1
|
Salas-Ambrosio P, Vexler S, P S R, Chen IA, Maynard HD. Caffeine and Cationic Copolymers with Antimicrobial Properties. ACS BIO & MED CHEM AU 2023; 3:189-200. [PMID: 37096032 PMCID: PMC10119941 DOI: 10.1021/acsbiomedchemau.2c00077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 01/25/2023] [Accepted: 01/26/2023] [Indexed: 02/16/2023]
Abstract
One of the primary global health concerns is the increase in antimicrobial resistance. Polymer chemistry enables the preparation of macromolecules with hydrophobic and cationic side chains that kill bacteria by destabilizing their membranes. In the current study, macromolecules are prepared by radical copolymerization of caffeine methacrylate as the hydrophobic monomer and cationic- or zwitterionic-methacrylate monomers. The synthesized copolymers bearing tert-butyl-protected carboxybetaine as cationic side chains showed antibacterial activity toward Gram-positive bacteria (S. aureus) and Gram-negative bacteria (E. coli). By tuning the hydrophobic content, we prepared copolymers with optimal antibacterial activity against S. aureus, including methicillin-resistant clinical isolates. Moreover, the caffeine-cationic copolymers presented good biocompatibility in a mouse embryonic fibroblast cell line, NIH 3T3, and hemocompatibility with erythrocytes even at high hydrophobic monomer content (30-50%). Therefore, incorporating caffeine and introducing tert-butyl-protected carboxybetaine as a quaternary cation in polymers could be a novel strategy to combat bacteria.
Collapse
Affiliation(s)
- Pedro Salas-Ambrosio
- Department of Chemistry and Biochemistry and California Nano Systems Institute, University of California, Los Angeles, 607 Charles E. Young Drive East, Los Angeles, California 90095, United States
| | - Shelby Vexler
- Department of Chemistry and Biochemistry and California Nano Systems Institute, University of California, Los Angeles, 607 Charles E. Young Drive East, Los Angeles, California 90095, United States
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, 508 Portola Plaza, Los Angeles, California 90095, United States
| | - Rajalakshmi P S
- Department of Chemistry and Biochemistry and California Nano Systems Institute, University of California, Los Angeles, 607 Charles E. Young Drive East, Los Angeles, California 90095, United States
| | - Irene A. Chen
- Department of Chemistry and Biochemistry and California Nano Systems Institute, University of California, Los Angeles, 607 Charles E. Young Drive East, Los Angeles, California 90095, United States
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, 508 Portola Plaza, Los Angeles, California 90095, United States
| | - Heather D. Maynard
- Department of Chemistry and Biochemistry and California Nano Systems Institute, University of California, Los Angeles, 607 Charles E. Young Drive East, Los Angeles, California 90095, United States
| |
Collapse
|
2
|
Zhang D, Li X, Liang T, Niu S, He Y, Song P, Wang R. Construction of antibacterial fabrics with polymer cationic broccolo‐shaped nanoparticles. POLYM ADVAN TECHNOL 2022. [DOI: 10.1002/pat.5832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Duoxin Zhang
- Key Laboratory Eco‐Functional Polymer Materials of MOE Institute of Copolymer, College of Chemistry & Chemical Engineering, Northwest Normal University Lanzhou China
| | - Xuemei Li
- Key Laboratory Eco‐Functional Polymer Materials of MOE Institute of Copolymer, College of Chemistry & Chemical Engineering, Northwest Normal University Lanzhou China
| | - Tingyu Liang
- College of Life Science College of Life Science, Northwest Normal University Lanzhou China
| | - Shiquan Niu
- College of Life Science College of Life Science, Northwest Normal University Lanzhou China
| | - Yufeng He
- Key Laboratory Eco‐Functional Polymer Materials of MOE Institute of Copolymer, College of Chemistry & Chemical Engineering, Northwest Normal University Lanzhou China
| | - Pengfei Song
- Key Laboratory Eco‐Functional Polymer Materials of MOE Institute of Copolymer, College of Chemistry & Chemical Engineering, Northwest Normal University Lanzhou China
| | - Rongmin Wang
- Key Laboratory Eco‐Functional Polymer Materials of MOE Institute of Copolymer, College of Chemistry & Chemical Engineering, Northwest Normal University Lanzhou China
| |
Collapse
|
3
|
Hussmann L, Belthle T, Demco DE, Fechete R, Pich A. Stimuli-responsive microgels with cationic moieties: characterization and interaction with E. coli cells. SOFT MATTER 2021; 17:8678-8692. [PMID: 34518865 DOI: 10.1039/d1sm01007g] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Stimuli-responsive microgel copolymer networks with ionizable functional groups have important applications for encapsulation of drugs, peptides, enzymes, proteins, or cells. Rational design of such networks can be based on characterization of stimuli-induced volume phase transition and spatial distribution of neutral and charged monomer units in crosslinked polymer chains. In this work we successfully synthesized poly(N-vinylcaprolactam-co-1-vinyl-3-methylimidazolium) (poly(VCL-VIM+)) microgels carrying permanent positive charges and demonstrate that 1H high-resolution NMR spectroscopy in combination with transverse (T2) magnetization relaxometry allows investigating separately the behavior of each functional group in the microgel network. The information about comonomer transition temperatures, width of transition, and change in transition entropy were reported and correlated with the concentration of charged functional groups and resulting electrophoretic mobility. A two-state approach was used to describe the temperature-induced volume phase transition separately for neutral and charged polymer segments. The core-corona architecture specific to each functional group was detected revealing that the charged methylated vinylimidazolium groups (VIM+) are concentrated mainly in the corona of the microgel. These biocompatible PVCL-based microgels functionalized with permanent positive charges are shown to serve as an antibacterial system against Gram-negative E. coli strains, due to the positive charge of the incorporated VIM+ comonomer in the polymer network.
