1
|
Kumar R, Padhy SR, Balaraman E. Cobalt-Catalyzed Divergence in C(sp 3)-H Functionalization of 9 H-Fluorene: A Streamlined Approach Utilizing Alcohols. J Org Chem 2024; 89:15103-15116. [PMID: 39378241 DOI: 10.1021/acs.joc.4c01887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/10/2024]
Abstract
Sustainable chemical production demands the creation of innovative catalysts and catalytic technologies. While the development of coherent and robust catalytic systems using earth-abundant transition metals is essential, it remains a significant challenge. Herein, an expedient divergence strategy for tandem dehydrogenative C(sp3)-H alkylation and cyclization reactions of 9H-fluorene using a newly developed N,N-bidentate cobalt catalytic system is developed. This method capitalizes on the use of abundant and readily accessible alcohol. Demonstrating wide-ranging applicability, the catalytic protocol successfully integrated a diverse array of fluorenes and alcohols. This includes benzylic, heteroaromatic, and aliphatic primary and secondary alcohols, amassing a total of 75 distinct examples. When applied to sterically bulky alcohols, the reaction preferentially undergoes alkenylation, yielding a tetrasubstituted olefin as the main product. In the case of diols, the expected outcome is Dual-fluorescence at both terminal positions. This process leads to difluorination, followed by a cyclization step, culminating in the formation of a relatively unprecedented spiro compound. The scalability of this method has been validated through gram-scale synthesis. Control experiments have shed light on the reaction mechanism, indicating that it progresses through an unsaturated intermediate and adheres to the borrowing hydrogen pathway.
Collapse
Affiliation(s)
- Rohit Kumar
- Department of Chemistry, Indian Institute of Science Education and Research (IISER) Tirupati, Tirupati 517507, India
| | - Smruti Rekha Padhy
- Department of Chemistry, Indian Institute of Science Education and Research (IISER) Tirupati, Tirupati 517507, India
| | - Ekambaram Balaraman
- Department of Chemistry, Indian Institute of Science Education and Research (IISER) Tirupati, Tirupati 517507, India
| |
Collapse
|
2
|
Dash PP, Ghosh AK, Mohanty P, Behura R, Behera S, Jali BR, Sahoo SK. Advances on fluorescence chemosensors for selective detection of water. Talanta 2024; 275:126089. [PMID: 38608343 DOI: 10.1016/j.talanta.2024.126089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 03/28/2024] [Accepted: 04/08/2024] [Indexed: 04/14/2024]
Abstract
Water, although an important part of everyday life, is acts as one of the most significant contaminants in various applications such as biomedical monitoring, chemical production, petroleum-based fuel and food processing. In fact, the presence of water in other solvents is a huge concern. For the quantification of trace water content, different methods such as Karl-Fischer, electrochemical, nuclear magnetic resonance, chromatography, and thermogravimetric analysis have been used. Although every technique has its own benefit, each one suffers from several drawbacks that include high detection costs, lengthy procedures and specialized operations. Nowadays, the development of fluorescence-based chemical probes has become an exciting area of research for the quick and accurate estimation of water content in organic solvents. A variety of chemical processes such as hydrolysis reaction, metal ions promoted oxidation reaction, suppression of the -C═N isomerization, protonation and deprotonation reactions, and molecular aggregation have been well researched in the last few years for the fluorescent detection of trace water. These chemical processes eventually lead to different photophysical events such as aggregation-induced emission (AIE), aggregation-induced emission enhancement (AIEE), aggregation-caused quenching (ACQ), fluorescent resonance energy transfer (FRET), charge transfer, photo-induced electron transfer (PET), excited state intramolecular proton transfer (ESIPT) that are responsible for the detection. This review presents a summary of the fluorescence-based chemosensors reported in recent years. The design of water sensors, sensing mechanisms and their potential applications are reviewed and discussed.
Collapse
Affiliation(s)
- Pragyan Parimita Dash
- Department of Chemistry, Veer Surendra Sai University of Technology, Burla, Sambalpur, 768018, Odisha, India
| | - Arup Kumar Ghosh
- Department of Chemistry, Sardar Vallabhbhai National Institute of Technology, Surat, 395007, Gujarat, India.
| | - Patitapaban Mohanty
- Department of Chemistry, Veer Surendra Sai University of Technology, Burla, Sambalpur, 768018, Odisha, India
| | - Rubi Behura
- Department of Chemistry, Veer Surendra Sai University of Technology, Burla, Sambalpur, 768018, Odisha, India
| | - Sunita Behera
- Department of Chemistry, Veer Surendra Sai University of Technology, Burla, Sambalpur, 768018, Odisha, India
| | - Bigyan R Jali
- Department of Chemistry, Veer Surendra Sai University of Technology, Burla, Sambalpur, 768018, Odisha, India.
| | - Suban K Sahoo
- Department of Chemistry, Sardar Vallabhbhai National Institute of Technology, Surat, 395007, Gujarat, India.
