1
|
Rimoldi I, Coffetti G, Gandolfi R, Facchetti G. Hybrid Metal Catalysts as Valuable Tools in Organic Synthesis: An Overview of the Recent Advances in Asymmetric C─C Bond Formation Reactions. Molecules 2024; 29:5090. [PMID: 39519731 PMCID: PMC11547358 DOI: 10.3390/molecules29215090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 10/25/2024] [Accepted: 10/25/2024] [Indexed: 11/16/2024] Open
Abstract
Carbon-carbon bond formation represents a key reaction in organic synthesis, resulting in paramount importance for constructing the carbon backbone of organic molecules. However, traditional metal-based catalysis, despite its advantages, often struggles with issues related to efficiency, selectivity, and sustainability. On the other hand, while biocatalysis offers superior selectivity due to an extraordinary recognition process of the substrate, the scope of its applicable reactions remains somewhat limited. In this context, Artificial Metalloenzymes (ArMs) and Metallo Peptides (MPs) offer a promising and not fully explored solution, merging the two fields of transition metal catalysis and biotransformations, by inserting a catalytically active metal cofactor into a customizable protein scaffold or coordinating the metal ion directly to a short and tunable amino acid (Aa) sequence, respectively. As a result, these hybrid catalysts have gained attention as valuable tools for challenging catalytic transformations, providing systems with new-to-nature properties in organic synthesis. This review offers an overview of recent advances in the development of ArMs and MPs, focusing on their application in the asymmetric carbon-carbon bond-forming reactions, such as carbene insertion, Michael additions, Friedel-Crafts and cross-coupling reactions, and cyclopropanation, underscoring the versatility of these systems in synthesizing biologically relevant compounds.
Collapse
Affiliation(s)
| | | | | | - Giorgio Facchetti
- Department of Pharmaceutical Sciences, University of Milan, Via Venezian 21, 20133 Milano, Italy; (I.R.); (G.C.); (R.G.)
| |
Collapse
|
2
|
Yu K, Zhang K, Jakob RP, Maier T, Ward TR. An artificial nickel chlorinase based on the biotin-streptavidin technology. Chem Commun (Camb) 2024; 60:1944-1947. [PMID: 38277163 PMCID: PMC10863421 DOI: 10.1039/d3cc05847f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 01/17/2024] [Indexed: 01/27/2024]
Abstract
Herein, we report on an artificial nickel chlorinase (ANCase) resulting from anchoring a biotinylated nickel-based cofactor within streptavidin (Sav). The resulting ANCase was efficient for the chlorination of diverse C(sp3)-H bonds. Guided by the X-ray analysis of the ANCase, the activity of the artificial chlorinase could be significantly improved. This approach opens interesting perspectives for late-stage functionalization of organic intermediates as it complements biocatalytic chlorination strategies.
Collapse
Affiliation(s)
- Kun Yu
- Department of Chemistry, University of Basel, Mattenstrasse 22, Basel, CH-4058, Switzerland.
| | - Kailin Zhang
- Department of Chemistry, University of Basel, Mattenstrasse 22, Basel, CH-4058, Switzerland.
| | - Roman P Jakob
- Biozentrum, University of Basel, Spitalstrasse 41, Basel, CH-4056, Switzerland
| | - Timm Maier
- Biozentrum, University of Basel, Spitalstrasse 41, Basel, CH-4056, Switzerland
| | - Thomas R Ward
- Department of Chemistry, University of Basel, Mattenstrasse 22, Basel, CH-4058, Switzerland.