Collapse
Affiliation(s)
- Larissa Hussmann
- DWI-Leibniz-Institute for Interactive Materials, Forckenbeckstraße 50, 52074 Aachen, Germany.
- Functional and Interactive Polymers, Institute of Technical and Macromolecular Chemistry, RWTH Aachen University, Worringerweg 2, 52074 Aachen, Germany
| | - Thomke Belthle
- DWI-Leibniz-Institute for Interactive Materials, Forckenbeckstraße 50, 52074 Aachen, Germany.
- Functional and Interactive Polymers, Institute of Technical and Macromolecular Chemistry, RWTH Aachen University, Worringerweg 2, 52074 Aachen, Germany
| | - Dan E Demco
- DWI-Leibniz-Institute for Interactive Materials, Forckenbeckstraße 50, 52074 Aachen, Germany.
- Technical University of Cluj-Napoca, Department of Physics and Chemistry, 25 G. Baritiu Str., 400027, Cluj-Napoca, Romania
| | - Radu Fechete
- Technical University of Cluj-Napoca, Department of Physics and Chemistry, 25 G. Baritiu Str., 400027, Cluj-Napoca, Romania
| | - Andrij Pich
- DWI-Leibniz-Institute for Interactive Materials, Forckenbeckstraße 50, 52074 Aachen, Germany.
- Functional and Interactive Polymers, Institute of Technical and Macromolecular Chemistry, RWTH Aachen University, Worringerweg 2, 52074 Aachen, Germany
- Aachen Maastricht Institute for Biobased Materials (AMIBM), Maastricht University, Brightlands Chemelot Campus, Urmonderbaan 22, 6167 RD Geleen, The Netherlands
| |
Collapse
|
4
|
Brol A, Olszewski TK. Synthesis and stability of 1-aminoalkylphosphonic acid quaternary ammonium salts. Org Biomol Chem 2021; 19:6422-6430. [PMID: 34018544 DOI: 10.1039/d1ob00703c] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
An effective protocol for the quaternization of simple 1-aminoalkylphosphonic acids under basic conditions using Me2SO4 as a convenient alkylating agent is reported. During the course of the reaction, phosphonic acid quaternary ammonium derivatives, along with their corresponding monoesters are formed. Subsequent direct acidic hydrolysis of the crude reaction mixture leads to the desired novel N,N,N-trialkyl-N-(1-phosphonoalkyl)ammonium salts with overall yields of up to 88%. The developed protocol is general in scope and the products are purified by simple crystallization to give stable solids. Novel quaternary ammonium salts bearing a phosphonic group are generally unreactive in acidic and alkaline media. However, some of them undergo Hofmann elimination and substitution reactions in the presence of a base.
Collapse
Affiliation(s)
- Anna Brol
- Faculty of Chemistry, Wrocław University of Science and Technology, ul. Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland.
| | - Tomasz K Olszewski
- Faculty of Chemistry, Wrocław University of Science and Technology, ul. Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland.
