1
|
Zarei N, Yarie M, Torabi M, Zolfigol MA. Urea-rich porous organic polymer as a hydrogen bond catalyst for Knoevenagel condensation reaction and synthesis of 2,3-dihydroquinazolin-4(1 H)-ones. RSC Adv 2024; 14:1094-1105. [PMID: 38174287 PMCID: PMC10759279 DOI: 10.1039/d3ra08354c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 12/14/2023] [Indexed: 01/05/2024] Open
Abstract
In this research, a new urea-rich porous organic polymer (urea-rich POP) as a hydrogen bond catalyst was synthesized via a solvothermal method. The physiochemical properties of the synthesized urea-rich POP were investigated by using different analyses like Fourier transform infrared (FT-IR) spectroscopy, field-emission scanning electron microscopy (FE-SEM), transmission electron microscopy (TEM), thermogravimetric analysis (TGA), derivative thermogravimetry (DTG), energy-dispersive X-ray spectroscopy (EDS), elemental mapping analysis, X-ray diffraction analysis (XRD) and Brunauer-Emmett-Teller (BET) techniques. The preparation of urea-rich POP provides an efficacious platform for designing unique hydrogen bond catalytic systems. Accordingly, urea-rich POP, due to the existence of several urea moieties as hydrogen bond sites, has excellent performance as a catalyst for the Knoevenagel condensation reaction and multi-component synthesis of 2,3-dihydroquinazolin-4(1H)-ones.
Collapse
Affiliation(s)
- Narges Zarei
- Department of Organic Chemistry, Faculty of Chemistry and Petroleum Sciences, Bu-Ali Sina University Hamedan Iran
| | - Meysam Yarie
- Department of Organic Chemistry, Faculty of Chemistry and Petroleum Sciences, Bu-Ali Sina University Hamedan Iran
| | - Morteza Torabi
- Department of Organic Chemistry, Faculty of Chemistry and Petroleum Sciences, Bu-Ali Sina University Hamedan Iran
| | - Mohammad Ali Zolfigol
- Department of Organic Chemistry, Faculty of Chemistry and Petroleum Sciences, Bu-Ali Sina University Hamedan Iran
| |
Collapse
|
2
|
Chegeni M, Mehri M. Combination of chemo and bio-based materials for the synthesis of Cu- Persimmon tannin -Perlite catalyst and its application for organic reaction. J Mol Struct 2023. [DOI: 10.1016/j.molstruc.2022.134206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
3
|
Johari S, Johan MR, Khaligh NG. An Overview of Metal-free Sustainable Nitrogen-based Catalytic Knoevenagel Condensation Reaction . Org Biomol Chem 2022; 20:2164-2186. [DOI: 10.1039/d2ob00135g] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Knoevenagel condensation reaction counts as a vital condensation in organic chemistry due to the synthesis of valuable intermediates, heterocycles, and fine chemicals from commercially available reactants through forming new C=C...
Collapse
|
4
|
Fabrication of efficient Zn-MOF/COF catalyst for the Knoevenagel condensation reaction. JOURNAL OF THE IRANIAN CHEMICAL SOCIETY 2021. [DOI: 10.1007/s13738-021-02221-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
5
|
Catalytic conversion of CO2: Electrochemically to ethanol and thermochemically to cyclic carbonates using nanoporous polytriazine. J CO2 UTIL 2021. [DOI: 10.1016/j.jcou.2021.101676] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
6
|
Kumar Y, Shabir J, Gupta P, Kumar LS. Design and Development of Amine Functionalized Mesoporous Cubic Silica Particles: A Recyclable Catalyst for Knoevenagel Condensation. Catal Letters 2021. [DOI: 10.1007/s10562-021-03749-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
7
|
Soldatov M, Wang Y, Liu H. Preparation of Porous Polymers Based on the Building Blocks of Cyclophosphazene and Cage‐like Silsesquioxane and Their Use as Basic Catalysts for Knoevenagel Reactions. Chem Asian J 2021; 16:1901-1905. [DOI: 10.1002/asia.202100444] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 05/25/2021] [Indexed: 01/03/2023]
Affiliation(s)
- Mikhail Soldatov
- Key Laboratory of Special Functional Aggregated Materials Ministry of Education School of Chemistry and Chemical Engineering Shandong University Jinan 250100 P. R. China
| | - Yiqi Wang