| |
Collapse
|
3
|
Wang W, Tachibana R, Zou Z, Chen D, Zhang X, Lau K, Pojer F, Ward TR, Hu X. Manganese Transfer Hydrogenases Based on the Biotin-Streptavidin Technology. Angew Chem Int Ed Engl 2023; 62:e202311896. [PMID: 37671593 DOI: 10.1002/anie.202311896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 09/03/2023] [Accepted: 09/06/2023] [Indexed: 09/07/2023]
Abstract
Artificial (transfer) hydrogenases have been developed for organic synthesis, but they rely on precious metals. Native hydrogenases use Earth-abundant metals, but these cannot be applied for organic synthesis due, in part, to their substrate specificity. Herein, we report the design and development of manganese transfer hydrogenases based on the biotin-streptavidin technology. By incorporating bio-mimetic Mn(I) complexes into the binding cavity of streptavidin, and through chemo-genetic optimization, we have obtained artificial enzymes that hydrogenate ketones with nearly quantitative yield and up to 98 % enantiomeric excess (ee). These enzymes exhibit broad substrate scope and high functional-group tolerance. According to QM/MM calculations and X-ray crystallography, the S112Y mutation, combined with the appropriate chemical structure of the Mn cofactor plays a critical role in the reactivity and enantioselectivity of the artificial metalloenzyme (ArMs). Our work highlights the potential of ArMs incorporating base-meal cofactors for enantioselective organic synthesis.
Collapse
Affiliation(s)
- Weijin Wang
- Laboratory of Inorganic Synthesis and Catalysis, Institute of Chemical Sciences and Engineering, École Polytechnique Fédérale de Lausanne ISIC-LSCI, BCH 3305, 1015, Lausanne, Switzerland
| | - Ryo Tachibana
- Department of Chemistry, University of Basel, Mattenstrasse 22, 4002, Basel, Switzerland
| | - Zhi Zou
- Department of Chemistry, University of Basel, Mattenstrasse 22, 4002, Basel, Switzerland
| | - Dongping Chen
- Department of Chemistry, University of Basel, Mattenstrasse 22, 4002, Basel, Switzerland
| | - Xiang Zhang
- Department of Chemistry, University of Basel, Mattenstrasse 22, 4002, Basel, Switzerland
| | - Kelvin Lau
- Protein Production and Structure Core Facility (PTPSP), School of Life Sciences, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Florence Pojer
- Protein Production and Structure Core Facility (PTPSP), School of Life Sciences, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Thomas R Ward
- Department of Chemistry, University of Basel, Mattenstrasse 22, 4002, Basel, Switzerland
- National Center of Competence in Research (NCCR) Catalysis, EPFL, 1015, Lausanne, Switzerland
| | - Xile Hu
- Laboratory of Inorganic Synthesis and Catalysis, Institute of Chemical Sciences and Engineering, École Polytechnique Fédérale de Lausanne ISIC-LSCI, BCH 3305, 1015, Lausanne, Switzerland
- National Center of Competence in Research (NCCR) Catalysis, EPFL, 1015, Lausanne, Switzerland
| |
Collapse
|
4
|
Yu K, Zou Z, Igareta NV, Tachibana R, Bechter J, Köhler V, Chen D, Ward TR. Artificial Metalloenzyme-Catalyzed Enantioselective Amidation via Nitrene Insertion in Unactivated C( sp3)-H Bonds. J Am Chem Soc 2023; 145:16621-16629. [PMID: 37471698 PMCID: PMC10401721 DOI: 10.1021/jacs.3c03969] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Indexed: 07/22/2023]
Abstract
Enantioselective C-H amidation offers attractive means to assemble C-N bonds to synthesize high-added value, nitrogen-containing molecules. In recent decades, complementary enzymatic and homogeneous-catalytic strategies for C-H amidation have been reported. Herein, we report on an artificial metalloenzyme (ArM) resulting from anchoring a biotinylated Ir-complex within streptavidin (Sav). The resulting ArM catalyzes the enantioselective amidation of unactivated C(sp3)-H bonds. Chemogenetic optimization of the Ir cofactor and Sav led to significant improvement in both the activity and enantioselectivity. Up to >700 TON and 92% ee for the amidation of unactivated C(sp3)-H bonds was achieved. The single crystal X-ray analysis of the artificial nitrene insertase (ANIase) combined with quantum mechanics-molecular mechanics (QM-MM) calculations sheds light on critical second coordination sphere contacts leading to improved catalytic performance.
