1
|
Yin Y, Yao E, Xiao L, Wang Z, Ren Y, Bai J, Ma H, Zhao F. Synthesis, crystal structure and thermal properties of energetic complex Ni(Ⅱ) and Cd(Ⅱ) based on bis(5-nitroimino-1,2,4-triazole-3-yl) methane. J Mol Struct 2023. [DOI: 10.1016/j.molstruc.2023.134957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
2
|
Cao W, Dong W, Lu Z, Bi Y, Hu Y, Wang T, Zhang C, Li Z, Yu Q, Zhang J. Construction of Coplanar Bicyclic Backbones for 1,2,4-Triazole-1,2,4-Oxadiazole-Derived Energetic Materials. Chemistry 2021; 27:13807-13818. [PMID: 34323327 DOI: 10.1002/chem.202101884] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Indexed: 11/06/2022]
Abstract
Combining different nitrogen-rich heterocycles into a molecule can fine-tune its energetic performance and physical properties as well as its safety for use in energetic materials. Here, 1,2,4-oxadiazole was incorporated into 1,2,4-triazole to construct new energetic backbones. 3-(5-Amino-1H-1,2,4-triazol-3-yl)-1,2,4-oxadiazol-5-amine (5) was designed and synthesized. Nitramino-functionalized N-(5-(5-amino-1,2,4-oxadiazol-3-yl)-3H-1,2,4-triazol-3-yl)nitramide (6) and N-(5-(5-(nitramino)-1,2,4-oxadiazol-3-yl)-3H-1,2,4-triazol-3-yl)nitramide (7) were also obtained, and two series of corresponding nitrogen-rich salts were prepared, leading to the creation of new energetic compounds. All derivatives were fully characterized, and five of them were further confirmed by X-ray diffraction. The theoretical calculations, energetic performance, safety, and the main decomposition gaseous products of 1,2,4-triazole-1,2,4-oxadiazole-derived energetic materials were studied. Compound 7 and its dihydroxylammonium salt (7 c) exhibited prominent detonation performance comparable to that of RDX while possessing satisfying thermal stabilities and mechanical sensitivities.
Collapse
Affiliation(s)
- Wenli Cao
- State Key Laboratory of Explosion Science and Technology, Beijing Institute of Technology, Beijing, 100081, P. R. China
| | - Wenshuai Dong
- State Key Laboratory of Explosion Science and Technology, Beijing Institute of Technology, Beijing, 100081, P. R. China
| | - Zujia Lu
- State Key Laboratory of Explosion Science and Technology, Beijing Institute of Technology, Beijing, 100081, P. R. China
| | - Yufan Bi
- State Key Laboratory of Explosion Science and Technology, Beijing Institute of Technology, Beijing, 100081, P. R. China
| | - Yong Hu
- State Key Laboratory of Explosion Science and Technology, Beijing Institute of Technology, Beijing, 100081, P. R. China
| | - Tingwei Wang
- State Key Laboratory of Explosion Science and Technology, Beijing Institute of Technology, Beijing, 100081, P. R. China
| | - Chao Zhang
- State Key Laboratory of Explosion Science and Technology, Beijing Institute of Technology, Beijing, 100081, P. R. China
| | - Zhimin Li
- State Key Laboratory of Explosion Science and Technology, Beijing Institute of Technology, Beijing, 100081, P. R. China
| | - Qiyao Yu
- State Key Laboratory of Explosion Science and Technology, Beijing Institute of Technology, Beijing, 100081, P. R. China
| | - Jianguo Zhang
- State Key Laboratory of Explosion Science and Technology, Beijing Institute of Technology, Beijing, 100081, P. R. China
| |
Collapse
|