1
|
Bhandari R, Kaleem M, Rai R, Shraogi N, Patnaik S, Misra A. A sensitive molecular probe exhibiting significant change in their photophysical and morphological behavior upon interaction with Fe 3+ ion. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 330:125671. [PMID: 39742620 DOI: 10.1016/j.saa.2024.125671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 12/17/2024] [Accepted: 12/26/2024] [Indexed: 01/03/2025]
Abstract
An efficient molecular probe 8 has been designed and synthesized. The photophysical, electrochemical and morphological behavior of the probe has been examined in the absence and presence of different ions. The probe 8 at 90 % water fraction in acetonitrile showed aggregation induced emission (AIE). Probe 8 upon interaction with ions binds with Fe3+ ion selectively in a 1:1 stoichiometry and showed fluorescence "turn-Off" response with good limit of detection (LOD = 92.2 nM). The particle size (DLS method) of probe upon increasing water fraction in acetonitrile showed a gradual increase while upon formation of a stable complex, 8 + Fe3+ particle size decreased along with change in morphology of the probe. SEM and TEM studies showed that in pure acetonitrile probe self-assemble into a sheet like structure of uneven surface. While in aggregated state (fw, 90 %) it changes to a uniform hollow rectangular rod shape structure. Further interaction of the probe with Fe3+ ions in aggregated state acquired a well-defined smooth sheet. Electrochemical (CV) studies suggested that the redox property of the probe incurred a marginal change in band gap upon complexation with Fe3+. The cell imaging studies were performed to detect Fe3+ in HeLa cells. The paper strip test and real water sample analysis showed the potential analytical application of probe to detect Fe3+ with a naked-eye sensitive visible color change. The formation of a complex, 8 + Fe3+ involving N and O atoms of the probe molecule was confirmed by 1HNMR and HRMS data.
Collapse
Affiliation(s)
- Rimpi Bhandari
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi 221005, UP, India
| | - Mohammed Kaleem
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi 221005, UP, India
| | - Ravisen Rai
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi 221005, UP, India
| | - Nikita Shraogi
- Nano Laboratory, Drug and Chemical Toxicology Group, FEST Division, Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow 226001, UP, India
| | - Satyakam Patnaik
- Nano Laboratory, Drug and Chemical Toxicology Group, FEST Division, Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow 226001, UP, India
| | - Arvind Misra
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi 221005, UP, India.
| |
Collapse
|
2
|
Liu P, Shui X, Shi M, Kang M, Liu Y, Yang X, Zhang G. The comparative study of two new Schiff bases derived from 5-(thiophene-2-yl)isoxazole as "Off-On-Off" fluorescence sensors for the sequential detection of Ga 3+ and Fe 3+ ions. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 315:124247. [PMID: 38599023 DOI: 10.1016/j.saa.2024.124247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Revised: 03/22/2024] [Accepted: 04/02/2024] [Indexed: 04/12/2024]
Abstract
Two new Schiff bases, TIC ((E)-N'-(2-hydroxybenzylidene)-5-(thiophene-2-yl)isoxazole-3-carbohydrazide) and TIE ((E)-N'-(3-ethoxy-2-hydroxybenzylidene)-5-(thiophene-2-yl)isoxazole-3-carbohydrazide), have been designed and synthesized as chemosensors for distinct recognition of Ga3+ and Fe3+ ions. TIE demonstrated a prominent "turn on" response characterized by clear distinguished fluorescence when coordination with Ga3+ ions in the DMSO/H2O buffer solution. In comparison, TIC also showed "turn on" response of blue fluorescence which was more selective and sensitive than that of TIE due to the steric hindrance of ethoxy group of TIE. The newly formed complexes TIC-Ga3+ and TIE-Ga3+ may act as selective "turn-off" fluorescent probes towards Fe3+ ions. Limits of detection of TIC and TIE towards Ga3+ ions were 7.8809 × 10-9 M and 2.6277 × 10-8 M, respectively. Limits of detection of TIC-Ga3+ and TIE-Ga3+ towards Fe3+ ions were 8.6562 × 10-9 M and 3.3764 × 10-7 M, respectively. The molar ratio of the complex between the sensor and Ga3+ or Fe3+ ions were all 1:2 determined through Job's Plot, mass spectrometry, and theoretical calculations. Both sensors were utilized for the determination of target ions in environment water samples, and the portable paper sensors for detecting Ga3+ ions have been successfully developed.
