1
|
Contreras-Montoya R, Álvarez de Cienfuegos L, Gavira JA, Steed JW. Supramolecular gels: a versatile crystallization toolbox. Chem Soc Rev 2024; 53:10604-10619. [PMID: 39258871 DOI: 10.1039/d4cs00271g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/12/2024]
Abstract
Supramolecular gels are unique materials formed through the self-assembly of molecular building blocks, typically low molecular weight gelators (LMWGs), driven by non-covalent interactions. The process of crystallization within supramolecular gels has broadened the scope of the traditional gel-phase crystallization technique offering the possibility of obtaining crystals of higher quality and size. The broad structural diversity of LMWGs allows crystallization in multiple organic and aqueous solvents, favouring screening and optimization processes and the possibility to search for novel polymorphic forms. These supramolecular gels have been used for the crystallization of inorganic, small organic compounds of pharmaceutical interest, and proteins. Results have shown that these gels are not only able to produce crystals of high quality but also to influence polymorphism and physicochemical properties of the crystals, giving rise to crystals with potential new bio- and technological applications. Thus, understanding the principles of crystallization in supramolecular gels is essential for tailoring their properties and applications, ranging from drug delivery systems to composite crystals with tunable stability properties. In this review, we summarize the use of LMWG-based supramolecular gels as media to grow single crystals of a broad range of compounds.
Collapse
Affiliation(s)
| | - Luis Álvarez de Cienfuegos
- Departamento de Química Orgánica, Unidad de Excelencia Química Aplicada a Biomedicina y Medioambiente (UEQ), Universidad de Granada, E-18071, Granada, Spain
| | - José A Gavira
- Laboratorio de Estudios Cristalográficos, Instituto Andaluz de Ciencias de la Tierra (IACT, CSIC), E-18100, Granada, Spain
| | | |
Collapse
|
2
|
Liu W, Li Z, Wang Z, Huang Z, Sun C, Liu S, Jiang Y, Yang H. Functional System Based on Glycyrrhizic Acid Supramolecular Hydrogel: Toward Polymorph Control, Stabilization, and Controlled Release. ACS APPLIED MATERIALS & INTERFACES 2023; 15:7767-7776. [PMID: 36732699 DOI: 10.1021/acsami.2c19903] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Developments of a drug delivery system (DDS) based on a natural supramolecular hydrogel have been of wide interest due to its biocompatibility, efficacy, and adjustable performance. However, a simple and efficient design of functional hydrogel DDS based on the templated interplay of gelator and model drug is still a challenge. In this work, natural glycyrrhetinic acid (GA) gel was selected as a carrier to encapsulate the model drug pyrazinamide (PZA). It was found that the carboxyl-amide interaction at the interface of gel-drug achieved polymorph control, stabilization, and pH-responsive release. Powder X-ray diffraction confirmed that the metastable γ form of PZA was obtained from the GA gel. Spectral analysis and molecular dynamics simulation showed that the protonation at the amide-O promoted the discretization of PZA molecules in solution, resulting in the polymorphism. Furthermore, the gel-drug interplay increased the stability of the γ form significantly from 2 days to 3 months by in situ encapsulation in the GA gel. In vitro release study indicated that the GA gel achieved targeted control release of PZA due to the pH-responsiveness property of GA. This work provides a promising option for hydrogel-based DDS design combined with polymorph control and stabilization.
