1
|
Xu L, Zhao Q, Xie Y, Bai G, Liu H, Chen Q, Duan H, Wang L, Xu H, Sun Y, Ling G, Ge W, Zhu Y. Telmisartan loading thermosensitive hydrogel repairs gut epithelial barrier for alleviating inflammatory bowel disease. Colloids Surf B Biointerfaces 2024; 236:113799. [PMID: 38367290 DOI: 10.1016/j.colsurfb.2024.113799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 01/29/2024] [Accepted: 02/12/2024] [Indexed: 02/19/2024]
Abstract
Inflammatory bowel disease (IBD) remains a global health concern with a complex and incompletely understood pathogenesis. In the course of IBD development, damage to intestinal epithelial cells and a reduction in the expression of tight junction (TJ) proteins compromise the integrity of the intestinal barrier, exacerbating inflammation. Notably, the renin-angiotensin system and angiotensin II receptor type 1 (AT1R) play a crucial role in regulating the pathological progression including vascular permeability, and immune microenvironment. Thus, Telmisartan (Tel), an AT1R inhibitor, loading thermosensitive hydrogel was constructed to investigate the potential of alleviating inflammatory bowel disease through rectal administration. The constructed hydrogel exhibits an advantageous property of rapid transformation from a solution to a gel state at 37°C, facilitating prolonged drug retention within the gut while mitigating irritation associated with rectal administration. Results indicate that Tel also exhibits a beneficial effect in ameliorating colon shortening, colon wall thickening, cup cell lacking, crypt disappearance, and inflammatory cell infiltration into the mucosa in colitis mice. Moreover, it significantly upregulates the expression of TJ proteins in colonic tissues thereby repairing the intestinal barrier damage and alleviating the ulcerative colitis (UC) disease process. In conclusion, Tel-loaded hydrogel demonstrates substantial promise as a potential treatment modality for IBD.
Collapse
Affiliation(s)
- Lu Xu
- Department of Pharmacy, Nanjing Drum Tower Hospital Clinical College of Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu Province 210008, China
| | - Qin Zhao
- Department of Gastroenterology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, Jiangsu Province 210008, China
| | - Yiqiong Xie
- Department of Pharmacy, Nanjing Drum Tower Hospital Clinical College of Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu Province 210008, China
| | - Ge Bai
- Department of Gastroenterology, Nanjing Drum Tower Hospital Clinical College of Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu Province 210008, China
| | - Hongwen Liu
- Department of Gastroenterology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu Province 210008, China
| | - Qi Chen
- Department of Gastroenterology, China Pharmaceutical University Nanjing Drum Tower Hospital, Nanjing, Jiangsu Province 210008, China
| | - Hongjue Duan
- Nanjing Medical Center for Clinical Pharmacy, Nanjing, Jiangsu Province 210008, China
| | - Lishan Wang
- Department of Gastroenterology, Nanjing Drum Tower Hospital Clinical College of Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu Province 210008, China
| | - Hang Xu
- School of Pharmacy, Faculty of Medicine, Macau University of Science and Technology, Macau SAR 999078, China; Department of Pharmacy, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing 210008, China
| | - Yuxiang Sun
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou 225001, PR China
| | - Gao Ling
- Department of Cardiology, Nanjing Drum Tower Hospital, Nanjing University Medical School, Nanjing, Jiangsu Province 210008, China.
| | - Weihong Ge
- Department of Pharmacy, Nanjing Drum Tower Hospital Clinical College of Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu Province 210008, China; Nanjing Medical Center for Clinical Pharmacy, Nanjing, Jiangsu Province 210008, China.
| | - Yun Zhu
- Department of Pharmacy, Nanjing Drum Tower Hospital Clinical College of Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu Province 210008, China; Nanjing Medical Center for Clinical Pharmacy, Nanjing, Jiangsu Province 210008, China.