Collapse
Affiliation(s)
- Kun Yu
- Department
of Chemistry, University of Basel, Mattenstrasse 24a, BPR 1096, Basel CH-4058, Switzerland
| | - Zhi Zou
- Department
of Chemistry, University of Basel, Mattenstrasse 24a, BPR 1096, Basel CH-4058, Switzerland
| | - Nico V. Igareta
- Department
of Chemistry, University of Basel, Mattenstrasse 24a, BPR 1096, Basel CH-4058, Switzerland
| | - Ryo Tachibana
- Department
of Chemistry, University of Basel, Mattenstrasse 24a, BPR 1096, Basel CH-4058, Switzerland
| | - Julia Bechter
- Department
of Chemistry, University of Basel, Mattenstrasse 24a, BPR 1096, Basel CH-4058, Switzerland
| | - Valentin Köhler
- Department
of Chemistry, University of Basel, Mattenstrasse 24a, BPR 1096, Basel CH-4058, Switzerland
| | - Dongping Chen
- Department
of Chemistry, University of Basel, Mattenstrasse 24a, BPR 1096, Basel CH-4058, Switzerland
| | - Thomas R. Ward
- Department
of Chemistry, University of Basel, Mattenstrasse 24a, BPR 1096, Basel CH-4058, Switzerland
| |
Collapse
|
5
|
Facchetti G, Neva F, Coffetti G, Rimoldi I. Chiral 8-Amino-5,6,7,8-tetrahydroquinoline Derivatives in Metal Catalysts for the Asymmetric Transfer Hydrogenation of 1-Aryl Substituted-3,4-dihydroisoquinolines as Alkaloids Precursors. Molecules 2023; 28:molecules28041907. [PMID: 36838894 PMCID: PMC9962878 DOI: 10.3390/molecules28041907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 02/13/2023] [Accepted: 02/13/2023] [Indexed: 02/19/2023] Open
Abstract
Chiral diamines based on an 8-amino-5,6,7,8-tetrahydroquinoline backbone, known as CAMPY (L1), or the 2-methyl substituted analogue Me-CAMPY (L2) were employed as novel ligands in Cp* metal complexes for the ATH of a series of substituted dihydroisoquinolines (DHIQs), known for being key intermediates in the synthesis of biologically active alkaloids. Different metal-based complexes were evaluated in this kind of reaction, rhodium catalysts, C3 and C4, proving most effective both in terms of reactivity and enantioselectivity. Although modest enantiomeric excess values were obtained (up to 69% ee in the case of substrate I), a satisfactory quantitative conversion was successfully fulfilled even in the case of the most demanding hindered substrates when La(OTf)3 was used as beneficial additive, opening up the possibility for a rational design of novel chiral catalysts alternatives to the Noyori-Ikariya (arene)Ru(II)/TsDPEN catalyst.
Collapse
|
6
|
Double approaches for obtaining an asymmetric one-pot addition/reduction reaction. MOLECULAR CATALYSIS 2022. [DOI: 10.1016/j.mcat.2022.112716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
7
|
Rumo C, Stein A, Klehr J, Tachibana R, Prescimone A, Häussinger D, Ward TR. An Artificial Metalloenzyme Based on a Copper Heteroscorpionate Enables sp 3 C-H Functionalization via Intramolecular Carbene Insertion. J Am Chem Soc 2022; 144:11676-11684. [PMID: 35749305 PMCID: PMC9348757 DOI: 10.1021/jacs.2c03311] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
![]()
The
selective functionalization
of sp3 C–H bonds
is a versatile tool for the diversification of organic compounds.
Combining attractive features of homogeneous and enzymatic catalysts,
artificial metalloenzymes offer an ideal means to selectively modify
these inert motifs. Herein, we report on a copper(I) heteroscorpionate
complex embedded within streptavidin that catalyzes the intramolecular
insertion of a carbene into sp3 C–H bonds. Target
residues for genetic optimization of the artificial metalloenzyme
were identified by quantum mechanics/molecular mechanics simulations.