Collapse
Affiliation(s)
- Peng Liu
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, China
| | - Xiaoxing Shui
- Henan Sanmenxia Aoke Chemical Industry Co. Ltd., Sanmenxia 472000, China.
| | - Manman Shi
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, China
| | - Mingyi Kang
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, China
| | - Yuanying Liu
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, China
| | - Xiaofeng Yang
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, China
| | - Guangyou Zhang
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, China.
| |
Collapse
|
3
|
Li X, Zhang M, Mo H, Li H, Xu D, Hu L. The Ultrasensitive Detection of Aflatoxin M 1 Using Gold Nanoparticles Modified Electrode with Fe 3+ as a Probe. Foods 2023; 12:2521. [PMID: 37444259 DOI: 10.3390/foods12132521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 06/26/2023] [Accepted: 06/27/2023] [Indexed: 07/15/2023] Open
Abstract
The increasing incidence of diseases caused by highly carcinogenic aflatoxin M1 (AFM1) in food demands a simple, fast, and cost-effective detection technique capable of sensitively monitoring AFM1. Recent works predominantly focus on the electrochemical aptamer-based biosensor, which still faces challenges and high costs in experimentally identifying an efficient candidate aptamer. However, the direct electrochemical detection of AFM1 has been scarcely reported thus far. In this study, we observed a significant influence on the electrochemical signals of ferric ions at a gold nanoparticle-modified glassy carbon electrode (AuNPs/GCE) by adding varying amounts of AFM1. Utilizing ferricyanide as a sensitive indicator of AFM1, we have introduced a novel approach for detecting AFM1, achieving an unprecedentedly low detection limit of 1.6 × 10-21 g/L. Through monitoring the fluorescence quenching of AFM1 with Fe3+ addition, the interaction between them has been identified at a ratio of 1:936. Transient fluorescence analysis reveals that the fluorescence quenching process is predominantly static. It is interesting that the application of iron chelator diethylenetriaminepentaacetic acid (DTPA) cannot prevent the interaction between AFM1 and Fe3+. With a particle size distribution analysis, it is suggested that a combination of AFM1 and Fe3+ occurs and forms a polymer-like aggregate. Nonetheless, the mutual reaction mechanism between AFM1 and Fe3+ remains unexplained and urgently necessitates unveiling. Finally, the developed sensor is successfully applied for the AFM1 test in real samples, fully meeting the detection requirements for milk.
Collapse
Affiliation(s)
- Xiaobo Li
- Department of Chemistry and Chemical Engineering, Henan Institute of Science and Technology, Xinxiang 453003, China
| | - Miao Zhang
- Department of Chemistry and Chemical Engineering, Henan Institute of Science and Technology, Xinxiang 453003, China
| | - Haizhen Mo
- School of Food Science and Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Hongbo Li
- School of Food Science and Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Dan Xu
- School of Food Science and Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Liangbin Hu
- School of Food Science and Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| |
Collapse
|
4
|
Kong XY, Shuang SM, Wang Y, Dong C. A novel phenolphthalein-based fluorescent chemosensor for pyrophosphate detection via an Al 3+ displacement approach in real samples and living cells. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 276:121174. [PMID: 35397452 DOI: 10.1016/j.saa.2022.121174] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 02/21/2022] [Accepted: 03/17/2022] [Indexed: 06/14/2023]
Abstract
Herein, we report a new phenolphthalein appended Schiff base (PASB) as reversible fluorescent sensor for the detection of pyrophosphate (PPi) ions through the metal displacement mechanism. PASB showed sensing exclusively toward Al3+ ions in DMF/H2O (v/v = 1/4, pH 5.5) solution, which resulted in a significant fluorescence enhancement at 540 nm. The 1: 2 binding stoichiometry for the complex formation between PASB and Al3+ was confirmed by Job's plot and mass spectroscopic studies. Moreover, a solution of the in situ formed PASB-Al3+ complex displayed a high selectivity to PPi. The addition of PPi to PASB-Al3+ ensemble significantly quenched its fluorescence. Thus, a dual response was established based on "Off-On-Off" strategy for detection of both Al3+ and PPi. The detection limit is 5.86 nM and 26 nM for Al3+ and PPi, respectively. On this basis, we use PASB to detect Al3+ in food samples. Furthermore, PASB was successfully applicable to detect Al3+ and PPi for intracellular imaging in Human liver cancer cells.