- Key Laboratory of Special Functional Aggregated Materials Ministry of Education School of Chemistry and Chemical Engineering Shandong University Jinan 250100 P. R. China
| | - Hongzhi Liu
- Key Laboratory of Special Functional Aggregated Materials Ministry of Education School of Chemistry and Chemical Engineering Shandong University Jinan 250100 P. R. China
| |
Collapse
|
8
|
Sarma P, Sarmah KK, Kakoti D, Mahanta SP, Adassooriya NM, Nandi G, Das PJ, Bučar DK, Thakuria R. A readily accessible porous organic polymer facilitates high-yielding Knoevenagel condensation at room temperature both in water and under solvent-free mechanochemical conditions. CATAL COMMUN 2021. [DOI: 10.1016/j.catcom.2021.106304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
|
9
|
Díaz de Greñu B, Torres J, García-González J, Muñoz-Pina S, de Los Reyes R, Costero AM, Amorós P, Ros-Lis JV. Microwave-Assisted Synthesis of Covalent Organic Frameworks: A Review. CHEMSUSCHEM 2021; 14:208-233. [PMID: 32871058 DOI: 10.1002/cssc.202001865] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 08/28/2020] [Indexed: 06/11/2023]
Abstract
Covalent organic frameworks (COFs) are relatively recent materials. They have received great attention due to their interesting properties. However, the application of microwaves in their synthesis, despite its advantages such as faster and more reproducible processes, is a minority. Herein, a comprehensive compilation of the research results published in the microwave-assisted synthesis (MAS) of COFs is presented. This review includes articles of 2D and 3D COFs prepared using microwaves as source of energy. The articles have been classified depending on the functional groups including boronate ester, imines, enamines, azines, and triazines, among others. It compiles the main parameters of synthesis and characteristics of the materials together with some general issues related with COFs and microwaves. Additionally, current and future perspectives of the topic have been discussed.
Collapse
Affiliation(s)
- Borja Díaz de Greñu
- Inorganic Chemistry Department, REDOLí Group, Universitat de València Burjassot, 46100, Valencia, Spain
| | - Juan Torres
- Inorganic Chemistry Department, REDOLí Group, Universitat de València Burjassot, 46100, Valencia, Spain
| | - Javier García-González
- Inorganic Chemistry Department, REDOLí Group, Universitat de València Burjassot, 46100, Valencia, Spain
| | - Sara Muñoz-Pina
- Inorganic Chemistry Department, REDOLí Group, Universitat de València Burjassot, 46100, Valencia, Spain
| | | | - Ana M Costero
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico (IDM), Universitat Politècnica de València, Universitat de València, Doctor Moliner 50, Burjassot, 46100, Valencia, Spain
| | - Pedro Amorós
- Institut de Ciència dels Materials (ICMUV), Universitat de València, P.O. Box 22085, 46071, Valencia, Spain
| | - Jose V Ros-Lis
- Inorganic Chemistry Department, REDOLí Group, Universitat de València Burjassot, 46100, Valencia, Spain
| |
Collapse
|
10
|
Bansal A, Sharma R, Mohanty P. Nanocasted polytriazine-SBA-16 mesoporous composite for the conversion of CO2 to cyclic carbonates. J CO2 UTIL 2020. [DOI: 10.1016/j.jcou.2020.101189] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
11
|
Nadem S, Vahdati‐Khajeh S, Eftekhari‐Sis B. Egg Yolk Biomass Derived N‐Doped Ordered Mesoporous Carbon: Highly Robust Heterogeneous Organocatalyst for One‐Pot Deacatalization‐Knoevenagel Reaction. ChemistrySelect 2020. [DOI: 10.1002/slct.202000110] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Sahar Nadem
- Department of ChemistryUniversity of Maragheh Golshahr, P.O.Box 55181-83111 Maragheh Iran
| | - Saleh Vahdati‐Khajeh
- Department of ChemistryUniversity of Maragheh Golshahr, P.O.Box 55181-83111 Maragheh Iran
| | - Bagher Eftekhari‐Sis
- Department of ChemistryUniversity of Maragheh Golshahr, P.O.Box 55181-83111 Maragheh Iran
| |
Collapse
|
12
|
Muhammad R, Mohanty P. Iodine sequestration using cyclophosphazene based inorganic-organic hybrid nanoporous materials: Role of surface functionality and pore size distribution. J Mol Liq 2019. [DOI: 10.1016/j.molliq.2019.03.053] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