| |
Collapse
|
3
|
Sahoo S, Manna S, Rit A. Unravelling a bench-stable zinc-amide compound as highly active multitasking catalyst for radical-mediated selective alk(en)ylation of unactivated carbocycles under mild conditions. Chem Sci 2024; 15:5238-5247. [PMID: 38577381 PMCID: PMC10988604 DOI: 10.1039/d3sc06334h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 02/20/2024] [Indexed: 04/06/2024] Open
Abstract
The direct functionalization of unactivated organic moieties via C-C bond formation has long fascinated synthetic chemists. Although base-metal systems are steadily emerging in this area, achieving multitasking activity in a single catalyst to execute several such functionalizations under mild conditions is challenging. To address this, we herein report an effective protocol for the selective C-alk(en)ylation of indene/fluorene with alcohol as a green alkylating agent employing a naturally abundant and eco-friendly zinc-derived compound, for the first time. Notably, this study unveils the unique potential of a bench-stable Zn compound bearing an amidated imidazolium salt towards C-C bond-forming reactions utilizing an array of alcohols, ranging from aliphatic to aromatic and, attractively, even secondary alcohols. Moreover, this readily scalable protocol, which proceeds via an underdeveloped radical-mediated borrowing hydrogen protocol (an aldehyde is generated from an alcohol, and subsequent condensation with indene/fluorene provides the corresponding alkenylated products) established based on a range of control experiments, works effortlessly under mild conditions using a low catalyst loading. Notably, this approach affords remarkable selectivity towards alkylated or alkenylated products with a high level of functional group tolerance and chemoselectivity. Crucially, the catalytic activity of these Zn compounds can be attributed to their hydrogen atom transfer (HAT) capability, while their selectivity towards different products can be understood in terms of employed reaction conditions. Lastly, the synthetic utility of obtained products was showcased by their late-stage functionalization to access unsymmetrical 9,9-disubstituted fluorenes, which are potentially useful for various optoelectronic applications.
Collapse
Affiliation(s)
- Sangita Sahoo
- Department of Chemistry, Indian Institute of Technology Madras Chennai 600036 India
| | - Subarna Manna
- Department of Chemistry, Indian Institute of Technology Madras Chennai 600036 India
| | - Arnab Rit
- Department of Chemistry, Indian Institute of Technology Madras Chennai 600036 India
| |
Collapse
|
4
|
Dash PP, Mohanty P, Behera S, Behura R, Palai BB, Nath B, Sahoo SK, Jali BR. Pyrene-based fluorescent chemosensor for rapid detection of water and its applications. Methods 2023; 219:127-138. [PMID: 37832896 DOI: 10.1016/j.ymeth.2023.10.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 09/25/2023] [Accepted: 10/10/2023] [Indexed: 10/15/2023] Open
Abstract
This manuscript introduces a pyrene-based Schiff base L by reacting pyrenecarboxaldehyde with 2-aminothiazole in equimolar ratio. The ligand L was characterized by various spectral data and single crystal. The water sensing ability of L was examined in different organic solvents. The weakly emissive L in DMSO showed a fluorescence enhancement upon the addition of water. The water-induced fluorescence enhancement of L was occurred due to the combined effect of aggregation-induced emission (AIE) phenomenon and suppression of photo-induced electron transfer (PET) process. Using L, the water in DMSO can be detected down to 0.50 wt% with a quantification limit of 1.52 wt%. The analytical novelty of the developed sensor L was validated by detecting moisture in a variety of raw food products.
Collapse
Affiliation(s)
- Pragyan P Dash
- Department of Chemistry, Veer Surendra Sai University of Technology, Burla, Sambalpur, Odisha 768018, India
| | - P Mohanty
- Department of Chemistry, Veer Surendra Sai University of Technology, Burla, Sambalpur, Odisha 768018, India
| | - S Behera
- Department of Chemistry, Veer Surendra Sai University of Technology, Burla, Sambalpur, Odisha 768018, India
| | - R Behura
- Department of Chemistry, Veer Surendra Sai University of Technology, Burla, Sambalpur, Odisha 768018, India
| | - Bibhuti B Palai
- School of Chemical Science, NISER, Bhubaneswar, Odisha 752050, India
| | - Bhaskar Nath
- Department of Educational Sciences, Assam University Silchar, Cachar, Assam 788011, India
| | - Suban K Sahoo
- Department of Chemistry, SardarVallabhbhai National Institute of Technology, Surat, Gujarat 395007, India.
| | - Bigyan R Jali
- Department of Chemistry, Veer Surendra Sai University of Technology, Burla, Sambalpur, Odisha 768018, India.
| |
Collapse
|
5
|
Kumar Panda S, Kumar Singh A. Combined experimental and TD-DFT study of a highly sensitive AIE-based probe for the detection of water in organic solvents and its application in inkless writing. J Mol Liq 2023. [DOI: 10.1016/j.molliq.2023.121381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
6
|
Xiong W, Zhang C, Fang Y, Peng M, Sun W. Progresses and Perspectives of Near-Infrared Emission Materials with "Heavy Metal-Free" Organic Compounds for Electroluminescence. Polymers (Basel) 2022; 15:98. [PMID: 36616447 PMCID: PMC9823557 DOI: 10.3390/polym15010098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 12/16/2022] [Accepted: 12/20/2022] [Indexed: 12/28/2022] Open
Abstract
Organic/polymer light-emitting diodes (OLEDs/PLEDs) have attracted a rising number of investigations due to their promising applications for high-resolution fullcolor displays and energy-saving solid-state lightings. Near-infrared (NIR) emitting dyes have gained increasing attention for their potential applications in electroluminescence and optical imaging in optical tele-communication platforms, sensing and medical diagnosis in recent decades. And a growing number of people focus on the "heavy metal-free" NIR electroluminescent materials to gain more design freedom with cost advantage. This review presents recent progresses in conjugated polymers and organic molecules for OLEDs/PLEDs according to their different luminous mechanism and constructing systems. The relationships between the organic fluorophores structures and electroluminescence properties are the main focus of this review. Finally, the approaches to enhance the performance of NIR OLEDs/PLEDs are described briefly. We hope that this review could provide a new perspective for NIR materials and inspire breakthroughs in fundamental research and applications.