Double-saturation mutagenesis yielded detailed insight on the contribution
of individual amino acids on the activity and the selectivity of the
artificial metalloenzyme. Mutagenesis at a third position afforded
a set of artificial metalloenzymes that catalyze the enantio- and
regioselective formation of β- and γ-lactams with high
turnovers and promising enantioselectivities.
Collapse
Affiliation(s)
- Corentin Rumo
- Department of Chemistry, University of Basel, Basel CH-4058, Switzerland
| | - Alina Stein
- Department of Chemistry, University of Basel, Basel CH-4058, Switzerland
| | - Juliane Klehr
- Department of Biomedizin, University of Basel, Basel CH-4031, Switzerland
| | - Ryo Tachibana
- Department of Chemistry, University of Basel, Basel CH-4058, Switzerland
| | | | - Daniel Häussinger
- Department of Chemistry, University of Basel, Basel CH-4058, Switzerland
| | - Thomas R Ward
- Department of Chemistry, University of Basel, Basel CH-4058, Switzerland
| |
Collapse
|
8
|
Facchetti G, Bucci R, Fusè M, Erba E, Gandolfi R, Pellegrino S, Rimoldi I. Alternative Strategy to Obtain Artificial Imine Reductase by Exploiting Vancomycin/D-Ala-D-Ala Interactions with an Iridium Metal Complex. Inorg Chem 2021; 60:2976-2982. [PMID: 33550804 DOI: 10.1021/acs.inorgchem.0c02969] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Based on the supramolecular interaction between vancomycin (Van), an antibiotic glycopeptide, and D-Ala-D-Ala (DADA) dipeptides, a novel class of artificial metalloenzymes was synthesized and characterized. The presence of an iridium(III) ligand at the N-terminus of DADA allowed the use of the metalloenzyme as a catalyst in the asymmetric transfer hydrogenation of cyclic imines. In particular, the type of link between DADA and the metal-chelating moiety was found to be fundamental for inducing asymmetry in the reaction outcome, as highlighted by both computational studies and catalytic results. Using the [IrCp*(m-I)Cl]Cl ⊂ Van complex in 0.1 M CH3COONa buffer at pH 5, a significant 70% (S) e.e. was obtained in the reduction of quinaldine B.
Collapse
Affiliation(s)
- Giorgio Facchetti
- Dipartimento di Scienze Farmaceutiche, Università degli Studi di Milano, Via Venezian 21, 20133 Milano, Italy
| | - Raffaella Bucci
- Dipartimento di Scienze Farmaceutiche, Università degli Studi di Milano, Via Venezian 21, 20133 Milano, Italy
| | - Marco Fusè
- Scuola Normale Superiore, Piazza dei Cavalieri 7, 56126 Pisa, Italy
| | - Emanuela Erba
- Dipartimento di Scienze Farmaceutiche, Università degli Studi di Milano, Via Venezian 21, 20133 Milano, Italy
| | - Raffaella Gandolfi
- Dipartimento di Scienze Farmaceutiche, Università degli Studi di Milano, Via Venezian 21, 20133 Milano, Italy
| | - Sara Pellegrino
- Dipartimento di Scienze Farmaceutiche, Università degli Studi di Milano, Via Venezian 21, 20133 Milano, Italy
| | - Isabella Rimoldi
- Dipartimento di Scienze Farmaceutiche, Università degli Studi di Milano, Via Venezian 21, 20133 Milano, Italy
| |
Collapse
|
9
|
Facchetti G, Christodoulou MS, Mendoza LB, Cusinato F, Dalla Via L, Rimoldi I. Biological Properties of New Chiral 2-Methyl-5,6,7,8-tetrahydroquinolin-8-amine-based Compounds. Molecules 2020; 25:molecules25235561. [PMID: 33260896 PMCID: PMC7729733 DOI: 10.3390/molecules25235561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 11/25/2020] [Accepted: 11/25/2020] [Indexed: 11/16/2022] Open
Abstract
The synthesis of a small library of 8-substituted 2-methyl-5,6,7,8-tetrahydroquinoline derivatives is presented. All the compounds were tested for their antiproliferative activity in non-cancer human dermal microvascular endothelial cells (HMEC-1) and cancer cells: human T-lymphocyte cells (CEM), human cervix carcinoma cells (HeLa), human dermal microvascular endothelial cells (HMEC-1), colorectal adenocarcinoma (HT-29), ovarian carcinoma (A2780), and biphasic mesothelioma (MSTO-211H). Compounds 3a, 5a, and 2b, showing significant IC50 values against the whole panel of the selected cells, were further synthesized and tested as pure enantiomers in order to shed light on how their stereochemistry might impact on the related biological effect. The most active compound (R)-5a was able to affect cell cycle phases and to induce mitochondrial membrane depolarization and cellular ROS production in A2780 cells.