Collapse
Affiliation(s)
- Weiqi Liu
- Guangdong Provincial Key Lab of Green Chemical Product Technology, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou510640, China
| | - Zhiqiang Li
- Guangdong Provincial Key Lab of Green Chemical Product Technology, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou510640, China
| | - Zixuan Wang
- Guangdong Provincial Key Lab of Green Chemical Product Technology, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou510640, China
| | - Ziyin Huang
- Guangdong Provincial Key Lab of Green Chemical Product Technology, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou510640, China
| | - Chenbo Sun
- Guangdong Provincial Key Lab of Green Chemical Product Technology, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou510640, China
| | - Shiyuan Liu
- Guangdong Provincial Key Lab of Green Chemical Product Technology, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou510640, China
| | - Yanbin Jiang
- Guangdong Provincial Key Lab of Green Chemical Product Technology, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou510640, China
- School of Chemical Engineering, Guangdong University of Petrochemical Technology, Maoming525000, China
| | - Huaiyu Yang
- Department of Chemical Engineering, Loughborough University, LoughboroughLE11 3TU, Leicestershire, U.K
| |
Collapse
|
3
|
Stimuli-Responsive Properties of Supramolecular Gels Based on Pyridyl- N-oxide Amides. Gels 2023; 9:gels9020089. [PMID: 36826259 PMCID: PMC9956205 DOI: 10.3390/gels9020089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 01/15/2023] [Accepted: 01/17/2023] [Indexed: 01/22/2023] Open
Abstract
The nature of functional groups and their relative position and orientation play an important role in tuning the gelation properties of stimuli-responsive supramolecular gels. In this work, we synthesized and characterized mono-/bis-pyridyl-N-oxide compounds of N-(4-pyridyl)nicotinamide (L1-L3). The gelation properties of these N-oxide compounds were compared with the reported isomeric counterpart mono-/bis-pyridyl-N-oxide compounds of N-(4-pyridyl)isonicotinamide. Hydrogels obtained with L1 and L3 were thermally and mechanically more stable than the corresponding isomeric counterparts. The surface morphology of the xerogels of di-N-oxides (L3 and diNO) obtained from the water was studied using scanning electron microscopy (SEM), which revealed that the relative position of N-oxide moieties did not have a prominent effect on the gel morphology. The solid-state structural analysis was performed using single-crystal X-ray diffraction to understand the key mechanism in gel formation. The versatile nature of N-oxide moieties makes these gels highly responsive toward an external stimulus, and the stimuli-responsive behavior of the gels in water and aqueous mixtures was studied in the presence of various salts. We studied the effect of various salts on the gelation behavior of the hydrogels, and the results indicated that the salts could induce gelation in L1 and L3 below the minimum gelator concentration of the gelators. The mechanical properties were evaluated by rheological experiments, indicating that the modified compounds displayed enhanced gel strength in most cases. Interestingly, cadmium chloride formed supergelator at a very low concentration (0.7 wt% of L3), and robust hydrogels were obtained at higher concentrations of L3. These results show that the relative position of N-oxide moieties is crucial for the effective interaction of the gelator with salts/ions resulting in LMWGs with tunable properties.
Collapse
|
4
|
Andrews J, Kennedy SR, Yufit DS, McCabe JF, Steed JW. Designer Gelators for the Crystallization of a Salt Active Pharmaceutical Ingredient-Mexiletine Hydrochloride. CRYSTAL GROWTH & DESIGN 2022; 22:6775-6785. [PMID: 36345390 PMCID: PMC9635620 DOI: 10.1021/acs.cgd.2c00925] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 10/03/2022] [Indexed: 06/16/2023]
Abstract
We report an approach to obtain drug-mimetic supramolecular gelators, which are capable of stabilizing metastable polymorphs of the pharmaceutical salt mexiletine hydrochloride, a highly polymorphic antiarrhythmic drug. Solution-phase screening led to the discovery of two new solvated solid forms of mexiletine, a type C 1,2,4-trichlorobenzene tetarto-solvate and a type D nitrobenzene solvate. Various metastable forms were crystallized within the gels under conditions which would not have been possible in solution. Despite typically crystallizing concomitantly with form 1, a pure sample of form 3 was crystallized within a gel of ethyl methyl ketone. Various type A channel solvates were crystallized from gels of toluene and ethyl acetate, in which the contents of the channels varied from those of solution-phase forms. Most strikingly, the high-temperature-stable form 2 was crystallized from a gel in 1,2-dibromoethane: the only known route to access this form at room temperature. These results exemplify the powerful stabilizing effect of drug-mimetic supramolecular gels, which can be exploited in pharmaceutical polymorph screens to access highly metastable or difficult-to-nucleate solid forms.