Collapse
Affiliation(s)
- Wenjing Xiong
- Key Laboratory of Laser Technology and Optoelectronic Functional Materials of Hainan Province, Key Laboratory of Functional Materials and Photoelectrochemistry of Haikou, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, China
- Xi’an Key Laboratory of Sustainable Energy Material Chemistry, MOE Key Laboratory for Non-Equilibrium Synthesis and Modulation of Condensed Matter, School of Chemistry, Xi’an Jiaotong University, Xi’an 710049, China
| | - Cheng Zhang
- Key Laboratory of Laser Technology and Optoelectronic Functional Materials of Hainan Province, Key Laboratory of Functional Materials and Photoelectrochemistry of Haikou, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, China
| | - Yuanyuan Fang
- Key Laboratory of Laser Technology and Optoelectronic Functional Materials of Hainan Province, Key Laboratory of Functional Materials and Photoelectrochemistry of Haikou, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, China
| | - Mingsheng Peng
- Key Laboratory of Laser Technology and Optoelectronic Functional Materials of Hainan Province, Key Laboratory of Functional Materials and Photoelectrochemistry of Haikou, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, China
| | - Wei Sun
- Key Laboratory of Laser Technology and Optoelectronic Functional Materials of Hainan Province, Key Laboratory of Functional Materials and Photoelectrochemistry of Haikou, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, China
| |
Collapse
|
7
|
Triphenylamine-based conjugated fluorescent sensor for highly sensitive detection of water in organic solvents. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.120086] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
8
|
Suenaga K, Ito S, Tanaka K, Chujo Y. Modulation of Properties by Ion Changing Based on Luminescent Ionic Salts Consisting of Spirobi(boron ketoiminate). Molecules 2022; 27:molecules27113438. [PMID: 35684375 PMCID: PMC9182478 DOI: 10.3390/molecules27113438] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Revised: 05/24/2022] [Accepted: 05/25/2022] [Indexed: 12/10/2022] Open
Abstract
We report development of luminescent ionic salts consisting of the boron ketoiminate structure, which is one of the robust skeletons for expressing aggregation-induced emission (AIE) properties. From the formation of the boron-centered spiro structure with the ketoiminate ligands, we obtained stable ionic salts with variable anions. Since the ionic salts show Tms below 100 °C, it was shown that these salts can be classified as an ionic liquid. By using PF6 anion, the single crystal—which is applicable for X-ray crystallography—was obtained. According to the optical measurements, it was proposed that electronic interaction should occur through the boron center. Moreover, intense emission was observed both in solution and solid. Finally, we demonstrated that the emission color of the PF6 salt was altered from crystal to amorphous by adding mechanical forces. Based on boron complexation and intrinsic solid-state luminescent characters, we achieved obtainment of emissive ionic materials with environmental responsivity.
Collapse
Affiliation(s)
| | | | - Kazuo Tanaka
- Correspondence: ; Tel.: +81-75-383-2604; Fax: +81-75-383-2605
| | | |
Collapse
|
9
|
Nishimoto E, Mise Y, Fumoto T, Miho S, Tsunoji N, Imato K, Ooyama Y. Tetraphenylethene–anthracene-based fluorescence emission sensor for detection of water with photo-induced electron transfer and aggregation-induced emission characteristics. NEW J CHEM 2022. [DOI: 10.1039/d2nj01599d] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
As a fluorescent sensor for water over a wide range from low to high water content regions in organic solvents, we have designed and developed a PET (photo-induced electron transfer)/AIE...
Collapse
|
10
|
Miho S, Imato K, Ooyama Y. Fluorescent polymer films based on photo-induced electron transfer for visualizing water. RSC Adv 2022; 12:25687-25696. [PMID: 36199315 PMCID: PMC9462076 DOI: 10.1039/d2ra03894c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 09/02/2022] [Indexed: 11/21/2022] Open
Abstract
As fluorescent materials for visualization, detection, and quantification of a trace amount of water, we have designed and developed a PET (photo-induced electron transfer)-type fluorescent monomer SM-2 composed of methyl methacrylate-substituted anthracene fluorophore-(aminomethyl)-4-cyanophenylboronic acid pinacol ester (AminoMeCNPhenylBPin) and achieved preparation of a copolymer poly(SM-2-co-MMA) composed of SM-2 and methyl methacrylate (MMA). Both SM-2 and poly(SM-2-co-MMA) exhibited enhancement of the fluorescence emission with the increase in water content in various solvents (less polar, polar, protic, and aprotic solvents) due to the formation of the PET inactive (fluorescent) species SM-2a and poly(SM-2-co-MMA)a, respectively, by the interaction with water molecules. The detection limit (DL) of poly(SM-2-co-MMA) for water in the low water content region below 1.0 wt% in acetonitrile was 0.066 wt%, indicating that poly(SM-2-co-MMA) can act as a PET-type fluorescent polymeric sensor for a trace amount of water in solvents, although it was inferior to that (0.009 wt%) of SM-2. It was found that spin-coated poly(SM-2-co-MMA) films as well as 15 wt% SM-2-doped polymethyl methacrylate (PMMA) films produced a satisfactory reversible fluorescence off–on switching between the PET active state under a drying process and the PET inactive state upon exposure to moisture, which is demonstrated by the fact that the both the films are similar in hydrophilicity to each other from the measurement of the water contact angles on the polymer film surface. Herein we propose that PET-type fluorescent polymer films based on a fluorescence enhancement system are one of the most promising and convenient functional dye materials for visualizing moisture and water droplets. Photo-induced electron transfer (PET)-type fluorescent polymer films based on a fluorescence enhancement system have been prepared as one of the most promising and convenient functional dye materials for visualizing moisture and water droplets.![]()
Collapse
Affiliation(s)
- Saori Miho
- Applied Chemistry Program, Graduate School of Advanced Science and Engineering, Hiroshima University, 1-4-1 Kagamiyama, Higashi-Hiroshima 739-8527, Japan
| | - Keiichi Imato