Collapse
Affiliation(s)
- Giorgio Facchetti
- DISFARM, Sezione di Chimica Generale e Organica “A. Marchesini”, Università degli Studi di Milano via Venezian, 21, 20133 Milano, Italy; (M.S.C.); (I.R.)
- Correspondence: (G.F.); (L.D.V.)
| | - Michael S. Christodoulou
- DISFARM, Sezione di Chimica Generale e Organica “A. Marchesini”, Università degli Studi di Milano via Venezian, 21, 20133 Milano, Italy; (M.S.C.); (I.R.)
| | - Lina Barragán Mendoza
- Dipartimento di Scienze del Farmaco, Università degli Studi di Padova, via F. Marzolo, 5, 35131 Padova, Italy; (L.B.M.); (F.C.)
- Facultad de Ciencias Químicas, Universidad de Colima, Carr. Colima-Coquimatlán km 9, Coquimatlán 28400, Colima, Mexico
| | - Federico Cusinato
- Dipartimento di Scienze del Farmaco, Università degli Studi di Padova, via F. Marzolo, 5, 35131 Padova, Italy; (L.B.M.); (F.C.)
| | - Lisa Dalla Via
- Dipartimento di Scienze del Farmaco, Università degli Studi di Padova, via F. Marzolo, 5, 35131 Padova, Italy; (L.B.M.); (F.C.)
- Correspondence: (G.F.); (L.D.V.)
| | - Isabella Rimoldi
- DISFARM, Sezione di Chimica Generale e Organica “A. Marchesini”, Università degli Studi di Milano via Venezian, 21, 20133 Milano, Italy; (M.S.C.); (I.R.)
| |
Collapse
|
10
|
Rimoldi I, Bucci R, Feni L, Santagostini L, Facchetti G, Pellegrino S. Exploring the copper binding ability of Mets7 hCtr-1 protein domain and His7 derivative: An insight in Michael addition catalysis. J Pept Sci 2020; 27:e3289. [PMID: 33094563 DOI: 10.1002/psc.3289] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 09/18/2020] [Accepted: 09/21/2020] [Indexed: 12/16/2022]
Abstract
Mets7 is a methionine-rich motif present in hCtr-1 transporter that is involved in copper cellular trafficking. Its ability to bind Cu(I) was recently exploited to develop metallopeptide catalysts for Henry condensation. Here, the catalytic activity of Mets7-Cu(I) complex in Michael addition reactions has been evaluated. Furthermore, His7 peptide, in which Met residues have been substituted with His ones, was also prepared. This substitution allowed His7 to coordinate Cu (II), with the obtainment of a stable turn conformation as evicted by CD experiments. His7-Cu (II) proved also to be a better catalyst than Mets7-Cu(I) in the addition reaction. In particular, when the substrate was the (E)-1-phenyl-3-(pyridin-2-yl)prop-2-en-1-one, a conversion of 71% and a significative 58% of e.e. was observed.