Collapse
Affiliation(s)
- Jessica
L. Andrews
- Department
of Chemistry, Durham University, South Road, Durham DH1 3LE, U.K.
| | - Stuart R. Kennedy
- Department
of Chemistry, Durham University, South Road, Durham DH1 3LE, U.K.
| | - Dmitry S. Yufit
- Department
of Chemistry, Durham University, South Road, Durham DH1 3LE, U.K.
| | - James F. McCabe
- Pharmaceutical
Sciences, R&D, AstraZeneca, Charter Way, Silk Road Business Park, Macclesfield SK10 2NA, U.K.
| | - Jonathan W. Steed
- Department
of Chemistry, Durham University, South Road, Durham DH1 3LE, U.K.
| |
Collapse
|
5
|
Ghosh D, Górecki M, Pescitelli G, Damodaran KK. Enantioselective Gel Phase Synthesis of Metal–Organic Materials. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202107040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Dipankar Ghosh
- Department of Chemistry Science Institute University of Iceland Dunhagi 3 107 Reykjavík Iceland
| | - Marcin Górecki
- Institute of Organic Chemistry Polish Academy of Sciences Kasprzaka 44/52 St. 01-224 Warsaw Poland
| | - Gennaro Pescitelli
- Department of Chemistry and Industrial Chemistry University of Pisa Moruzzi 13 56124 Pisa Italy
| | - Krishna K. Damodaran
- Department of Chemistry Science Institute University of Iceland Dunhagi 3 107 Reykjavík Iceland
| |
Collapse
|
6
|
Ghosh D, Górecki M, Pescitelli G, Damodaran KK. Enantioselective Gel Phase Synthesis of Metal-Organic Materials. Angew Chem Int Ed Engl 2021; 60:24406-24410. [PMID: 34524731 DOI: 10.1002/anie.202107040] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Indexed: 11/06/2022]
Abstract
We report the asymmetric synthesis of homochiral metal-organic materials (MOMs) in chiral gels from achiral components. The enantioselectivity of MOMs depends on the chirality of the gel, whereas the synthesis performed in solution phase and achiral gels resulted in conglomerates.
Collapse
Affiliation(s)
- Dipankar Ghosh
- Department of Chemistry, Science Institute, University of Iceland, Dunhagi 3, 107, Reykjavík, Iceland
| | - Marcin Górecki
- Institute of Organic Chemistry, Polish Academy of Sciences, Kasprzaka 44/52 St., 01-224, Warsaw, Poland
| | - Gennaro Pescitelli
- Department of Chemistry and Industrial Chemistry, University of Pisa, Moruzzi 13, 56124, Pisa, Italy
| | - Krishna K Damodaran
- Department of Chemistry, Science Institute, University of Iceland, Dunhagi 3, 107, Reykjavík, Iceland
| |
Collapse
|
7
|
Sudhakaran Jayabhavan S, Ghosh D, Damodaran KK. Making and Breaking of Gels: Stimuli-Responsive Properties of Bis(Pyridyl- N-oxide Urea) Gelators. Molecules 2021; 26:molecules26216420. [PMID: 34770831 PMCID: PMC8587056 DOI: 10.3390/molecules26216420] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 10/20/2021] [Accepted: 10/21/2021] [Indexed: 12/27/2022] Open
Abstract
The structural modification of existing supramolecular architecture is an efficient strategy to design and synthesize supramolecular gels with tunable and predictable properties. In this work, we have modified bis(pyridyl urea) compounds with different linkers, namely hexylene and butylene, to their corresponding bis(pyridyl-N-oxide urea). The gelation properties of both the parent and the modified compounds were studied, and the results indicated that modification of the 3-pyridyl moieties to the corresponding 3-pyridyl-N-oxides induced hydrogelation. The stability of the parent and modified compounds were evaluated by sol-gel transition temperature (Tgel) and rheological measurements, and single-crystal X-ray diffraction was used to analyze the solid-state interactions of the gelators. The morphologies of the dried gels were analyzed by scanning electron microscopy (SEM), which revealed that the structural modification did not induce any prominent effect on the gel morphology. The stimuli-responsive behavior of these gels in the presence of salts in DMSO/water was evaluated by rheological experiments, which indicated that the modified compounds displayed enhanced gel strength in most cases. However, the gel network collapsed in the presence of the chloride salts of aluminum(III), zinc(II), copper(II), and cadmium(II). The mechanical strength of the parent gels decreased in the presence of salts, indicating that the structural modification resulted in robust gels in most cases. The modified compounds formed gels below minimum gel concentration in the presence of various salts, indicating salt-induced gelation. These results show the making and breaking ability of the gel network in the presence of external stimuli (salts), which explains the potential of using LMWGs based on N-oxide moieties as stimuli-responsive materials.