- Applied Chemistry Program, Graduate School of Advanced Science and Engineering, Hiroshima University, 1-4-1 Kagamiyama, Higashi-Hiroshima 739-8527, Japan
| | - Yousuke Ooyama
- Applied Chemistry Program, Graduate School of Advanced Science and Engineering, Hiroshima University, 1-4-1 Kagamiyama, Higashi-Hiroshima 739-8527, Japan
| |
Collapse
|
11
|
Sharath Kumar KS, Girish YR, Ashrafizadeh M, Mirzaei S, Rakesh KP, Hossein Gholami M, Zabolian A, Hushmandi K, Orive G, Kadumudi FB, Dolatshahi-Pirouz A, Thakur VK, Zarrabi A, Makvandi P, Rangappa KS. AIE-featured tetraphenylethylene nanoarchitectures in biomedical application: Bioimaging, drug delivery and disease treatment. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2021.214135] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
12
|
Mondal A, Sharma R, Pal D, Srimani D. Manganese catalyzed switchable C-alkylation/alkenylation of fluorenes and indene with alcohols. Chem Commun (Camb) 2021; 57:10363-10366. [PMID: 34541595 DOI: 10.1039/d1cc03529k] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The usage of earth-abundant, nontoxic transition metals in place of rare noble metals is a central goal in catalysis. This would be especially interesting when the reactivity and selectivity patterns can be tuned. Herein, we introduced the first Mn-catalyzed selective C-alkylation and olefination of fluorene, and indene with alcohols. Various substrates including benzylic, heteroaromatic, and aliphatic primary and secondary alcohols are employed as alkylating agents. Mechanistic investigations and a kinetic study underpin the involvement of the olefinated intermediate to furnish the alkylated product.
Collapse
Affiliation(s)
- Avijit Mondal
- Department of Chemistry, Indian Institute of Technology-Guwahati, Kamrup, Assam 781039, India.
| | - Rahul Sharma
- Department of Chemistry, Indian Institute of Technology-Guwahati, Kamrup, Assam 781039, India.
| | - Debjyoti Pal
- Department of Chemistry, Indian Institute of Technology-Guwahati, Kamrup, Assam 781039, India.
| | - Dipankar Srimani
- Department of Chemistry, Indian Institute of Technology-Guwahati, Kamrup, Assam 781039, India.
| |
Collapse
|
13
|
Y-shaped AIEE active quinoxaline-benzothiazole conjugate for fluorimetric sensing of nitroaromatics in aqueous media. J Photochem Photobiol A Chem 2021. [DOI: 10.1016/j.jphotochem.2021.113444] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
14
|
Fumoto T, Miho S, Mise Y, Imato K, Ooyama Y. Polymer films doped with fluorescent sensor for moisture and water droplet based on photo-induced electron transfer. RSC Adv 2021; 11:17046-17050. [PMID: 35479674 PMCID: PMC9031300 DOI: 10.1039/d1ra02673a] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Accepted: 05/05/2021] [Indexed: 12/29/2022] Open
Abstract
Anthracene-(aminomethyl)phenylboronic acid pinacol ester (AminoMePhenylBPin) OF-2 acts as a PET (photo-induced electron transfer)-type fluorescent sensor for determination of a trace amount of water: the addition of water to organic solvents containing OF-2 causes a drastic and linear enhancement of fluorescence emission as a function of water content, which is attributed to the suppression of PET. Indeed, detection limits (DLs) for OF-2 were as low as 0.01–0.008 wt% of water in solvents, that is, the PET method makes it possible to visualize, detect, and determine a trace amount of water. Thus, in this work, in order to develop fluorescent polymeric materials for visualization and detection of water, we have achieved the preparation of various types of polymer films (polystyrene (PS), poly(4-vinylphenol) (PVP), polyvinyl alcohol (PVA), and polyethylene glycol (PEG)) which were doped with OF-2, and investigated the optical sensing properties of the OF-2-doped polymer films for water. As-prepared OF-2-doped polymer films initially exhibited green excimer emission in the PET active state, but blue monomer emission in the PET inactive state upon exposure to moisture or by water droplet. Moreover, it was found that the OF-2-doped polymer films show the reversible fluorescence properties in the dry–wet process. Herein we propose that polymer films doped with PET-type fluorescent sensors for water based on a fluorescence enhancement (turn-on) system are one of the most promising and convenient functional materials for visualizing moisture and water droplets. Polymer films doped with a photo-induced electron transfer (PET)-type fluorescent sensor exhibit green excimer emission in the PET active state, but blue monomer emission in the PET inactive state upon exposure to moisture.![]()
Collapse
Affiliation(s)
- Takuma Fumoto
- Department of Applied Chemistry, Graduate School of Engineering, Hiroshima University 1-4-1 Kagamiyama Higashi-Hiroshima 739-8527 Japan +81-82-424-5494
| | - Saori Miho
- Department of Applied Chemistry, Graduate School of Engineering, Hiroshima University 1-4-1 Kagamiyama Higashi-Hiroshima 739-8527 Japan +81-82-424-5494
| | - Yuta Mise
- Department of Applied Chemistry, Graduate School of Engineering, Hiroshima University 1-4-1 Kagamiyama Higashi-Hiroshima 739-8527 Japan +81-82-424-5494
| | - Keiichi Imato
- Department of Applied Chemistry, Graduate School of Engineering, Hiroshima University 1-4-1 Kagamiyama Higashi-Hiroshima 739-8527 Japan +81-82-424-5494
| | - Yousuke Ooyama
- Department of Applied Chemistry, Graduate School of Engineering, Hiroshima University 1-4-1 Kagamiyama Higashi-Hiroshima 739-8527 Japan +81-82-424-5494
| |
Collapse
|
15
|
Ma YC, Luo JY, Zhang SC, Lu SH, Du GF, He L. An N-heterocyclic carbene-catalyzed switchable reaction of 9-(trimethylsilyl)fluorene and aldehydes: chemoselective synthesis of dibenzofulvenes and fluorenyl alcohols. Org Biomol Chem 2021; 19:3717-3721. [PMID: 33908559 DOI: 10.1039/d1ob00065a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
An N-heterocyclic carbene-catalyzed synthesis of dibenzofulvenes and fluorenyl alcohols was developed. In the presence of 10 mol% NHC (1,3-bis(2,6-diisopropylphenyl)imidazol-2-ylidene) and 4 Å molecular sieves, 9-(trimethylsilyl)fluorene undergoes an olefination reaction with aldehydes to produce dibenzofulvenes in 43-99% yields. However, on reducing the NHC loading to 1 mol% and with the addition of water, 9-(trimethylsilyl)fluorene selectively undergoes nucleophilic addition with aldehydes to afford fluorenyl alcohols in 40-95% yields.
