
|
9
|
Gao ZZ, Kan J, Tao Z, Bian B, Xiao X. A stimuli-responsive supramolecular assembly between inverted cucurbit[7]uril and hemicyanine dye. NEW J CHEM 2018. [DOI: 10.1039/c8nj03344g] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The effect of inverted curcurbit[7]uril (iQ[7]) on the binding mode of 2-(4-(dimethylamino)styryl)-1-methylpyridinium (DASPMI) was determined in this study.
Collapse
Affiliation(s)
- Zhong-Zheng Gao
- Key Laboratory of Macrocyclic and Supramolecular Chemistry of Guizhou Province
- Guizhou University
- Guiyang 550025
- China
| | - Jinglan Kan
- College of Chemistry
- Chemical Engineering and Materials Science
- Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong
- Key Laboratory of Molecular and Nano Probes
- Ministry of Education
| | - Zhu Tao
- Key Laboratory of Macrocyclic and Supramolecular Chemistry of Guizhou Province
- Guizhou University
- Guiyang 550025
- China
| | - Bing Bian
- College of Chemistry and Environmental Engineering, Shandong University of Science and Technology
- Qingdao 266510
- China
| | - Xin Xiao
- Key Laboratory of Macrocyclic and Supramolecular Chemistry of Guizhou Province
- Guizhou University
- Guiyang 550025
- China
| |
Collapse
|