1
|
Palaniappan M, Selvaraj D, Kandasamy S, Kahng YH, Narayanan M, Rajendran R, Rangappan R. Architectural MCM 41 was anchored to the Schiff base Co(II) complex to enhance methylene blue dye degradation and mimic activity. ENVIRONMENTAL RESEARCH 2022; 215:114325. [PMID: 36154860 DOI: 10.1016/j.envres.2022.114325] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 08/21/2022] [Accepted: 09/08/2022] [Indexed: 06/16/2023]
Abstract
A sequence of Schiff base Cobalt (II) Mobile Composite Matter 41 heterojunction (SBCo(II)-MCM 41) was prepared by post-synthetic protocols. Various characterization techniques were used to characterize the above samples and MCM 41: Morphology, functional groups, optical properties, crystalline nature, pore diameter, and binding energy by scanning electron microscope (SEM), High-resolution transition electron microscopy (HR-TEM), Fourier transform infrared spectroscopy (FTIR), Ultra Violet-Visible Spectroscopy (UV), X-ray powder diffraction (XRD), Brunauer-Emmett-Teller (BET) and X-ray Photoelectron Spectroscopy (XPS). After the encapsulation of SBCo(II) on the MCM 41, the intensity in the 100-plane in powder x-ray diffraction (XRD) decreased significantly; moreover, the light absorption behavior in UV analysis was improved. The change in the surface area and the decrease in the pore diameter of the sample were also demonstrated by the BET study. The XPS results confirmed the presence of Si, O, C, N, and Co in the SBCo(II)-MCM 41 complex. The photocatalytic performance of MCM 41 and SBCo(II)-MCM 41 materials tested by the degradation of methylene blue dye (MBD) shows that MCM 41 immobilization with SBCo(II)complex is rapidly degraded under natural sunlight irradiation. The optimized 10 mg SBCo(II)-MCM 41 catalyst concentrations showed effective enhancement with the highest efficiency of 98% achieved within 2 h compared to the other two SBCo(II)-MCM 41 concentrations. Moreover, the catalytic efficiency of SBCo(II)-MCM 41 showed a biomimetic reaction without using an oxidant, which exposed it as an effective catalyst for amine to imine conversion; it was useful in the medical field for enzymes with structural assembly.
Collapse
Affiliation(s)
- Manikandan Palaniappan
- Department of Chemistry, Bioinorganic Lab, Science Block-1, Periyar University, Salem 636 011, Tamil Nadu, India
| | - David Selvaraj
- Department of Chemistry, Bioinorganic Lab, Science Block-1, Periyar University, Salem 636 011, Tamil Nadu, India; Department of Physics Education, Chonnam National University, Gwangju 500-757, Republic of Korea.
| | - Sabariswaran Kandasamy
- Water-Energy Nexus Laboratory, Department of Environmental Engineering, University of Seoul, Seoul, 02504, Republic of Korea
| | - Yung Ho Kahng
- Department of Physics Education, Chonnam National University, Gwangju 500-757, Republic of Korea.
| | - Mathiyazhagan Narayanan
- Division of Research and Innovations, Department of Biotechnology, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Science, Chennai, 602 105, Tamil Nadu, India
| | | | - Rajavel Rangappan
- Department of Chemistry, Bioinorganic Lab, Science Block-1, Periyar University, Salem 636 011, Tamil Nadu, India.