Collapse
Affiliation(s)
- Yu-Chuan Ma
- Key Laboratory for Green Processing of Chemical Engineering of Xinjiang, Bingtuan/School of Chemistry and Chemical Engineering, Shihezi University, Xinjiang Uygur Autonomous Region 832000, People's Republic of China.
| | - Jin-Yun Luo
- Key Laboratory for Green Processing of Chemical Engineering of Xinjiang, Bingtuan/School of Chemistry and Chemical Engineering, Shihezi University, Xinjiang Uygur Autonomous Region 832000, People's Republic of China.
| | - Shi-Chu Zhang
- College of Sciences, Shihezi University, Xinjiang Uygur Autonomous Region 832000, People's Republic of China
| | - Shu-Hui Lu
- Key Laboratory for Green Processing of Chemical Engineering of Xinjiang, Bingtuan/School of Chemistry and Chemical Engineering, Shihezi University, Xinjiang Uygur Autonomous Region 832000, People's Republic of China.
| | - Guang-Fen Du
- Key Laboratory for Green Processing of Chemical Engineering of Xinjiang, Bingtuan/School of Chemistry and Chemical Engineering, Shihezi University, Xinjiang Uygur Autonomous Region 832000, People's Republic of China.
| | - Lin He
- Key Laboratory for Green Processing of Chemical Engineering of Xinjiang, Bingtuan/School of Chemistry and Chemical Engineering, Shihezi University, Xinjiang Uygur Autonomous Region 832000, People's Republic of China.
| |
Collapse
|
16
|
Wan H, Xu Q, Gu P, Li H, Chen D, Li N, He J, Lu J. AIE-based fluorescent sensors for low concentration toxic ion detection in water. JOURNAL OF HAZARDOUS MATERIALS 2021; 403:123656. [PMID: 33264865 DOI: 10.1016/j.jhazmat.2020.123656] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 07/31/2020] [Accepted: 08/01/2020] [Indexed: 05/25/2023]
Abstract
Ions, including anions and heavy metals, are extremely toxic and easily accumulate in the human body, threatening the health of humans and even causing human death at low concentrations. It is therefore necessary to detect these toxic ions in low concentrations in water. Fluorescent sensing is a good method for detecting these ions, but some conventional dyes often exhibit an aggregation caused quench (ACQ) effect in their solid state, limiting their large-scale application. Fluorescent probes based on aggregation-induced emission (AIE) properties have received significant attention due to their high fluorescence quantum yields in their nano aggragated states, easy fabrication, use of moderate conditions, and selevtive recognization of organic/inorganic compounds in water with obvious changes in fluorescence. We surmarize the recent advances of AIE-based sensors for low concentration toxic ion detection in water. The detection probes can be divided into three categories: chemical reaction types, chemical interaction types and physical interaction types. Chemical reaction types utilize nucleophilic addition and coordination reaction, while chemical interaction types rely on hydrogen bonding and anion-π interactions. The physical interaction types are composed of electrostatic attractions. We finally comment on the challenges and outlook of AIE-active sensors.
Collapse
Affiliation(s)
- Haibo Wan
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou, Jiangsu 215123, China
| | - Qingfeng Xu
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou, Jiangsu 215123, China
| | - Peiyang Gu
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou, Jiangsu 215123, China
| | - Hua Li
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou, Jiangsu 215123, China
| | - Dongyun Chen
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou, Jiangsu 215123, China
| | - Najun Li
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou, Jiangsu 215123, China
| | - Jinghui He
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou, Jiangsu 215123, China
| | - Jianmei Lu
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou, Jiangsu 215123, China.
| |
Collapse
|
17
|
Mise Y, Imato K, Ogi T, Tsunoji N, Ooyama Y. Fluorescence sensors for detection of water based on tetraphenylethene–anthracene possessing both solvatofluorochromic properties and aggregation-induced emission (AIE) characteristics. NEW J CHEM 2021. [DOI: 10.1039/d1nj00186h] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
TPE-(An-CHO)4 has been developed as an SFC (solvatofluorochromism)/AIEE (aggregation-induced emission enhancement)-based fluorescence sensor for detection of water over a wide range from low to high water content regions in solvents.