Collapse
Affiliation(s)
- Xiang-Yu Kong
- School of Chemistry and Chemical Engineering, and Institute of Environmental Science, Shanxi University, Taiyuan 030006, China
| | - Shao-Min Shuang
- School of Chemistry and Chemical Engineering, and Institute of Environmental Science, Shanxi University, Taiyuan 030006, China
| | - Yu Wang
- School of Chemistry and Chemical Engineering, and Institute of Environmental Science, Shanxi University, Taiyuan 030006, China
| | - Chuan Dong
- School of Chemistry and Chemical Engineering, and Institute of Environmental Science, Shanxi University, Taiyuan 030006, China.
| |
Collapse
|
5
|
Wen J, Huang N, Wei Z, Yi D, Long Y, Zheng H. Metal-free colorimetric detection of pyrophosphate ions by the peroxidase-like activity of ATP. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 267:120479. [PMID: 34655979 DOI: 10.1016/j.saa.2021.120479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 09/27/2021] [Accepted: 10/06/2021] [Indexed: 06/13/2023]
Abstract
Pyrophosphate (P2O74-, PPi) plays a vital role in ecological environment. Its elevated levels in water bodies can lead to eutrophication. Hence, its detection is extremely significant. Whereas most of the existing methods for the actual detection of PPi may cause environmental pollution or suffer from operational complexity. In this study, we introduced a sensitive and selective method for detecting PPi based on the fact that PPi can inhibit the peroxidase-like activity of adenosine 5'-triphosphate (ATP). This strategy not only eliminated the complexity of material preparation (ATP is commercialized), but also addressed the general need for metal ions in detecting PPi. The dynamic range of PPi detection was 1.0-200 μM and the detection limit was 74 nM. In addition, this strategy had been successfully applied to the determination of PPi in tap water and lake water. This work extends the application of natural biological small molecule ATP in the analysis and provides an innovative thought for the metal-free detection of PPi.
Collapse
Affiliation(s)
- Jiahui Wen
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Beibei, Chongqing 400715, China
| | - Na Huang
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Beibei, Chongqing 400715, China
| | - Zixuan Wei
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Beibei, Chongqing 400715, China
| | - Danyang Yi
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Beibei, Chongqing 400715, China
| | - Yijuan Long
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Beibei, Chongqing 400715, China
| | - Huzhi Zheng
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Beibei, Chongqing 400715, China.
| |
Collapse
|
6
|
Wang H, Xu X, Yin J, Zhang Z, Xue L. A Highly Selective “Turn‐On” Fluorescent Sensor for Aluminum Ion Detection in Aqueous Solution Based on Imidazo[2,1‐
b
]thiazole Schiff Base. ChemistrySelect 2021. [DOI: 10.1002/slct.202101562] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Haibin Wang
- College of Chemistry and Chemical Engineering Ningxia Normal University Xueyuan road, Ningxia Normal University 756000 Guyuan, Ningxia P. R. China
| | - Xin Xu
- College of Chemistry and Chemical Engineering Ningxia Normal University Xueyuan road, Ningxia Normal University 756000 Guyuan, Ningxia P. R. China
| | - Jichen Yin
- College of Chemistry and Chemical Engineering Ningxia Normal University Xueyuan road, Ningxia Normal University 756000 Guyuan, Ningxia P. R. China
| | - Zhifeng Zhang
- College of Chemistry and Chemical Engineering Ningxia Normal University Xueyuan road, Ningxia Normal University 756000 Guyuan, Ningxia P. R. China
| | - Lei Xue
- College of Chemistry and Chemical Engineering Ningxia Normal University Xueyuan road, Ningxia Normal University 756000 Guyuan, Ningxia P. R. China
| |
Collapse
|
7
|
Wang T, Pang Q, Tong Z, Wang M, Xiao N. Selective sensing of PPi by fluorogenic Al(III)-probe complex in aqueous medium. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2021; 250:119249. [PMID: 33281090 DOI: 10.1016/j.saa.2020.119249] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 11/14/2020] [Accepted: 11/16/2020] [Indexed: 06/12/2023]
Abstract
A newly designed Schiff base probe JN has been synthesized. It is highly selective and sensitive towards Al3+ in nearly 100% aqueous medium by exhibiting a dramatic "turn-on" fluorescence response at 495 nm (λex = 450 nm). The sensing mechanism of JN towards Al3+ ions was proposed as the combination of PET, ICT, ESIPT, and CHEF processes according to spectra studies and theory calculations. The in situ generated mononuclear Al(III) complex JN-Al3+ could sequentially detect PPi ions by turn-off fluorescence response. The selectivity and sensitivity of the JN-Al3+ complex towards PPi ions are based on demetalization process. Interestingly, the fact that Al3+ can bind with 1, 2, or 3 PPi has been revealed by HRMS study. The probes JN and JN-Al3+ complexes were able to capture Al3+ and PPi ions, respectively, as demonstrated by fluorescence imaging of the adult zebrafish and onion inner epidermal cells samples.