| |
Collapse
|
2
|
Maurya MR, Chauhan A, Avecilla F. Synthesis, Characterization and Biomimetic Activity of Heterogenized Dioxidomolybdenum(VI) and Analogous Homogeneous Complexes. ChemistrySelect 2022. [DOI: 10.1002/slct.202202327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Mannar R. Maurya
- Department of Chemistry Indian Institute of Technology Roorkee Roorkee 247667 India
| | - Abhilasha Chauhan
- Department of Chemistry Indian Institute of Technology Roorkee Roorkee 247667 India
| | - Fernando Avecilla
- Grupo NanoToxGen Centro de Investigacións Científicas Avanzadas (CICA) Departamento de Química, Facultade de Ciencias Universidade da Coruña Campus de A Coruña 15071 A Coruña Spain
| |
Collapse
|
3
|
Ryu HT, Oh SM, Tae K, Yi BJ. DNA-Helix Inspired Wire Routing in Cylindrical Structures and Its Application to Flexible Surgical Devices. Soft Robot 2022; 9:337-353. [PMID: 34107752 PMCID: PMC9057904 DOI: 10.1089/soro.2020.0145] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
In general wire-driven continuum robot mechanisms, the wires are used to control the motion of the devices attached at the distal end. The slack and taut wire is one of the challenging issues to solve in flexible mechanism. This phenomenon becomes worse when the continuum robot is inserted into the natural orifices of the human body, which inherently have uncertain curvilinear geometries consisting of multiple curvatures. Inspired by the unique characteristic of DNA-helix structure that the length of the helix remains almost constant regardless of the deflection of the DNA structure, this article proposes a new idea to design useful flexible mechanism to resolve slack of wires. Using modern Lie-group screw theory, the analytic model for length of helix wire wrapped around a single flexible backbone is proposed and then extended to a general model with multiple flexible backbones and different curvatures. Taking advantage of this helix type wire mechanism, we designed and implemented a flexible surgical device suitable for laryngopharyngeal surgery. The effectiveness of the proposed flexible mechanism is demonstrated through both simulation and phantom experiment.
Collapse
Affiliation(s)
- Hwan-Taek Ryu
- Department of Intelligent Robotic Engineering, Hanyang University, Ansan, Republic of Korea
| | - Se-Min Oh
- Department of Dual System Hub Organization, Korea Polytechnic University, Siheung, Republic of Korea
| | - Kyung Tae
- Department of Otolaryngology-Head and Neck Surgery, Hanyang University, Seoul, Republic of Korea
| | - Byung-Ju Yi
- School of Electrical Engineering, Hanyang University, Ansan, Republic of Korea
| |
Collapse
|
4
|
Maurya MR, Chauhan A, Verma A, Kumar U, Avecilla F. Amine-functionalized titanium dioxide supported dioxidomolybdenum(VI) complexes as functional model for phenoxazinone synthase enzyme. Catal Today 2022. [DOI: 10.1016/j.cattod.2020.06.031] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
5
|
Pasricha S, Gahlot P, Mittal K, Rai D, Avasthi N, Kaur H, Rai S. Functionalized MCM‐41: Versatile Catalysts for Organic Transformations. ChemistrySelect 2022. [DOI: 10.1002/slct.202103674] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- Sharda Pasricha
- Department of Chemistry Sri Venkateswara College University of Delhi Benito Juarez Marg, Dhaula Kuan New Delhi India 110 021
| | - Pragya Gahlot
- Department of Chemistry Sri Venkateswara College University of Delhi Benito Juarez Marg, Dhaula Kuan New Delhi India 110 021
| | - Kavita Mittal
- Department of Chemistry Acharya Narendra Dev College University of Delhi Govindpuri, Kalkaji New Delhi India 110 019
| | - Devansh Rai
- Department of Chemistry Sri Venkateswara College University of Delhi Benito Juarez Marg, Dhaula Kuan New Delhi India 110 021
| | - Nishita Avasthi
- Department of Chemistry Sri Venkateswara College University of Delhi Benito Juarez Marg, Dhaula Kuan New Delhi India 110 021
| | - Harsimar Kaur
- Department of Chemistry Sri Venkateswara College University of Delhi Benito Juarez Marg, Dhaula Kuan New Delhi India 110 021
| | - Shruti Rai
- Department of Chemistry Sri Venkateswara College University of Delhi Benito Juarez Marg, Dhaula Kuan New Delhi India 110 021
| |
Collapse
|
6
|
Cu(II) Schiff base complex functionalized mesoporous silica nanoparticles as an efficient catalyst for the synthesis of questiomycin A and photo-Fenton-like rhodamine B degradation. J SOLID STATE CHEM 2021. [DOI: 10.1016/j.jssc.2021.122429] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
7
|
Coordination environment variations in multinuclear trigonal bipyramid Co(II) complexes bearing tetradentate sulfonamide N-donors and phenoxazinone synthase activities. Inorganica Chim Acta 2020. [DOI: 10.1016/j.ica.2020.119664] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
8
|
Choudhary N, Ghosh T, Mobin SM. Ketone Hydrogenation by Using ZnO-Cu(OH)Cl/MCM-41 with a Splash of Water: An Environmentally Benign Approach. Chem Asian J 2020; 15:1339-1348. [PMID: 32106358 DOI: 10.1002/asia.201901610] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Revised: 02/22/2020] [Indexed: 11/10/2022]
Abstract
MCM-41-supported ZnO-Cu(OH)Cl nanoparticles were synthesized via an incipient wetness impregnation technique using zinc chloride and copper chloride salts as well as water at room temperature. The catalyst was characterized by powder X-ray diffraction (PXRD), infrared spectroscopy (IR), and TGA, whereas surface and morphological studies were performed by using scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The above studies revealed the incorporation of metal species into the pores of MCM-41, leading to a decrease in surface area of the nanoparticles that was found to be 239.079 m2 /g. The substituents attached to the ketone determine the rate of the reaction, and the utilization of the green solvent 'water' astonishingly completes the hydrogenation reaction in 45 minutes at 40 °C with 100% conversion and 100% selectivity as analyzed by gas chromatography-mass spectrometry. Hence, ZnO-Cu(OH)Cl/MCM-41 nanoparticles with 2.46 wt% zinc and 6.39 wt% copper were demonstrated as an active catalyst for the reduction of ketones without using any gaseous hydrogen source making it highly efficient as well as environmentally and economically benign.