13
|
Chaudhary M, Muhammad R, Ramachandran CN, Mohanty P. Nitrogen Amelioration-Driven Carbon Dioxide Capture by Nanoporous Polytriazine. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:4893-4901. [PMID: 30879297 DOI: 10.1021/acs.langmuir.9b00643] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Nitrogen-enriched nanoporous polytriazines (NENPs) have been synthesized by ultrafast microwave-assisted condensation of melamine and cyanuric chloride. The experimental conditions have been optimized to tune the textural properties by synthesizing materials at different times, temperatures, microwave powers, and solvent contents. The maximum specific surface area (SABET) of 840 m2 g-1 was estimated in the sample (NENP-1) synthesized at 140 °C with a microwave power of 400 W and reaction time of 30 min. One of the major objectives of achieving a large nitrogen content as high as 52 wt % in the framework was realized. As predicted, the nitrogen amelioration has benefitted the application by capturing a very good amount of CO2 of 22.9 wt % at 273 K and 1 bar. Moreover, the CO2 storage capacity per unit specific surface area (per m2 g-1) is highest among the reported nanoporous organic frameworks. The interaction of the CO2 molecules with the polytriazine framework was theoretically investigated by using density functional theory. The experimental CO2 capture capacity was validated from the outcome of the theoretical calculations. The superior CO2 capture capability along with the theoretical investigation not only makes the nanoporous NENPs superior adsorbents for the energy and environmental applications but also provides a significant insight into the fundamental understanding of the interaction of CO2 molecules with the amine functionalities of the nanoporous frameworks.
Collapse
|
14
|
Yue LJ, Liu YY, Xu GH, Ma JF. Calix[4]arene-based polyoxometalate organic–inorganic hybrid and coordination polymer as heterogeneous catalysts for azide–alkyne cycloaddition and Knoevenagel condensation reaction. NEW J CHEM 2019. [DOI: 10.1039/c9nj03930a] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
One POM-based Cu(i)-hybrid and one Cd(ii) compound have been achieved by a calix[4]arene ligand. They exhibit efficient catalytic abilities for azide–alkyne cycloaddition and Knoevenagel condensation reactions, respectively.
Collapse
Affiliation(s)
- Liu-Juan Yue
- Key Lab of Polyoxometalate Science
- Department of Chemistry
- Northeast Normal University
- Changchun 130024
- P. R. China
| | - Ying-Ying Liu
- Key Lab of Polyoxometalate Science
- Department of Chemistry
- Northeast Normal University
- Changchun 130024
- P. R. China
| | - Guo-Hai Xu
- Key Laboratory of Jiangxi University for Functional Materials Chemistry
- School of Chemistry and Chemical Engineering
- Gannan Normal University
- Ganzhou
- China
| | - Jian-Fang Ma
- Key Lab of Polyoxometalate Science
- Department of Chemistry
- Northeast Normal University
- Changchun 130024
- P. R. China
| |
Collapse
|
15
|
Sharma R, Bansal A, Ramachandran CN, Mohanty P. A multifunctional triazine-based nanoporous polymer as a versatile organocatalyst for CO2utilization and C–C bond formation. Chem Commun (Camb) 2019; 55:11607-11610. [DOI: 10.1039/c9cc04975d] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Conversion of CO2to cyclic carbonates, methanol and methane by using a nanoporous MNENP as a multifunctional metal-free organocatalyst.
Collapse
Affiliation(s)
- Ruchi Sharma
- Functional Materials Laboratory
- Department of Chemistry
- IIT Roorkee
- Roorkee-247667
- India
| | - Ankushi Bansal
- Functional Materials Laboratory
- Department of Chemistry
- IIT Roorkee
- Roorkee-247667
- India
| | - C. N. Ramachandran
- Theoretical and Computational Chemistry Laboratory
- Department of Chemistry
- IIT Roorkee
- India
| | - Paritosh Mohanty
- Functional Materials Laboratory
- Department of Chemistry
- IIT Roorkee
- Roorkee-247667
- India
| |
Collapse
|