Collapse
Affiliation(s)
- Yuta Mise
- Department of Applied Chemistry
- Graduate School of Engineering
- Hiroshima University
- Higashi-Hiroshima 739-8527
- Japan
| | - Keiichi Imato
- Department of Applied Chemistry
- Graduate School of Engineering
- Hiroshima University
- Higashi-Hiroshima 739-8527
- Japan
| | - Takashi Ogi
- Department of Applied Chemistry
- Graduate School of Engineering
- Hiroshima University
- Higashi-Hiroshima 739-8527
- Japan
| | - Nao Tsunoji
- Department of Applied Chemistry
- Graduate School of Engineering
- Hiroshima University
- Higashi-Hiroshima 739-8527
- Japan
| | - Yousuke Ooyama
- Department of Applied Chemistry
- Graduate School of Engineering
- Hiroshima University
- Higashi-Hiroshima 739-8527
- Japan
| |
Collapse
|
18
|
Chen J, Zhou B, Li Y, Zheng L, Guo H, Yang F. A “turn-on” fluorescent sensor for cytosine in aqueous media based on diamino-bridged biphenyl acrylonitrile. NEW J CHEM 2021. [DOI: 10.1039/d0nj05098a] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
A “turn-on” fluorescent sensor for cytosine in aqueous media was prepared.
Collapse
Affiliation(s)
- Jiaojiao Chen
- College of Chemistry and Materials
- Fujian Normal University
- Fuzhou 350007
- P. R. China
- Fujian Key Laboratory of Polymer Materials
| | - Bangyi Zhou
- College of Chemistry and Materials
- Fujian Normal University
- Fuzhou 350007
- P. R. China
- Fujian Provincial Key Laboratory of Advanced Materials Oriented Chemical Engineering
| | - Yongsheng Li
- College of Chemistry and Materials
- Fujian Normal University
- Fuzhou 350007
- P. R. China
| | - Linlu Zheng
- Fujian Provincial Key Laboratory of Featured Biochemical and Chemical Materials
- Ningde Normal University
- Ningde 352106
- P. R. China
| | - Hongyu Guo
- College of Chemistry and Materials
- Fujian Normal University
- Fuzhou 350007
- P. R. China
- Fujian Key Laboratory of Polymer Materials
| | - Fafu Yang
- College of Chemistry and Materials
- Fujian Normal University
- Fuzhou 350007
- P. R. China
- Fujian Key Laboratory of Polymer Materials
| |
Collapse
|
19
|
Tsumura S, Ohira K, Imato K, Ooyama Y. Development of optical sensor for water in acetonitrile based on propeller-structured BODIPY-type pyridine-boron trifluoride complex. RSC Adv 2020; 10:33836-33843. [PMID: 35519071 PMCID: PMC9056773 DOI: 10.1039/d0ra06569b] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Accepted: 09/07/2020] [Indexed: 12/18/2022] Open
Abstract
A propeller-structured 3,5,8-trithienyl-BODIPY-type pyridine–boron trifluoride complex, ST-3-BF3, which has three units of 2-(pyridin-4-yl)-3-(thiophen-2-yl)acrylonitrile at the 3-, 5-, and 8-positions on the BODIPY skeleton, was designed and developed as an intramolecular charge transfer (ICT)-type optical sensor for the detection of a trace amount of water in acetonitrile. The characterization of ST-3-BF3 was successfully determined by FTIR, 1H and 11B NMR measurements, high-resolution mass spectrometry (HRMS) analysis, thermogravimetry-differential thermal analysis (TG-DTA), photoabsorption and fluorescence spectral measurements, and density functional theory (DFT) calculations. ST-3-BF3 showed a broad photoabsorption band in the range of 600 to 800 nm, which is assigned to the S0 → S1 transition of the BODIPY skeleton with the expanded π-conjugated system over the 2-(pyridin-4-yl)-3-(thiophen-2-yl)acrylonitrile units at the 3-, 5-, and 8-positions onto the BODIPY core. In addition, a photoabsorption band was also observed in the range of 300 to 550 nm, which can be assigned to the ICT band between the 2-(pyridin-4-yl)-3-(thiophen-2-yl)acrylonitrile units at 3-, 5-, and 8-positions and the BODIPY core. ST-3-BF3 exhibited a characteristic fluorescence band originating from the BODIPY skeleton at around 730 nm. It was found that by addition of a trace amount of water to the acetonitrile solution of ST-3-BF3, the photoabsorption band at around 415 nm and the fluorescence band at around 730 nm increased linearly as a function of the water content below only 0.2 wt%, which could be ascribed to the change in the ICT characteristics due to the dissociation of ST-3-BF3 into ST-3 by water molecules. Thus, this work demonstrated that the 3,5,8-trithienyl-BODIPY-type pyridine–boron trifluoride complex can act as a highly-sensitive optical sensor for the detection of a trace amount of water in acetonitrile. Propeller-structured 3,5,8-trithienyl-BODIPY-type pyridine–boron trifluoride complex, ST-3-BF3, has been developed as an intramolecular charge transfer (ICT)-type optical sensor for the detection of a trace amount of water in acetonitrile.![]()
Collapse
Affiliation(s)
- Shuhei Tsumura
- Department of Applied Chemistry, Graduate School of Engineering, Hiroshima University 1-4-1 Kagamiyama Higashi-Hiroshima 739-8527 Japan +81-82-424-5494
| | - Kazuki Ohira
- Department of Applied Chemistry, Graduate School of Engineering, Hiroshima University 1-4-1 Kagamiyama Higashi-Hiroshima 739-8527 Japan +81-82-424-5494
| | - Keiichi Imato
- Department of Applied Chemistry, Graduate School of Engineering, Hiroshima University 1-4-1 Kagamiyama Higashi-Hiroshima 739-8527 Japan +81-82-424-5494
| | - Yousuke Ooyama