| |
Collapse
|
5
|
De Jesús-Téllez MA, De la Rosa-García S, Medrano-Galindo I, Rosales-Peñafiel I, Gómez-Cornelio S, Guerrero-Sanchez C, Schubert US, Quintana-Owen P. Antifungal properties of poly[2-(dimethylamino)ethyl methacrylate] (PDMAEMA) and quaternized derivatives. REACT FUNCT POLYM 2021. [DOI: 10.1016/j.reactfunctpolym.2021.104887] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
6
|
Mori DI, Schurr MJ, Nair DP. Selective Inhibition of Streptococci Biofilm Growth via a Hydroxylated Azobenzene Coating. ADVANCED MATERIALS INTERFACES 2020; 7:1902149. [PMID: 33575161 PMCID: PMC7872137 DOI: 10.1002/admi.201902149] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Indexed: 06/12/2023]
Abstract
Strategies to engineer surfaces that can enable the selective inhibition of bacterial pathogens while preserving beneficial microbes can serve as tools to precisely edit the microbiome. In the oral microbiome, this selectivity is crucial in preventing the proliferation of cariogenic species such as Streptococcus mutans (S. mutans). In this communication, coatings consisting of a covalently tethered hydroxylated azobenzene (OH-AAZO) on glassy acrylic resins are studied and characterized for their ability to selectively prevent the attachment and growth of oral Streptococci biofilms. The coating applied on the surface of glassy resins inhibits the growth and proliferation of cariogenic S. mutans and S. oralis biofilms while A. actinomycetemcomitans, S. aureus, and E. coli biofilms are unaffected by the coating . The antibacterial effect is characterized as a function of both the OH-AAZO concentration in the coatings (≥50 mg mL-1) and the structure of the monomer in the coating. Preliminary mechanistic results suggest that the targeted bactericidal effect against Streptococci species is caused by a disruption of membrane ion potential, inducing cell death.
Collapse
Affiliation(s)
- Dylan I Mori
- Department of Craniofacial Biology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Michael J Schurr
- Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Devatha P Nair
- Department of Craniofacial Biology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
- Materials Science and Engineering, University of Colorado Boulder, Boulder, CO 80309, USA
| |
Collapse
|
7
|
Gholami H, Yeganeh H. Vegetable oil-based polyurethanes as antimicrobial wound dressings: in vitro and in vivo evaluation. Biomed Mater 2020; 15:045001. [DOI: 10.1088/1748-605x/ab7387] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
8
|
Active delivery of antimicrobial nanoparticles into microbial cells through surface functionalization strategies. Trends Food Sci Technol 2020. [DOI: 10.1016/j.tifs.2020.03.008] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
9
|
Kong L, Zhang M, Zhang Y, Zhang W, Zhou X, Zhang L, Wang X. Influence of the interfacial molecular structures of quaternary ammonium-type poly(ionic liquid) brushes on their antibacterial properties. Polym Chem 2020. [DOI: 10.1039/d0py01153c] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Alkyl chains of C4 are more active in killing bacteria than C16 due to their orderly extension toward PBS solution.
Collapse
Affiliation(s)
- Lingli Kong
- Department of Chemistry
- School of Science
- Zhejiang Sci-Tech University
- Hangzhou 310018
- China
| | - Ming Zhang
- Department of Chemistry
- School of Science
- Zhejiang Sci-Tech University
- Hangzhou 310018
- China
| | - Yan Zhang
- Department of Chemistry
- School of Science
- Zhejiang Sci-Tech University
- Hangzhou 310018
- China
| | - Wei Zhang
- Department of Chemistry
- School of Science
- Zhejiang Sci-Tech University
- Hangzhou 310018
- China
| | - Xianjing Zhou
- Department of Chemistry
- School of Science
- Zhejiang Sci-Tech University
- Hangzhou 310018
- China
| | - Li Zhang
- Department of Chemistry
- School of Science
- Zhejiang Sci-Tech University
- Hangzhou 310018
- China
| | - Xinping Wang
- Department of Chemistry
- School of Science
- Zhejiang Sci-Tech University
- Hangzhou 310018
- China
| |
Collapse
|
10
|
Barman R, Mondal T, Sarkar J, Sikder A, Ghosh S. Self-Assembled Polyurethane Capsules with Selective Antimicrobial Activity against Gram-Negative E. coli. ACS Biomater Sci Eng 2019; 6:654-663. [DOI: 10.1021/acsbiomaterials.9b00932] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Ranajit Barman
- School of Applied and Interdisciplinary Science, Indian Association for the Cultivation of Science, 2A and 2B Raja S. C. Mullick Road, Kolkata 700032, India
| | - Tathagata Mondal
- School of Applied and Interdisciplinary Science, Indian Association for the Cultivation of Science, 2A and 2B Raja S. C. Mullick Road, Kolkata 700032, India
| | - Jayita Sarkar
- School of Applied and Interdisciplinary Science, Indian Association for the Cultivation of Science, 2A and 2B Raja S. C. Mullick Road, Kolkata 700032, India
| | - Amrita Sikder
- School of Applied and Interdisciplinary Science, Indian Association for the Cultivation of Science, 2A and 2B Raja S. C. Mullick Road, Kolkata 700032, India
| | - Suhrit Ghosh
- School of Applied and Interdisciplinary Science, Indian Association for the Cultivation of Science, 2A and 2B Raja S. C. Mullick Road, Kolkata 700032, India
| |
Collapse
|