Collapse
Affiliation(s)
- Isabella Rimoldi
- Dipartimento di Scienze Farmaceutiche, Università degli Studi di Milano, Milan, Italy
| | - Raffaella Bucci
- Dipartimento di Scienze Farmaceutiche, Università degli Studi di Milano, Milan, Italy
| | - Lucia Feni
- Dipartimento di Scienze Farmaceutiche, Università degli Studi di Milano, Milan, Italy
| | | | - Giorgio Facchetti
- Dipartimento di Scienze Farmaceutiche, Università degli Studi di Milano, Milan, Italy
| | - Sara Pellegrino
- Dipartimento di Scienze Farmaceutiche, Università degli Studi di Milano, Milan, Italy
| |
Collapse
|
11
|
Asymmetric Hydrogenation of 1-aryl substituted-3,4-Dihydroisoquinolines with Iridium Catalysts Bearing Different Phosphorus-Based Ligands. Catalysts 2020. [DOI: 10.3390/catal10080914] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Starting from the chiral 5,6,7,8-tetrahydroquinolin-8-ol core, a series of amino-phosphorus-based ligands was realized. The so-obtained amino-phosphine ligand (L1), amino-phosphinite (L2) and amino-phosphite (L3) were evaluated in iridium complexes together with the heterobiaryl diphosphines tetraMe-BITIOP (L4), Diophep (L5) and L6 and L7 ligands, characterized by mixed chirality. Their catalytic performance in the asymmetric hydrogenation (AH) of the model substrate 6,7-dimethoxy-1-phenyl-3,4-dihydroisoquinoline 1a led us to identify Ir-L4 and Ir-L5 catalysts as the most effective. The application of these catalytic systems to a library of differently substituted 1-aryl-3,4-dihydroisoquinolines afforded the corresponding products with variable enantioselective levels. The 4-nitrophenyl derivative 3b was obtained in a complete conversion and with an excellent 94% e.e. using Ir-L4, and a good 76% e.e. was achieved in the reduction of 2-nitrophenyl derivative 6a using Ir-L5.
Collapse
|
12
|
Himiyama T, Okamoto Y. Artificial Metalloenzymes: From Selective Chemical Transformations to Biochemical Applications. Molecules 2020; 25:molecules25132989. [PMID: 32629938 PMCID: PMC7411666 DOI: 10.3390/molecules25132989] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 06/26/2020] [Accepted: 06/27/2020] [Indexed: 11/16/2022] Open
Abstract
Artificial metalloenzymes (ArMs) comprise a synthetic metal complex in a protein scaffold. ArMs display performances combining those of both homogeneous catalysts and biocatalysts. Specifically, ArMs selectively catalyze non-natural reactions and reactions inspired by nature in water under mild conditions. In the past few years, the construction of ArMs that possess a genetically incorporated unnatural amino acid and the directed evolution of ArMs have become of great interest in the field. Additionally, biochemical applications of ArMs have steadily increased, owing to the fact that compartmentalization within a protein scaffold allows the synthetic metal complex to remain functional in a sea of inactivating biomolecules. In this review, we present updates on: 1) the newly reported ArMs, according to their type of reaction, and 2) the unique biochemical applications of ArMs, including chemoenzymatic cascades and intracellular/in vivo catalysis. We believe that ArMs have great potential as catalysts for organic synthesis and as chemical biology tools for pharmaceutical applications.