Collapse
Affiliation(s)
- Tianran Wang
- School of Pharmaceutical Sciences, Capital Medical University, Beijing 100069, China
| | - Qidan Pang
- School of Pharmaceutical Sciences, Capital Medical University, Beijing 100069, China
| | - Zhipu Tong
- School of Public Health, Capital Medical University, Beijing 100069, China
| | - Minna Wang
- School of Pharmaceutical Sciences, Capital Medical University, Beijing 100069, China
| | - Nao Xiao
- School of Pharmaceutical Sciences, Capital Medical University, Beijing 100069, China.
| |
Collapse
|
8
|
Xia Y, Li M, Xu A, Zhang Z, Sun A, Ding S, Liu Y. Sensing mechanism of fluorogenic urea with fluoride in solvent media: A new fluorescence quenching mechanism. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2021; 246:118992. [PMID: 33038861 DOI: 10.1016/j.saa.2020.118992] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 08/29/2020] [Accepted: 09/19/2020] [Indexed: 06/11/2023]
Abstract
The interaction of 1-Phenyl-3-(pyren-1-yl) urea (LH) and fluoride anion (F-) with a unique ON1-OFF-ON2 fluorescent response has been investigated by the density functional theory (DFT) and time-dependent density functional theory (TDDFT) calculations. The hydrogen-bonding dynamics and photophysical properties of the complex LH-F, as well as its isolated receptor LH and anion form L-H1, have been studied in detail. We demonstrate that the intermolecular hydrogen bond (N-H…F) of the complex LH-F is greatly enhanced in the electronically excited state. The nonradiative deactivation via electron transfer and internal conversion rather than excited-state intramolecular proton transfer (ESIPT) can be facilitated by the excited state hydrogen bond strengthening. The results have been cross-validated by molecular structure, electronic spectra, frontier molecular orbitals, and infrared spectra as well as hydrogen bond binding energy. These results indicate that the current calculations completely reproduce the experimental results and provide compelling evidence for the sensing mechanism of LH for F-.
Collapse
Affiliation(s)
- Yong Xia
- Hunan Key Laboratory of Biomass Fiber Functional Materials, School of Packaging and Materials Engineering, Hunan University of Technology, Zhuzhou 412007, China; College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China.
| | - Mengyao Li
- Hunan Key Laboratory of Biomass Fiber Functional Materials, School of Packaging and Materials Engineering, Hunan University of Technology, Zhuzhou 412007, China
| | - Aixiang Xu
- School of Civil Engineering, Hunan University of Technology, Zhuzhou 412007, China
| | - Zhe Zhang
- School of Civil Engineering, Hunan University of Technology, Zhuzhou 412007, China
| | - Aokui Sun
- Hunan Key Laboratory of Biomass Fiber Functional Materials, School of Packaging and Materials Engineering, Hunan University of Technology, Zhuzhou 412007, China
| | - Sha Ding
- Hunan Key Laboratory of Biomass Fiber Functional Materials, School of Packaging and Materials Engineering, Hunan University of Technology, Zhuzhou 412007, China; School of Civil Engineering, Hunan University of Technology, Zhuzhou 412007, China.
| | - Yuejun Liu
- Hunan Key Laboratory of Biomass Fiber Functional Materials, School of Packaging and Materials Engineering, Hunan University of Technology, Zhuzhou 412007, China
| |
Collapse
|
9
|
Mathivanan M, Tharmalingam B, Devaraj T, Murugan A, Lin CH, Jothi M, Murugesapandian B. A new 7-diethylamino- 4-hydroxycoumarin based reversible colorimetric/fluorometric probe for sequential detection of Al 3+/PPi and its potential use in biodetection and bioimaging applications. NEW J CHEM 2021. [DOI: 10.1039/d0nj05718e] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A new 7-diethylamino-4-hydroxycoumarin appended acylhydrazone probe was prepared and utilized for the sequential detection of Al3+/PPi in a reversible off–on–off emissive manner. The various practical applications of the probe were established.