- Department of Applied Chemistry, Graduate School of Engineering, Hiroshima University 1-4-1 Kagamiyama Higashi-Hiroshima 739-8527 Japan +81-82-424-5494
| |
Collapse
|
20
|
Hoshi M, Nishiyabu R, Hayashi Y, Yagi S, Kubo Y. Room-Temperature Phosphorescence-active Boronate Particles: Characterization and Ratiometric Afterglow-sensing Behavior by Surface Grafting of Rhodamine B. Chem Asian J 2020; 15:787-795. [PMID: 32017426 DOI: 10.1002/asia.201901740] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2019] [Revised: 01/12/2020] [Indexed: 01/11/2023]
Abstract
We found that boronate particles (BP), as a self-assembled system prepared by sequential dehydration of benzene-1,4-diboronic acid with pentaerythritol, showed greenish room-temperature phosphorescence (RTP). This emission was observed in both solid and dispersion state in water. To understand the RTP properties, X-ray crystallographic analysis, and density functional theory (DFT) and time-dependent DFT at M06-2X/6-31G(d,p) level were performed using 3,9-dibenzo-2,4,8,10-tetraoxa-3,9-diboraspiro[5.5]undecane (1) as a model compound. Our interest in functionalizing the RTP-active particles led us to graft Rhodamine B onto their surface. The resulting system emitted a dual afterglow via a Förster-type resonance energy transfer process from the BP in the excited triplet state to Rhodamine B acting as an acceptor fluorophore. This emission behavior was used for ratiometric afterglow sensing of water content in THF with a detection limit of 0.28 %, indicating that this study could pave the way for a new strategy for developing color-variable afterglow chemosensors for various analytes.
Collapse
Affiliation(s)
- Mitsuki Hoshi
- Department of Applied Chemistry, Graduate School of Urban Environmental Sciences, Tokyo Metropolitan University, Minami-Osawa, Hachioji, Tokyo, 192-0397, Japan
| | - Ryuhei Nishiyabu
- Department of Applied Chemistry, Graduate School of Urban Environmental Sciences, Tokyo Metropolitan University, Minami-Osawa, Hachioji, Tokyo, 192-0397, Japan
| | - Yuichiro Hayashi
- Department of Applied Chemistry, Graduate School of Engineering, Osaka Prefecture University, 1-1 Gakuen-cho, Naka-ku, Sakai, Osaka, 599-8531, Japan
| | - Shigeyuki Yagi
- Department of Applied Chemistry, Graduate School of Engineering, Osaka Prefecture University, 1-1 Gakuen-cho, Naka-ku, Sakai, Osaka, 599-8531, Japan
| | - Yuji Kubo
- Department of Applied Chemistry, Graduate School of Urban Environmental Sciences, Tokyo Metropolitan University, Minami-Osawa, Hachioji, Tokyo, 192-0397, Japan
| |
Collapse
|
21
|
Sathiyaraj M, Pavithra K, Thiagarajan V. Azine based AIEgens with multi-stimuli response towards picric acid. NEW J CHEM 2020. [DOI: 10.1039/d0nj01324b] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Selective detection of picric acid using AIEgens via fluorescence enhancement and quenching in the monomer and aggregated from respectively.
Collapse
|
22
|
Ma H, Wu R, Xiong J, Guo H, Yang F. Bis-biphenylacrylonitrile bridged with crown ether chain: a novel fluorescence sensor for Fe 3+ in aqueous media. NEW J CHEM 2020. [DOI: 10.1039/d0nj02412k] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
A novel fluorescence sensor for Fe3+ in aqueous media was developed and applied for living-cell imaging.
Collapse
Affiliation(s)
- Haifeng Ma
- College of Chemistry and Materials Science
- Fujian Normal University
- Fuzhou 350007
- P. R. China
| | - Rongqin Wu
- College of Chemistry and Materials Science
- Fujian Normal University
- Fuzhou 350007
- P. R. China
| | - Jie Xiong
- College of Chemistry and Materials Science
- Fujian Normal University
- Fuzhou 350007
- P. R. China
| | - Hongyu Guo
- College of Chemistry and Materials Science
- Fujian Normal University
- Fuzhou 350007
- P. R. China
| | - Fafu Yang
- College of Chemistry and Materials Science
- Fujian Normal University
- Fuzhou 350007
- P. R. China
- Fujian Key Laboratory of Polymer Materials
| |
Collapse
|
23
|
Nishino K, Yamamoto H, Ochi J, Tanaka K, Chujo Y. Time‐Dependent Emission Enhancement of the Ethynylpyrene‐
o
‐Carborane Dyad and Its Application as a Luminescent Color Sensor for Evaluating Water Contents in Organic Solvents. Chem Asian J 2019; 14:1577-1581. [DOI: 10.1002/asia.201900396] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Indexed: 01/08/2023]
Affiliation(s)
- Kenta Nishino
- Department of Polymer ChemistryGraduate School of EngineeringKyoto University Katsura, Nishikyo-ku Kyoto 615–8510 Japan
| | - Hideki Yamamoto
- Department of Polymer ChemistryGraduate School of EngineeringKyoto University Katsura, Nishikyo-ku Kyoto 615–8510 Japan
| | - Junki Ochi
- Department of Polymer ChemistryGraduate School of EngineeringKyoto University Katsura, Nishikyo-ku Kyoto 615–8510 Japan
| | - Kazuo Tanaka
- Department of Polymer ChemistryGraduate School of EngineeringKyoto University Katsura, Nishikyo-ku Kyoto 615–8510 Japan
| | - Yoshiki Chujo
- Department of Polymer ChemistryGraduate School of EngineeringKyoto University Katsura, Nishikyo-ku Kyoto 615–8510 Japan
| |
Collapse
|
24
|