| |
Collapse
|
2
|
Mumtaz S, Ali S, Mumtaz S, Pervaiz A, Tahir HM, Farooq MA, Mughal TA. Advanced treatment strategies in breast cancer: A comprehensive mechanistic review. Sci Prog 2023; 106:368504231175331. [PMID: 37231668 PMCID: PMC10450270 DOI: 10.1177/00368504231175331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Breast cancer is a destructive lump type that affects women globally. Despite the availability of multi-directional therapeutic strategies, advanced stages of breast cancer are difficult to treat and impose major healthcare burdens. This situation reinforces the need to identify new potential therapeutic compounds with better clinical features. In this context, different treatment methods were included such as Endocrine therapy, chemotherapy, Radiation therapy, antimicrobial peptide-dependent growth inhibitor, liposome-based drug delivery, antibiotics used as a co-medication, photothermal, immunotherapy, and nano drug delivery systems such as Bombyx mori natural protein sericin and its mediated nanoparticles are promising biomedical agents. They have been tested as an anticancer agent against various malignancies in pre-clinical settings. The biocompatible and restricted breakdown properties of silk sericin and sericin-conjugated nanoparticles made them perfect contenders for a nanoscale drug-delivery system.
Collapse
Affiliation(s)
- Samaira Mumtaz
- Medical Toxicology and Entomology Laboratory, Department of Zoology, Government College University, Lahore, Pakistan
| | - Shaukat Ali
- Medical Toxicology and Entomology Laboratory, Department of Zoology, Government College University, Lahore, Pakistan
| | - Shumaila Mumtaz
- Medical Toxicology and Entomology Laboratory, Department of Zoology, Government College University, Lahore, Pakistan
| | - Asim Pervaiz
- Biomedical and Allied Health Sciences, University of Health Sciences Lahore, Lahore, Pakistan
| | - Hafiz M Tahir
- Medical Toxicology and Entomology Laboratory, Department of Zoology, Government College University, Lahore, Pakistan
| | - Muhammad A Farooq
- Medical Toxicology and Entomology Laboratory, Department of Zoology, Government College University, Lahore, Pakistan
| | - Tafail A Mughal
- Medical Toxicology and Entomology Laboratory, Department of Zoology, Government College University, Lahore, Pakistan
| |
Collapse
|
3
|
Casella G, Carlotto S, Lanero F, Mozzon M, Sgarbossa P, Bertani R. Cyclo- and Polyphosphazenes for Biomedical Applications. Molecules 2022; 27:8117. [PMID: 36500209 PMCID: PMC9736570 DOI: 10.3390/molecules27238117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 11/15/2022] [Accepted: 11/17/2022] [Indexed: 11/23/2022] Open
Abstract
Cyclic and polyphosphazenes are extremely interesting and versatile substrates characterized by the presence of -P=N- repeating units. The chlorine atoms on the P atoms in the starting materials can be easily substituted with a variety of organic substituents, thus giving rise to a huge number of new materials for industrial applications. Their properties can be designed considering the number of repetitive units and the nature of the substituent groups, opening up to a number of peculiar properties, including the ability to give rise to supramolecular arrangements. We focused our attention on the extensive scientific literature concerning their biomedical applications: as antimicrobial agents in drug delivery, as immunoadjuvants in tissue engineering, in innovative anticancer therapies, and treatments for cardiovascular diseases. The promising perspectives for their biomedical use rise from the opportunity to combine the benefits of the inorganic backbone and the wide variety of organic side groups that can lead to the formation of nanoparticles, polymersomes, or scaffolds for cell proliferation. In this review, some aspects of the preparation of phosphazene-based systems and their characterization, together with some of the most relevant chemical strategies to obtain biomaterials, have been described.