Collapse
Affiliation(s)
| | | | | | - Abinayaselvi Murugan
- Department of Human Genetics
- National Institute of Mental Health and Neurosciences
- Bengaluru
- India
| | - Chia-Her Lin
- Department of Chemistry
- National Taiwan Normal University
- Taipei
- Taiwan
| | - Mathivanan Jothi
- Department of Human Genetics
- National Institute of Mental Health and Neurosciences
- Bengaluru
- India
| | | |
Collapse
|
10
|
Li S, Cao D, Meng X, Hu Z, Li Z, Yuan C, Zhou T, Han X, Ma W. A novel fluorescent chemosensor based on coumarin and quinolinyl-benzothiazole for sequential recognition of Cu 2+ and PPi and its applicability in live cell imaging. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2020; 230:118022. [PMID: 31927510 DOI: 10.1016/j.saa.2019.118022] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Revised: 12/24/2019] [Accepted: 12/30/2019] [Indexed: 06/10/2023]
Abstract
In this study, a highly selective fluorescent sensor (E)-2-((2-(benzo[d]thiazol-2-yl)quinolin-8-yl)oxy)-N'-((7-(diethylamino)-2-oxo-2H-chromen-3-yl)methylene)acetohydrazide (TQC) was synthesized from 2-methylquinolin-8-ol and 4-(diethylamino)-2-hydroxybenzaldehyde and its structure was characterized by 1H NMR, 13C NMR, ESI-HR-MS and density functional theory (DFT) calculation. Sensor TQC showed an obvious "on-off-on" fluorescence response to Cu2+ and PPi in a DMSO/HEPES (3:2 v/v, pH = 7.4) buffer system. The detection limits of sensor TQC were 0.06 μM to Cu2+ and 0.01 μM to PPi. In addition, sensor TQC showed a 1:1 binding stoichiometry to Cu2+ and TQC-Cu2+ complex showed a 2:1 binding stoichiometry to PPi. The optimum pH range of sensor TQC and TQC-Cu2+ was 3-8. Further studies demonstrated that sensor TQC could be made into test paper strips for the qualitative of Cu2+ and PPi and showed sequentially "on-off-on" fluorescent bio-imaging of Cu2+ and PPi in HeLa cells.
Collapse
Affiliation(s)
- Shengling Li
- School of Chemical Engineering and Technology, North University of China, Taiyuan 030051, PR China
| | - Duanlin Cao
- School of Chemical Engineering and Technology, North University of China, Taiyuan 030051, PR China
| | - Xianjiao Meng
- College of Arts and Sciences, Shanxi Agricultural University, Taigu, Shanxi 030801, PR China
| | - Zhiyong Hu
- School of Chemical Engineering and Technology, North University of China, Taiyuan 030051, PR China; National Demonstration Center for Experimental Comprehensive Chemical Engineering Education, North University of China, Taiyuan 030051, PR China
| | - Zhichun Li
- School of Chemical Engineering and Technology, North University of China, Taiyuan 030051, PR China
| | - Changchun Yuan
- School of Chemical Engineering and Technology, North University of China, Taiyuan 030051, PR China
| | - Tao Zhou
- School of Chemical Engineering and Technology, North University of China, Taiyuan 030051, PR China
| | - Xinghua Han
- School of Chemical Engineering and Technology, North University of China, Taiyuan 030051, PR China; National Demonstration Center for Experimental Comprehensive Chemical Engineering Education, North University of China, Taiyuan 030051, PR China
| | - Wenbing Ma
- School of Chemical Engineering and Technology, North University of China, Taiyuan 030051, PR China; National Demonstration Center for Experimental Comprehensive Chemical Engineering Education, North University of China, Taiyuan 030051, PR China.
| |
Collapse
|
11
|
Li S, Cao D, Meng X, Hu Z, Li Z, Yuan C, Zhou T, Han X, Ma W. A novel schiff base fluorescent probe based on coumarin and benzothiazole for sequential detection of Al3+ and PPi and its applicability in live cell imaging. J Photochem Photobiol A Chem 2020. [DOI: 10.1016/j.jphotochem.2020.112427] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
12
|
Xu Y, Zhao S, Zhang Y, Wang H, Yang X, Pei M, Zhang G. A selective “turn-on” sensor for recognizing In3+ and Zn2+ in respective systems based on imidazo[2,1-b]thiazole. Photochem Photobiol Sci 2020; 19:289-298. [DOI: 10.1039/c9pp00408d] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
An imidazo[2,1-b]thiazole-based compound (X) was designed and synthesized as an “off–on–off” sensor for the multiple recognition of In3+ and Zn2+ in different systems.