Collapse
|
8
|
Lemanowicz M, Mielańczyk A, Walica T, Kotek M, Gierczycki A. Application of Polymers as a Tool in Crystallization-A Review. Polymers (Basel) 2021; 13:polym13162695. [PMID: 34451235 PMCID: PMC8401169 DOI: 10.3390/polym13162695] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 08/04/2021] [Accepted: 08/06/2021] [Indexed: 12/22/2022] Open
Abstract
The application of polymers as a tool in the crystallization process is gaining more and more interest among the scientific community. According to Web of Science statistics the number of papers dealing with “Polymer induced crystallization” increased from 2 in 1990 to 436 in 2020, and for “Polymer controlled crystallization”—from 4 in 1990 to 344 in 2020. This is clear evidence that both topics are vivid, attractive and intensively investigated nowadays. Efficient control of crystallization and crystal properties still represents a bottleneck in the manufacturing of crystalline materials ranging from pigments, antiscalants, nanoporous materials and pharmaceuticals to semiconductor particles. However, a rapid development in precise and reliable measuring methods and techniques would enable one to better describe phenomena involved, to formulate theoretical models, and probably most importantly, to develop practical indications for how to appropriately lead many important processes in the industry. It is clearly visible at the first glance through a number of representative papers in the area, that many of them are preoccupied with the testing and production of pharmaceuticals, while the rest are addressed to new crystalline materials, renewable energy, water and wastewater technology and other branches of industry where the crystallization process takes place. In this work, authors gathered and briefly discuss over 100 papers, published in leading scientific periodicals, devoted to the influence of polymers on crystallizing solutions.
Collapse
Affiliation(s)
- Marcin Lemanowicz
- Department of Chemical Engineering and Process Design, Faculty of Chemistry, Silesian University of Technology, 44-100 Gliwice, Poland; (T.W.); (M.K.); (A.G.)
- Correspondence: (M.L.); (A.M.); Tel.: +48-32-237-28-32 (M.L.); +48-32-237-15-73 (A.M.); Fax: +48-32-237-14-61 (M.L.); +48-32-237-15-09 (A.M.)
| | - Anna Mielańczyk
- Department of Physical Chemistry and Technology of Polymers, Faculty of Chemistry, Silesian University of Technology, 44-100 Gliwice, Poland
- Correspondence: (M.L.); (A.M.); Tel.: +48-32-237-28-32 (M.L.); +48-32-237-15-73 (A.M.); Fax: +48-32-237-14-61 (M.L.); +48-32-237-15-09 (A.M.)
| | - Tomasz Walica
- Department of Chemical Engineering and Process Design, Faculty of Chemistry, Silesian University of Technology, 44-100 Gliwice, Poland; (T.W.); (M.K.); (A.G.)
| | - Milena Kotek
- Department of Chemical Engineering and Process Design, Faculty of Chemistry, Silesian University of Technology, 44-100 Gliwice, Poland; (T.W.); (M.K.); (A.G.)
| | - Andrzej Gierczycki
- Department of Chemical Engineering and Process Design, Faculty of Chemistry, Silesian University of Technology, 44-100 Gliwice, Poland; (T.W.); (M.K.); (A.G.)
| |
Collapse
|
9
|
Giuri D, Marshall LJ, Dietrich B, McDowall D, Thomson L, Newton JY, Wilson C, Schweins R, Adams DJ. Exploiting and controlling gel-to-crystal transitions in multicomponent supramolecular gels. Chem Sci 2021; 12:9720-9725. [PMID: 34349943 PMCID: PMC8293982 DOI: 10.1039/d1sc02347k] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 06/11/2021] [Indexed: 12/31/2022] Open
Abstract
Multicomponent supramolecular gels provide opportunities to form materials that are not accessible when using the single components alone. Different scenarios are possible when mixing multiple components, from complete co-assembly (mixing of the components within the self-assembled structures formed) to complete self-sorting such that each structure contains only one of the components. Most examples of multicomponent gels that currently exist form stable gels. Here, we show that this can be used to control the mechanical properties of the gels, but what is probably most exciting is that we show that we can use a magnetic field to control the shape of the crystals. The gelling component aligns in a magnetic field and so results in anisotropic crystals being formed.