Collapse
Affiliation(s)
- Girolamo Casella
- Department of Earth and Marine Sciences (DiSTeM), University of Palermo, Via Archirafi 22, 90123 Palermo, Italy
| | - Silvia Carlotto
- Department of Chemical Sciences (DiSC), University of Padova, Via F. Marzolo 1, 35131 Padova, Italy
- Institute of Condensed Matter Chemistry and Technologies for Energy (ICMATE), National Research Council (CNR), c/o Department of Chemical Sciences (DiSC), University of Padova, Via F. Marzolo 1, 35131 Padova, Italy
| | - Francesco Lanero
- Department of Industrial Engineering, University of Padova, Via F. Marzolo 1, 35131 Padova, Italy
| | - Mirto Mozzon
- Department of Industrial Engineering, University of Padova, Via F. Marzolo 1, 35131 Padova, Italy
| | - Paolo Sgarbossa
- Department of Industrial Engineering, University of Padova, Via F. Marzolo 1, 35131 Padova, Italy
| | - Roberta Bertani
- Department of Industrial Engineering, University of Padova, Via F. Marzolo 1, 35131 Padova, Italy
| |
Collapse
|
4
|
Sekitmen GB, Su E, Gür SD, İde S, Okay O. Sterilization studies of hydrogel nanocomposites designed for possible biomedical applications before in vivo research. REACT FUNCT POLYM 2022. [DOI: 10.1016/j.reactfunctpolym.2022.105393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
5
|
Arjama M, Mehnath S, Jeyaraj M. Self-assembled hydrogel nanocube for stimuli responsive drug delivery and tumor ablation by phototherapy against breast cancer. Int J Biol Macromol 2022; 213:435-446. [PMID: 35661669 DOI: 10.1016/j.ijbiomac.2022.05.190] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 05/27/2022] [Accepted: 05/30/2022] [Indexed: 12/14/2022]
Abstract
The shape and responsiveness of nanoengineered delivery carriers are crucial characteristics for the rapid and efficient delivery of therapeutics. We report on a novel type of micrometer-sized hydrogel particles of controlled shape with dual pH and redox sensitivity for intracellular delivery of anticancer drugs and phototherapy. The cubical HA-DOP-CS-PEG networks with disulfide links are obtained by cross-linking HA-DOP-CS-PEG with cystamine. The pH-triggered hydrogel swelling/shrinkage was not only affords effective doxorubicin release. It also actively provides the endosomal/lysosomal escape, redox-triggered drug release. The hydrogels degrade rapidly to low molecular weight chains in the presence of the typical intracellular concentration of glutathione. Drug-loaded cube particles found to be 12% more cytotoxic. ICG and DOX-loaded hydrogel cubes demonstrate 90% cytotoxicity when incubated with MCF-7 cancer cells for 24 and 48 h, respectively. This approach integrates the advantages of pH sensitivity, enzymatic degradation, and shape-regulated internalization for novel types of "intelligent" three-dimensional networks with programmable behavior for controlled delivery of therapeutics.
Collapse
Affiliation(s)
- Mukherjee Arjama
- National Centre for Nanoscience and Nanotechnology, University of Madras, Guindy Campus, Chennai 25, Tamil Nadu, India
| | - Sivaraj Mehnath
- National Centre for Nanoscience and Nanotechnology, University of Madras, Guindy Campus, Chennai 25, Tamil Nadu, India
| | - Murugaraj Jeyaraj
- National Centre for Nanoscience and Nanotechnology, University of Madras, Guindy Campus, Chennai 25, Tamil Nadu, India.
| |
Collapse
|
6
|
Zairov RR, Dovzhenko AP, Podyachev SN, Sudakova SN, Kornev TA, Shvedova AE, Masliy AN, Syakaev VV, Alekseev IS, Vatsouro IM, Mambetova GS, Lapaev DV, Nizameev IR, Enrichi F, Kuznetsov AM, Kovalev VV, Mustafina AR. Role of PSS-based assemblies in stabilization of Eu and Sm luminescent complexes and their thermoresponsive luminescence. Colloids Surf B Biointerfaces 2022; 217:112664. [PMID: 35780611 DOI: 10.1016/j.colsurfb.2022.112664] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Revised: 06/11/2022] [Accepted: 06/24/2022] [Indexed: 01/09/2023]
Abstract
The present work introduces self-assembled polystyrenesulfonate (PSS) molecules as soft nanocapsules for incorporation of Eu3+-Sm3+ complexes by the solvent exchange procedure. The high levels of Eu3+- and Sm3+-luminescence of the complexes derives from the ligand-to-metal energy transfer, in turn, resulted from the complex formation of Eu3+and Sm3+ ions with the three recently synthesized cyclophanic 1,3-diketones. The structural features of the ligands are optimized for the high thermal sensitivity of Eu3+- luminescence in DMF solutions. The PSS-nanocapsules (∼100 nm) provide both colloid and chemical stabilization of the ultrasmall (3-5 nm) nanoprecipitates of the complexes, although their luminescence spectra patterns and excited state lifetimes differ from the values measured for the complexes in DMF solutions. The specific concentration ratio of the Eu3+-Sm3+ complexes in the DMF solutions allows to tune the intensity ratio of the luminescence bands at 612 and 650 nm in the heterometallic Eu3+-Sm3+ colloids. The thermal sensitivity of the Eu3+- and Sm3+-luminescence of the complexes derives from the static quenching both in PSS-colloids and in DMF solutions, while the thermo-induced dynamic quenching of the luminescence is significant only in DMF solutions. The reversibility of thermo-induced luminescence changes of the Eu3+-Sm3+ colloids is demonstrated by six heating-cooling cycles. The DLS measurements before and after the six cycles reveal the invariance of the PSS-based capsule as the prerequisite for the recyclability of the temperature monitoring through the ratio of Eu3+-to- Sm3+ luminescence.