Collapse
Affiliation(s)
- Neha Choudhary
- Discipline of Chemistry, Indian Institute of Technology Indore Simrol, Khandwa Road, Indore, 453552, India
| | - Topi Ghosh
- Discipline of Chemistry, Indian Institute of Technology Indore Simrol, Khandwa Road, Indore, 453552, India
| | - Shaikh M Mobin
- Discipline of Chemistry, Indian Institute of Technology Indore Simrol, Khandwa Road, Indore, 453552, India.,Discipline of Metallurgy Engineering and Material Science, Indian Institute of Technology Indore Simrol, Khandwa Road, Indore, 453552, India.,Discipline for Biosciences and Bio-Medical Engineering, Indian Institute of Technology Indore Simrol, Khandwa Road, Indore, 453552, India
| |
Collapse
|
9
|
Dutta T, Mirdya S, Giri P, Chattopadhyay S. Synthesis and characterization of a double oximato bridged dimeric copper(II) complex and its use in oxidative dimerisation of o-aminophenol. Polyhedron 2020. [DOI: 10.1016/j.poly.2019.114164] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
10
|
Jana NC, Patra M, Brandão P, Panja A. Biomimetic catalytic activity and structural diversity of cobalt complexes with N3O-donor Schiff base ligand. Inorganica Chim Acta 2019. [DOI: 10.1016/j.ica.2019.03.017] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
11
|
Oloyede HO, Woods JAO, Görls H, Plass W, Eseola AO. The necessity of free and uncrowded coordination environments in biomimetic complex models: oxidative coupling by mixed-ligand cobalt(ii) complexes of diazene–disulfonamide. NEW J CHEM 2019. [DOI: 10.1039/c9nj04396a] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Importance of molecular access to Co(ii) site is shown by new tridentate disulfonamides, which stabilize uncommon 5-coordinate mixed-ligand vacant-octahedral geometries.
Collapse
Affiliation(s)
| | | | - Helmar Görls
- Institut für Anorganische und Analytische Chemie
- Friedrich-Schiller-Universität Jena
- 07743 Jena
- Germany
| | - Winfried Plass
- Institut für Anorganische und Analytische Chemie
- Friedrich-Schiller-Universität Jena
- 07743 Jena
- Germany
| | - Abiodun Omokehinde Eseola
- Institut für Anorganische und Analytische Chemie
- Friedrich-Schiller-Universität Jena
- 07743 Jena
- Germany
- Materials Chemistry group
| |
Collapse
|
12
|
Functionalized Ordered Mesoporous Silicas (MCM-41): Synthesis and Applications in Catalysis. Catalysts 2018. [DOI: 10.3390/catal8120617] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Mesoporous silica sieves are among the most studied nano-objects due to their stable pore structure and easy preparation. In particular, MCM-41 have attracted increasing research attention due to their chemical versatility. This review focuses on the synthesis and regioselective functionalization of MCM-41 to prepare catalytic systems. The topics covered are: mono and di-functionalized MCM-41 as basic and acid catalysts, catalysts based on metallic complexes and heteropolyacids supported onto MCM-41, metallic nanoparticles embed onto functionalized MCM-41 and magnetic MCM-41 for catalytic purposes.
Collapse
|