Collapse
Affiliation(s)
- Demetra Giuri
- Dipartimento di Chimica Giacomo Ciamician, Alma Mater Studiorum, Università di Bologna Via Selmi, 2 40126 Bologna Italy
| | | | - Bart Dietrich
- School of Chemistry, University of Glasgow Glasgow G12 8QQ UK
| | - Daniel McDowall
- School of Chemistry, University of Glasgow Glasgow G12 8QQ UK
| | - Lisa Thomson
- School of Chemistry, University of Glasgow Glasgow G12 8QQ UK
| | - Jenny Y Newton
- School of Chemistry, University of Glasgow Glasgow G12 8QQ UK
| | - Claire Wilson
- School of Chemistry, University of Glasgow Glasgow G12 8QQ UK
| | - Ralf Schweins
- Large Scale Structures Group, Institut Laue-Langevin 71 Avenue des Martyrs, CS 20156 F-38042 Grenoble CEDEX 9 France
| | - Dave J Adams
- School of Chemistry, University of Glasgow Glasgow G12 8QQ UK
| |
Collapse
|
10
|
Mirzaei M, Bazargan M, Ebtehaj P, Mague JT. A redetermination of the structure and Hirshfeld surface analysis of poly[di-aquadi-μ-hydroxido-tetra-kis-(μ-nicotinato N-oxide)tricopper(II)]. Acta Crystallogr E Crystallogr Commun 2021; 77:309-313. [PMID: 33953957 PMCID: PMC8061101 DOI: 10.1107/s2056989021002000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 02/19/2021] [Indexed: 11/17/2022]
Abstract
The product obtained from the reaction of pyridine-2,3-di-carb-oxy-lic acid and hydrated copper(II) chloride in hot aqueous NaOH solution was determined by low temperature X-ray diffraction to be [Cu3(C6H4NO3)4(OH)2(H2O)2] n or [Cu3(μ-OH)2(μ-nicNO)4(H2O)2] n (nicNO is pyridine-3-carboxyl-ate N-oxide), a structure obtained from room temperature data and reported previously. The present determination is improved in quality and treatment of the H atoms. A Hirshfeld surface analysis of the inter-molecular inter-actions is presented.
Collapse
Affiliation(s)
- Masoud Mirzaei
- Department of Chemistry, Faculty of Science, Ferdowsi University of Mashhad, 9177948974, Mashhad, Iran
| | - Maryam Bazargan
- Department of Chemistry, Faculty of Science, Ferdowsi University of Mashhad, 9177948974, Mashhad, Iran
| | - Pouria Ebtehaj
- Department of Chemistry, Faculty of Science, Ferdowsi University of Mashhad, 9177948974, Mashhad, Iran
| | - Joel T. Mague
- Department of Chemistry, Tulane University, New Orleans, LA 70118, USA
| |
Collapse
|
11
|
Tómasson DA, Ghosh D, Kurup MRP, Mulvee MT, Damodaran KK. Evaluating the role of a urea-like motif in enhancing the thermal and mechanical strength of supramolecular gels. CrystEngComm 2021. [DOI: 10.1039/d0ce01194k] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Enhanced thermal and mechanical strength in semicarbazone gels with a urea-like motif obtained by modifying the hydrogen bonding motif of the hydrazone compound.