Collapse
Affiliation(s)
- Rustem R Zairov
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, Arbuzov str., 8, 420088 Kazan, Russian Federation.
| | - Alexey P Dovzhenko
- Kazan (Volga region) Federal University, Kremlyovskaya str., 18, 420008 Kazan, Russian Federation; Department of Chemistry, M. V. Lomonosov Moscow State University, Lenin's Hills1, 119991 Moscow, Russian Federation
| | - Sergey N Podyachev
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, Arbuzov str., 8, 420088 Kazan, Russian Federation; Department of Chemistry, M. V. Lomonosov Moscow State University, Lenin's Hills1, 119991 Moscow, Russian Federation
| | - Svetlana N Sudakova
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, Arbuzov str., 8, 420088 Kazan, Russian Federation
| | - Timur A Kornev
- Kazan (Volga region) Federal University, Kremlyovskaya str., 18, 420008 Kazan, Russian Federation; Department of Chemistry, M. V. Lomonosov Moscow State University, Lenin's Hills1, 119991 Moscow, Russian Federation
| | - Anastasiya E Shvedova
- Kazan National Research Technological University, K. Marx Str., 68, 420015 Kazan, Russian Federation
| | - Alexey N Masliy
- Kazan National Research Technological University, K. Marx Str., 68, 420015 Kazan, Russian Federation
| | - Victor V Syakaev
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, Arbuzov str., 8, 420088 Kazan, Russian Federation
| | - Ivan S Alekseev
- Department of Chemistry, M. V. Lomonosov Moscow State University, Lenin's Hills1, 119991 Moscow, Russian Federation
| | - Ivan M Vatsouro
- Department of Chemistry, M. V. Lomonosov Moscow State University, Lenin's Hills1, 119991 Moscow, Russian Federation
| | - Gulnaz Sh Mambetova
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, Arbuzov str., 8, 420088 Kazan, Russian Federation; Department of Chemistry, M. V. Lomonosov Moscow State University, Lenin's Hills1, 119991 Moscow, Russian Federation
| | - Dmitry V Lapaev
- Zavoisky Physical-Technical Institute, FRC Kazan Scientific Center of RAS, Sibirsky tract, 10/7, 420029 Kazan, Russian Federation
| | - Irek R Nizameev
- Kazan National Research Technical University, A.N. Tupolev - KAI, 10, K. Marx str., Kazan 420111, Russian Federation
| | - Francesco Enrichi
- Department of Computer Science, University of Verona, Strada Le Grazie 15, 37134 Verona, Italy; CNR-ISP, Institute of Polar Science of the National Research Council, via Torino 155, 30174 Mestre-Venezia, Italy
| | - Andrey M Kuznetsov
- Kazan National Research Technological University, K. Marx Str., 68, 420015 Kazan, Russian Federation
| | - Vladimir V Kovalev
- Department of Chemistry, M. V. Lomonosov Moscow State University, Lenin's Hills1, 119991 Moscow, Russian Federation
| | - Asiya R Mustafina
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, Arbuzov str., 8, 420088 Kazan, Russian Federation
| |
Collapse
|
7
|
Mehnath S, Chitra K, Jeyaraj M. An all-in-one nanomaterial derived from rGO-MoS 2 for photo/chemotherapy of tuberculosis. NEW J CHEM 2022. [DOI: 10.1039/d1nj03549e] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
A combination of therapeutic modalities has recently emerged as an alternative technique for combating Mycobacterium tuberculosis.