Collapse
Affiliation(s)
- Tomoki Himiyama
- National Institute of Advanced Industrial Science and Technology, Ikeda, Osaka 563-8577, Japan;
- DBT-AIST International Laboratory for Advanced Biomedicine (DAILAB), Ikeda, Osaka 563-8577, Japan
| | - Yasunori Okamoto
- Frontier Research Institute for Interdisciplinary Sciences, Tohoku University, 6-3 Aramaki aza Aoba, Aoba-ku, Sendai 980-8578, Japan
- Correspondence: ; Tel.: +81-22-795-5264
| |
Collapse
|
13
|
Pilar Lamata M, Passarelli V, Carmona D. Recent Advances in Iridium-Catalysed Transfer Hydrogenation Reactions. TOP ORGANOMETAL CHEM 2020. [DOI: 10.1007/3418_2020_59] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
14
|
Facchetti G, Pellegrino S, Bucci R, Nava D, Gandolfi R, Christodoulou MS, Rimoldi I. Vancomycin-Iridium (III) Interaction: An Unexplored Route for Enantioselective Imine Reduction. MOLECULES (BASEL, SWITZERLAND) 2019; 24:molecules24152771. [PMID: 31366120 PMCID: PMC6695689 DOI: 10.3390/molecules24152771] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Revised: 07/26/2019] [Accepted: 07/30/2019] [Indexed: 11/20/2022]
Abstract
The chiral structure of antibiotic vancomycin (Van) was exploited as an innovative coordination sphere for the preparation of an IrCp* based hybrid catalysts. We found that Van is able to coordinate iridium (Ir(III)) and the complexation was demonstrated by several analytical techniques such as MALDI-TOF, UV, Circular dichroism (CD), Raman IR, and NMR. The hybrid system so obtained was employed in the Asymmetric Transfer Hydrogenation (ATH) of cyclic imines allowing to obtain a valuable 61% e.e. (R) in the asymmetric reduction of quinaldine 2. The catalytic system exhibited a saturation kinetics with a calculated efficiency of Kcat/KM = 0.688 h−1mM−1.
Collapse
Affiliation(s)
- Giorgio Facchetti
- Dipartimento di Scienze Farmaceutiche, Università degli Studi di Milano, Via Venezian 21, 20133 Milano, Italy
| | - Sara Pellegrino
- Dipartimento di Scienze Farmaceutiche, Università degli Studi di Milano, Via Venezian 21, 20133 Milano, Italy
| | - Raffaella Bucci
- Dipartimento di Scienze Farmaceutiche, Università degli Studi di Milano, Via Venezian 21, 20133 Milano, Italy
| | - Donatella Nava
- Dipartimento di Scienze Farmaceutiche, Università degli Studi di Milano, Via Venezian 21, 20133 Milano, Italy
| | - Raffaella Gandolfi
- Dipartimento di Scienze Farmaceutiche, Università degli Studi di Milano, Via Venezian 21, 20133 Milano, Italy
| | - Michael S Christodoulou
- Dipartimento di Scienze Farmaceutiche, Università degli Studi di Milano, Via Venezian 21, 20133 Milano, Italy
| | - Isabella Rimoldi
- Dipartimento di Scienze Farmaceutiche, Università degli Studi di Milano, Via Venezian 21, 20133 Milano, Italy.
| |
Collapse
|
15
|
Facchetti G, Ferri N, Lupo MG, Giorgio L, Rimoldi I. Monofunctional PtII
Complexes Based on 8-Aminoquinoline: Synthesis and Pharmacological Characterization. Eur J Inorg Chem 2019. [DOI: 10.1002/ejic.201900644] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Giorgio Facchetti
- Dipartimento di Scienze Farmaceutiche; Università degli Studi di Milano; Via Venezian 21 20133 Milan Italy
| | - Nicola Ferri
- Dipartimento di Scienze del Farmaco; Università degli Studi di Padova; Via Marzolo 5 35131 Padua Italy
| | - Maria Giovanna Lupo
- Dipartimento di Scienze del Farmaco; Università degli Studi di Padova; Via Marzolo 5 35131 Padua Italy
| | - Lucchini Giorgio
- Dipartimento di Scienze Agrarie e Ambientali-Produzione, Territorio, Agroenergia epartment; Università degli Studi di Milano; Via Celoria 2 20133 Milan Italy
| | - Isabella Rimoldi
- Dipartimento di Scienze Farmaceutiche; Università degli Studi di Milano; Via Venezian 21 20133 Milan Italy
| |
Collapse
|