Collapse
Affiliation(s)
- Yuankang Xu
- School of Chemistry and Chemical Engineering
- University of Jinan
- Jinan 250022
- China
| | - Songfang Zhao
- Henan Sanmenxia Aoke Chemical Industry Co. Ltd
- Sanmenxia 472000
- China
| | - Yanxia Zhang
- School of Chemistry and Chemical Engineering
- University of Jinan
- Jinan 250022
- China
| | - Hanyu Wang
- School of Chemistry and Chemical Engineering
- University of Jinan
- Jinan 250022
- China
| | - Xiaofeng Yang
- School of Chemistry and Chemical Engineering
- University of Jinan
- Jinan 250022
- China
| | - Meishan Pei
- School of Chemistry and Chemical Engineering
- University of Jinan
- Jinan 250022
- China
| | - Guangyou Zhang
- School of Chemistry and Chemical Engineering
- University of Jinan
- Jinan 250022
- China
| |
Collapse
|
13
|
Xing Y, Liu Z, Xu Y, Wang H, Li L, Li B, Yang X, Pei M, Zhang G. Double Schiff base from thiophene-2,5-dicarboxylic acid as an “off–on–off” fluorescence sensor for the sequential detection of In 3+ and PPi. NEW J CHEM 2020. [DOI: 10.1039/d0nj03076g] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A double Schiff base T as acceptor for metal ions derived from thiophene-2,5-dicarboxylic acid was designed and synthesized, and showed a high selectivity for In3+ in a DMF/H2O buffer solution.
Collapse
Affiliation(s)
- Yujing Xing
- School of Chemistry and Chemical Engineering
- University of Jinan
- Jinan 250022
- China
| | - Zhihua Liu
- Henan Sanmenxia Aoke Chemical Industry Co. Ltd
- Sanmenxia 472000
- China
| | - Yuankang Xu
- School of Chemistry and Chemical Engineering
- University of Jinan
- Jinan 250022
- China
| | - Hanyu Wang
- School of Chemistry and Chemical Engineering
- University of Jinan
- Jinan 250022
- China
| | - Linlin Li
- School of Chemistry and Chemical Engineering
- University of Jinan
- Jinan 250022
- China
| | - Bing Li
- School of Chemistry and Chemical Engineering
- University of Jinan
- Jinan 250022
- China
| | - Xiaofeng Yang
- School of Chemistry and Chemical Engineering
- University of Jinan
- Jinan 250022
- China
| | - Meishan Pei
- School of Chemistry and Chemical Engineering
- University of Jinan
- Jinan 250022
- China
| | - Guangyou Zhang
- School of Chemistry and Chemical Engineering
- University of Jinan
- Jinan 250022
- China
| |
Collapse
|
14
|
Xu Y, Wang H, Zhao J, Yang X, Pei M, Zhang G, Zhang Y, Lin L. A simple fluorescent schiff base for sequential detection of Zn2+ and PPi based on imidazo[2,1-b]thiazole. J Photochem Photobiol A Chem 2019. [DOI: 10.1016/j.jphotochem.2019.112026] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
15
|
Xu Y, Wang H, Zhao J, Yang X, Pei M, Zhang G, Zhang Y. A dual functional fluorescent sensor for the detection of Al3+ and Zn2+ in different solvents. NEW J CHEM 2019. [DOI: 10.1039/c9nj03298c] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A new fluorescent sensor, X, was designed and synthesized based on imidazo[2,1-b]thiazole and 2-hydroxy-1-naphthaldehyde, which could be used to detect Al3+ in methanol buffer solution and detect Zn2+ in ethanol buffer solution, respectively.
Collapse
Affiliation(s)
- Yuankang Xu
- School of Chemistry and Chemical Engineering
- University of Jinan
- Jinan 250022
- China
| | - Hanyu Wang
- School of Chemistry and Chemical Engineering
- University of Jinan
- Jinan 250022
- China
| | | | - Xiaofeng Yang
- School of Chemistry and Chemical Engineering
- University of Jinan
- Jinan 250022
- China
| | - Meishan Pei
- School of Chemistry and Chemical Engineering
- University of Jinan
- Jinan 250022
- China
| | - Guangyou Zhang
- School of Chemistry and Chemical Engineering
- University of Jinan
- Jinan 250022
- China
| | - Yanxia Zhang
- School of Chemistry and Chemical Engineering
- University of Jinan
- Jinan 250022
- China
| |
Collapse
|