Collapse
Affiliation(s)
- Sivaraj Mehnath
- Biomaterial and Nanomedicine Laboratory, National Centre for Nanoscience and Nanotechnology, University of Madras, Guindy Campus, Chennai-25, Tamil Nadu, India
| | - Karuppannan Chitra
- Translational Research Platform for Veterinary Biological, Madhavaram Milk Colony, Chennai-51, Tamil Nadu, India
| | - Murugaraj Jeyaraj
- Biomaterial and Nanomedicine Laboratory, National Centre for Nanoscience and Nanotechnology, University of Madras, Guindy Campus, Chennai-25, Tamil Nadu, India
| |
Collapse
|
8
|
Immunomodulating polyorganophosphazene-arginine layered liposome antibiotic delivery vehicle against pulmonary tuberculosis. J Drug Deliv Sci Technol 2021. [DOI: 10.1016/j.jddst.2021.102856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
9
|
Arjama M, Mehnath S, Rajan M, Jeyaraj M. Engineered Hyaluronic Acid-Based Smart Nanoconjugates for Enhanced Intracellular Drug Delivery. J Pharm Sci 2021; 112:1603-1614. [PMID: 34678274 DOI: 10.1016/j.xphs.2021.10.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 10/12/2021] [Accepted: 10/12/2021] [Indexed: 12/20/2022]
Abstract
Bacterial polysaccharides can be easily modified to offer dual stimuli-responsive drug delivery systems with double targeting potential. In this research work, bacterial polysaccharides hyaluronic acid (HA) were functionalized with α-tocopherol polyethylene glycol succinate (TPGS) and cholic acid (CA) to form multifunctional polysaccharides nanoconjugates (TPGS-HA-CA). Smart nanoconjugates were synthesized by forming a redox-responsive disulfide bond, and it is composed of double targeting ligands. Doxorubicin (DOX) encapsulated smart nanoconjugates were exhibited an average size of 200 nm with a uniform core-shell structure. It serves the pH-responsive side chain modulation of TPGS-HA-CA, which affords a high degree of swelling at acidic pH. Under the pH 5.0 it shows 57% of release due to the side chain modulation of C-H/N-H. Polysaccharides nanoconjugates exhibited the double stimuli-responsive drug delivery by rapid disassembly of disulfide linkage, which exhibited 72% drug release (pH 5.0+GSH 10 mM). In cytotoxic studies, DOX@TPGS-HA-CA exhibited a higher cytotoxic effect compared to DOX. Hyaluronic acid functionalization with CA, TPGS increases cell internalization, and dual stimuli activity promotes more cell death. Overall, multifunctional polysaccharides hydrogel nanoconjugates is a prospective material that has great potential for targeting breast cancer therapy.
Collapse
Affiliation(s)
- Mukherjee Arjama
- National Centre for Nanoscience and Nanotechnology, University of Madras, Guindy Campus, Chennai 25, Tamil Nadu, India
| | - Sivaraj Mehnath
- National Centre for Nanoscience and Nanotechnology, University of Madras, Guindy Campus, Chennai 25, Tamil Nadu, India
| | - Mariappan Rajan
- Department of Natural Products Chemistry, School of Chemistry, Madurai Kamaraj University, Madurai 21, Tamil Nadu, India
| | - Murugaraj Jeyaraj
- National Centre for Nanoscience and Nanotechnology, University of Madras, Guindy Campus, Chennai 25, Tamil Nadu, India.
| |
Collapse
|
10
|
Zhou B, Ma Y, Li L, Shi X, Chen Z, Wu F, Liu Y, Zhang Z, Wang S. Pheophorbide co-encapsulated with Cisplatin in folate-decorated PLGA nanoparticles to treat nasopharyngeal carcinoma: Combination of chemotherapy and photodynamic therapy. Colloids Surf B Biointerfaces 2021; 208:112100. [PMID: 34547704 DOI: 10.1016/j.colsurfb.2021.112100] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Revised: 08/30/2021] [Accepted: 09/05/2021] [Indexed: 01/09/2023]
Abstract
The adverse effect and drug resistance of Cisplatin (CDDP) could be potential reduced by delivering in targeted nanoparticles and by combining with adjuvant therapy such as photodynamic therapy. In this study, F/CDPR-NP was formulated and characterized for all the physicochemical, biological and in vivo analysis. The results obtained from various in vitro and biological studies showed that encapsulation of CDDP and PBR in PLGA nanoparticles results in controlled release of encapsulated drugs and exhibited significantly low cell viability in CNE-1 and HNE-1 cancer cells. F/CDPR-NP significantly prolonged the blood circulation of the encapsulated drugs. The AUC of CDDP from F/CDPR-NP (4-fold) was significantly higher compared to that of free CDDP and similarly significantly higher t1/2 for CDDP from F/CDPR-NP was observed. F/CDPR-NP in the presence of laser irradiation showed significant reduction in the tumor burden with low tumor cell proliferations compared to either CDPR-NP or free CDDP indicating the potential of targeted nanoparticles and photodynamic therapy. Overall, combination of treatment modalities and active targeting approach paved way for the higher antitumor activity in nasopharyngeal carcinoma model. The positive results from this study will show new horizon for the treatment of other cancer models.