Enoki T, Ooyama Y. Colorimetric and ratiometric fluorescence sensing of water based on 9-methyl pyrido[3,4-b]indole-boron trifluoride complex. Dalton Trans 2019; 48:2086-2092. [PMID: 30657508 DOI: 10.1039/c8dt04527e] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
In this work, 9-methyl pyrido[3,4-b]indole-boron trifluoride complex, 9-MP-BF3, was designed and developed as a colorimetric and ratiometric fluorescent sensor for the detection of water in the low- and high-water-content regions in solvents. In the low-water-content region, a new photoabsorption band at around 360 nm and a fluorescence band at around 370 nm gradually appeared due to the dissociation of 9-MP-BF3 into 9-methyl pyrido[3,4-b]indole (9-MP) by water molecules with a simultaneous decrease in the photoabsorption band at around 390 nm and the fluorescence band at around 460 nm originating from 9-MP-BF3. In the moderate-water-content region, the photoabsorption band at around 360 nm and the fluorescence band at around 370 nm gradually shifted to a longer wavelength region with an increase in the fluorescence intensity, which could be ascribed to the formation of a hydrogen-bonded complex (9-MP-H2O) with water molecules. Furthermore, in the high-water-content region, two photoabsorption bands at around 305 nm and 390 nm and one fluorescence band at around 460 nm gradually reappeared with simultaneous decrease in the photoabsorption band at around 290 nm and the fluorescence band at around 370 nm, which was attributed to the formation of a hydrogen-bonded proton transfer complex (9-MP-H+) with water molecules. Thus, this work revealed the mechanism of a colorimetric and ratiometric fluorescent sensor based on pyrido[3,4-b]indole-boron trifluoride complex for the detection of water over a wide range from low water content to high water content in solvents.
Collapse
Affiliation(s)
- Toshiaki Enoki
- Department of Applied Chemistry, Graduate School of Engineering, Hiroshima University, 1-4-1 Kagamiyama, Higashi-Hiroshima 739-8527, Japan.
| | | |
Collapse
|
25
|
Jinbo D, Imato K, Ooyama Y. Fluorescent sensor for water based on photo-induced electron transfer and Förster resonance energy transfer: anthracene-(aminomethyl)phenylboronic acid ester-BODIPY structure. RSC Adv 2019; 9:15335-15340. [PMID: 35514838 PMCID: PMC9064233 DOI: 10.1039/c9ra02686j] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Accepted: 05/12/2019] [Indexed: 11/21/2022] Open
Abstract
An anthracene-(aminomethyl)phenylboronic acid ester-BODIPY (DJ-1) was designed and developed as a fluorescent sensor based on photo-induced electron transfer (PET) and Förster resonance energy transfer (FRET) for the detection of a trace amount of water in solvents, where the anthracene skeleton and BODIPY skeleton are the donor fluorophore and the acceptor fluorophore in the FRET process, respectively. It was found that the addition of water to organic solvents containing DJ-1 causes both the suppression of PET in the anthracene-(aminomethyl)phenylboronic acid ester as the PET-type fluorescent sensor skeleton and the energy transfer from the anthracene skeleton to the BODIPY skeleton through a FRET process, thus resulting in the enhancement of the fluorescence band originating from the BODIPY skeleton. This work demonstrates that the PET/FRET-based fluorescent dye composed of the donor fluorophore possessing PET characteristics and the acceptor fluorophore in the FRET process can act as a fluorescent sensor with a large SS for the detection of a trace amount of water in solvents. An anthracene-(aminomethyl)phenylboronic acid ester-BODIPY (DJ-1) structure was developed as a fluorescent sensor based on photo-induced electron transfer (PET) and Förster resonance energy transfer (FRET) for detection of water in solvents.![]()
Collapse
Affiliation(s)
- Daisuke Jinbo
- Department of Applied Chemistry
- Graduate School of Engineering
- Hiroshima University
- Higashi-Hiroshima
- Japan
| | - Keiichi Imato
- Department of Applied Chemistry
- Graduate School of Engineering
- Hiroshima University
- Higashi-Hiroshima
- Japan
| | - Yousuke Ooyama
- Department of Applied Chemistry
- Graduate School of Engineering
- Hiroshima University
- Higashi-Hiroshima
- Japan
| |
Collapse
|
26
|
Imato K, Enoki T, Ooyama Y. Development of an intramolecular charge transfer-type colorimetric and fluorescence sensor for water by fusion with a juloidine structure and complexation with boron trifluoride. RSC Adv 2019; 9:31466-31473. [PMID: 35527971 PMCID: PMC9072393 DOI: 10.1039/c9ra07136a] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Accepted: 09/24/2019] [Indexed: 01/05/2023] Open
Abstract
An intramolecular charge transfer-type optical sensor fused with a juloidine structure and complexed with boron trifluoride can detect and determine water over a wide concentration range.
Collapse
Affiliation(s)
- Keiichi Imato
- Department of Applied Chemistry
- Graduate School of Engineering
- Hiroshima University
- Higashi-Hiroshima 739-8527
- Japan
| | - Toshiaki Enoki
- Department of Applied Chemistry
- Graduate School of Engineering
- Hiroshima University
- Higashi-Hiroshima 739-8527
- Japan
| | - Yousuke Ooyama
- Department of Applied Chemistry
- Graduate School of Engineering
- Hiroshima University
- Higashi-Hiroshima 739-8527
- Japan
| |
Collapse
|