Collapse
Affiliation(s)
- Benzhong Zhou
- Department of Otolaryngology, Head and Neck Surgery, The 901st Hospital of the Joint Logistics Support Force of PLA, Hefei, Anhui 230031, China
| | - Yunxia Ma
- Department of Otolaryngology, Head and Neck Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, China
| | - Longqiao Li
- Department of Otolaryngology, Head and Neck Surgery, The 901st Hospital of the Joint Logistics Support Force of PLA, Hefei, Anhui 230031, China
| | - Xianping Shi
- Department of Otolaryngology, Head and Neck Surgery, The 901st Hospital of the Joint Logistics Support Force of PLA, Hefei, Anhui 230031, China
| | - Zhitai Chen
- Department of Otolaryngology, Head and Neck Surgery, The 901st Hospital of the Joint Logistics Support Force of PLA, Hefei, Anhui 230031, China
| | - Feifeng Wu
- Department of Otolaryngology, Head and Neck Surgery, The 901st Hospital of the Joint Logistics Support Force of PLA, Hefei, Anhui 230031, China
| | - Yang Liu
- Department of Otolaryngology, Head and Neck Surgery, The 901st Hospital of the Joint Logistics Support Force of PLA, Hefei, Anhui 230031, China
| | - Zesheng Zhang
- Department of Otolaryngology, Head and Neck Surgery, The 901st Hospital of the Joint Logistics Support Force of PLA, Hefei, Anhui 230031, China
| | - Shengguo Wang
- Department of Otolaryngology, Head and Neck Surgery, The 901st Hospital of the Joint Logistics Support Force of PLA, Hefei, Anhui 230031, China.
| |
Collapse
|
11
|
Injectable cuttlefish HAP and macromolecular fibroin protein hydrogel for natural bone mimicking matrix for enhancement of osteoinduction progression. REACT FUNCT POLYM 2021. [DOI: 10.1016/j.reactfunctpolym.2021.104841] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
12
|
Orafaie A, Bahrami AR, Matin MM. Use of anticancer peptides as an alternative approach for targeted therapy in breast cancer: a review. Nanomedicine (Lond) 2021; 16:415-433. [PMID: 33615876 DOI: 10.2217/nnm-2020-0352] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Breast cancer is the most common cancer in women worldwide. Traditional therapies are expensive and cause severe side effects. Targeted therapy is a powerful method to circumvent the problems of other therapies. It also allows drugs to localize at predefined targets in a selective manner. Currently, there are several monoclonal antibodies which target breast cancer cell surface markers. However, using antibodies has some limitations. In the last two decades, many investigators have discovered peptides that may be useful to target breast cancer cells. In this article, we provide an overview on anti-breast cancer peptides, their sources and biological activities. We further discuss the pros and cons of using anticancer peptides with further emphasis on how to improve their effectiveness in cancer therapy.
Collapse
Affiliation(s)
- Ala Orafaie
- Department of Biology, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Ahmad Reza Bahrami
- Department of Biology, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran.,Industrial Biotechnology Research Group, Institute of Biotechnology, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Maryam M Matin
- Department of Biology, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran.,Novel Diagnostics & Therapeutics Research Group, Institute of Biotechnology, Ferdowsi University of Mashhad, Mashhad, Iran
| |
Collapse
|
13
|
Chen S, Song Z, Feng R. Recent Development of Copolymeric Nano-Drug Delivery System for Paclitaxel. Anticancer Agents Med Chem 2020; 20:2169-2189. [PMID: 32682385 DOI: 10.2174/1871520620666200719001038] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 05/25/2020] [Accepted: 06/25/2020] [Indexed: 11/22/2022]
Abstract
Background:
Paclitaxel (PTX) has been clinically used for several years due to its good therapeutic
effect against cancers. Its poor water-solubility, non-selectivity, high cytotoxicity to normal tissue and worse
pharmacokinetic property limit its clinical application.
Objective:
To review the recent progress on the PTX delivery systems.
Methods:
In recent years, the copolymeric nano-drug delivery systems for PTX are broadly studied. It mainly
includes micelles, nanoparticles, liposomes, complexes, prodrugs and hydrogels, etc. They were developed or
further modified with target molecules to investigate the release behavior, targeting to tissues, pharmacokinetic
property, anticancer activities and bio-safety of PTX. In the review, we will describe and discuss the recent
progress on the nano-drug delivery system for PTX since 2011.
Results:
The water-solubility, selective delivery to cancers, tissue toxicity, controlled release and pharmacokinetic
property of PTX are improved by its encapsulation into the nano-drug delivery systems. In addition, its
activities against cancer are also comparable or high when compared with the commercial formulation.
Conclusion:
Encapsulating PTX into nano-drug carriers should be helpful to reduce its toxicity to human, keeping
or enhancing its activity and improving its pharmacokinetic property.
Collapse
Affiliation(s)
- Shiyu Chen
- School of Biological Science and Technology, University of Jinan, No. 336 West Road of Nanxinzhuang, Jinan 250022, Shandong Province, China
| | - Zhimei Song
- School of Biological Science and Technology, University of Jinan, No. 336 West Road of Nanxinzhuang, Jinan 250022, Shandong Province, China
| | - Runliang Feng
- School of Biological Science and Technology, University of Jinan, No. 336 West Road of Nanxinzhuang, Jinan 250022, Shandong Province, China
| |
Collapse
|
14
|
Hao X, Gai W, Wang L, Zhao J, Sun D, Yang F, Jiang H, Feng Y. 5-Boronopicolinic acid-functionalized polymeric nanoparticles for targeting drug delivery and enhanced tumor therapy. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 119:111553. [PMID: 33321617 DOI: 10.1016/j.msec.2020.111553] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Revised: 09/02/2020] [Accepted: 09/22/2020] [Indexed: 12/11/2022]
Abstract
Strong specificity for cancer cells is still the main challenge to deliver drugs for the therapy of cancer. Herein, we developed a convenient strategy to prepare a series of 5-boronopicolinic acid (BA) modified tumor-targeting drug delivery systems (T-DDSs) with strong tumor targeting function. An anti-tumor drug of camptothecin (CPT) was encapsulated into poly(lactide-co-glycolide)-g-polyethylenimine (PLGA-PEI) to form drug-loaded nanoparticles (NP/CPT). Then, the surface of NP/CPT was coated by BA with different polymer and BA molar ratios of 1:1, 1:5, 1:10 and 1:20 via electrostatic interaction to obtain T-DDSs with enhanced biocompatibility and specificity for tumor cells. The introduced BA can endow drug-loaded NPs with high targeting ability to tumor cells because of the overexpression of sialic acids (SA) in tumor cells, which possessed strong interaction with BA. Those T-DDSs exhibited good biocompatibility according to the results of MTT assay, hemolysis test and cellular uptake. Moreover, they were capable of decreasing the viability of breast cancer cell line 4T1 and MCF-7 cells with no obvious cytotoxicity for endothelial cells. Especially, T-DDS with 1:20 molar ratio displayed much higher cellular uptake than other groups, and also exhibited highly efficient in vivo anti-tumor effect. The significantly high targeting function and biocompatibility of T-DDSs improved their drug delivery efficiency and achieved good anti-tumor effect. The BA decorated T-DDSs provides a simple and robust strategy for the design and preparation of DDSs with good biocompatibility and strong tumor-specificity to promote drug delivery efficiency.
Collapse
Affiliation(s)
- Xuefang Hao
- Nano Innovation Institute, Inner Mongolia Key Laboratory of Carbon Nanomaterials, College of Chemistry and Materials Science, Inner Mongolia University for Nationalities, Tongliao 028000, China.
| | - Weiwei Gai
- Nano Innovation Institute, Inner Mongolia Key Laboratory of Carbon Nanomaterials, College of Chemistry and Materials Science, Inner Mongolia University for Nationalities, Tongliao 028000, China
| | - Lina Wang
- Nano Innovation Institute, Inner Mongolia Key Laboratory of Carbon Nanomaterials, College of Chemistry and Materials Science, Inner Mongolia University for Nationalities, Tongliao 028000, China
| | - Jiadi Zhao
- Nano Innovation Institute, Inner Mongolia Key Laboratory of Carbon Nanomaterials, College of Chemistry and Materials Science, Inner Mongolia University for Nationalities, Tongliao 028000, China
| | - Dandan Sun
- School of Pharmaceutical Sciences, Jilin University, Changchun 130021, China
| | - Fan Yang
- Nano Innovation Institute, Inner Mongolia Key Laboratory of Carbon Nanomaterials, College of Chemistry and Materials Science, Inner Mongolia University for Nationalities, Tongliao 028000, China
| | - Haixia Jiang
- Analysis and Testing Center of Inner Mongolia University for Nationalities, Tongliao 028000, China
| | - Yakai Feng
- School of Chemical Engineering and Technology, Tianjin University, Yaguan Road 135, Tianjin 300350, China; Collaborative Innovation Center of Chemical Science and Chemical Engineering (Tianjin), Tianjin 300350, China; Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin 300072, China.
| |
Collapse
|
15
|
Localized delivery of active targeting micelles from nanofibers patch for effective breast cancer therapy. Int J Pharm 2020; 584:119412. [PMID: 32418898 DOI: 10.1016/j.ijpharm.2020.119412] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 05/04/2020] [Accepted: 05/05/2020] [Indexed: 01/08/2023]
Abstract
Nanofibers based transdermal drug delivery is a promising platform, and it effectively delivers the drug to tumor sites. The objective of the study was to fabricate stimuli-responsive polymeric nanofibers encapsulated with an active targeting micellar system for in situ drug delivery. Stimuli-responsive core-shell nanofibers release thedrug at target sites with minimum side effects to the other organs, decrease the drug administration concentration. Initially, we prepared CA conjugated PCPP polymeric micelles loaded with PTX. Then, core-shell nanofibers were prepared using PHM with coaxial electrospinning and distinct core-shell nanofibers formation confirm by SEM and TEM. Nanofibers showed a homogenous distribution of micelles inside the fiber mesh, diffusion, and erosion processes lead to a controlled release of PTX.In vitro drug release and swelling, revealed the pH based sustained release of the drug for 180 h from the nanofibers mat. Functional and stimuli-responsive nanofibers highly absorb H+ ions and repulsion of cations promoting maximum swelling to release more drugs in acidic pH. An increased transportation rate of 70% drug release through epidermis for 120 h. Nanofibers effectively internalize to the skin, and it confirmed by confocal microscopy. MCF-7 cells grown and spread over the nanofibers, which show the biocompatibility of nanofibers. Compared to PTX, drug-loaded nanofibers exhibited higher cytotoxicity for 8 days which was confirmed by the flow cytometry. These promising results confirm, the novel stimuli-responsive core-shell nanofibers actively target breast cancer cells and lead the way to safe cancer therapy.
Collapse
|
16
|
Strasser P, Teasdale I. Main-Chain Phosphorus-Containing Polymers for Therapeutic Applications. Molecules 2020; 25:E1716. [PMID: 32276516 PMCID: PMC7181247 DOI: 10.3390/molecules25071716] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 04/02/2020] [Accepted: 04/04/2020] [Indexed: 02/07/2023] Open
Abstract
Polymers in which phosphorus is an integral part of the main chain, including polyphosphazenes and polyphosphoesters, have been widely investigated in recent years for their potential in a number of therapeutic applications. Phosphorus, as the central feature of these polymers, endears the chemical functionalization, and in some cases (bio)degradability, to facilitate their use in such therapeutic formulations. Recent advances in the synthetic polymer chemistry have allowed for controlled synthesis methods in order to prepare the complex macromolecular structures required, alongside the control and reproducibility desired for such medical applications. While the main polymer families described herein, polyphosphazenes and polyphosphoesters and their analogues, as well as phosphorus-based dendrimers, have hitherto predominantly been investigated in isolation from one another, this review aims to highlight and bring together some of this research. In doing so, the focus is placed on the essential, and often mutual, design features and structure-property relationships that allow the preparation of such functional materials. The first part of the review details the relevant features of phosphorus-containing polymers in respect to their use in therapeutic applications, while the second part highlights some recent and innovative applications, offering insights into the most state-of-the-art research on phosphorus-based polymers in a therapeutic context.
Collapse
Affiliation(s)
- Paul Strasser
- Institute of Polymer Chemistry, Johannes Kepler University Linz (JKU), Altenberger Straße 69, A-4040 Linz, Austria
| | - Ian Teasdale
- Institute of Polymer Chemistry, Johannes Kepler University Linz (JKU), Altenberger Straße 69, A-4040 Linz, Austria
| |
Collapse
|