Collapse
Affiliation(s)
| | - Dipankar Ghosh
- Department of Chemistry
- Science Institute
- University of Iceland
- 107 Reykjavík
- Iceland
| | | | | | - Krishna K. Damodaran
- Department of Chemistry
- Science Institute
- University of Iceland
- 107 Reykjavík
- Iceland
| |
Collapse
|
12
|
Ghosh D, Bjornsson R, Damodaran KK. Role of N-Oxide Moieties in Tuning Supramolecular Gel-State Properties. Gels 2020; 6:gels6040041. [PMID: 33233596 PMCID: PMC7709621 DOI: 10.3390/gels6040041] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 11/15/2020] [Accepted: 11/17/2020] [Indexed: 12/18/2022] Open
Abstract
The role of specific interactions in the self-assembly process of low molecular weight gelators (LMWGs) was studied by altering the nonbonding interactions responsible for gel formation via structural modification of the gelator/nongelator. This was achieved by modifying pyridyl moieties of bis(pyridyl) urea-based hydrogelator (4–BPU) and the isomer (3–BPU) to pyridyl N–oxide compounds (L1 and L2, respectively). The modification of the functional groups resulted in the tuning of the gelation properties of the parent gelator, which induced/enhanced the gelation properties. The modified compounds displayed better mechanical and thermal stabilities and the introduction of the N–oxide moieties had a prominent effect on the morphologies of the gel network, which was evident from the scanning electron microscopy (SEM) images. The effect of various interactions due to the introduction of N–oxide moieties in the gel network formation was analyzed by comparing the solid-state interactions of the compounds using single crystal X-ray diffraction and computational studies, which were correlated with the enhanced gelation properties. This study shows the importance of specific nonbonding interactions and the spatial arrangement of the functional groups in the supramolecular gel network formation.
Collapse
Affiliation(s)
- Dipankar Ghosh
- Department of Chemistry, Science Institute, University of Iceland, Dunhagi 3, 107 Reykjavík, Iceland;
| | - Ragnar Bjornsson
- Department of Inorganic Spectroscopy, Max–Planck–Institut für Chemische Energiekonversion, Campus de Stiftstrasse 34–36, 45470 Mülheim an der Ruhr, Germany;
| | - Krishna K. Damodaran
- Department of Chemistry, Science Institute, University of Iceland, Dunhagi 3, 107 Reykjavík, Iceland;
- Correspondence: ; Fax: +354-552-8911
| |
Collapse
|
13
|
Ghosh D, Deepa, Damodaran KK. Metal complexation induced supramolecular gels for the detection of cyanide in water. Supramol Chem 2020. [DOI: 10.1080/10610278.2020.1751845] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Affiliation(s)
- Dipankar Ghosh
- Department of Chemistry, Science Institute, University of Iceland, Reykjavik, Iceland
| | - Deepa
- Department of Chemistry, Science Institute, University of Iceland, Reykjavik, Iceland
| | - Krishna K. Damodaran
- Department of Chemistry, Science Institute, University of Iceland, Reykjavik, Iceland
| |
Collapse
|
14
|
Ghosh D, Mulvee MT, Damodaran KK. Tuning Gel State Properties of Supramolecular Gels by Functional Group Modification. Molecules 2019; 24:E3472. [PMID: 31557821 PMCID: PMC6804314 DOI: 10.3390/molecules24193472] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2019] [Revised: 09/22/2019] [Accepted: 09/24/2019] [Indexed: 12/02/2022] Open
Abstract
The factors affecting the self-assembly process in low molecular weight gelators (LMWGs) were investigated by tuning the gelation properties of a well-known gelator N-(4-pyridyl)isonicotinamide (4PINA). The N-H∙∙∙N interactions responsible for gel formation in 4PINA were disrupted by altering the functional groups of 4PINA, which was achieved by modifying pyridyl moieties of the gelator to pyridyl N-oxides. We synthesized two mono-N-oxides (INO and PNO) and a di-N-oxide (diNO) and the gelation studies revealed selective gelation of diNO in water, but the two mono-N-oxides formed crystals. The mechanical strength and thermal stabilities of the gelators were evaluated by rheology and transition temperature (Tgel) experiments, respectively, and the analysis of the gel strength indicated that diNO formed weak gels compared to 4PINA. The SEM image of diNO xerogels showed fibrous microcrystalline networks compared to the efficient fibrous morphology in 4PINA. Single-crystal X-ray analysis of diNO gelator revealed that a hydrogen-bonded dimer interacts with adjacent dimers via C-H∙∙∙O interactions. The non-gelator with similar dimers interacted via C-H∙∙∙N interaction, which indicates the importance of specific non-bonding interactions in the formation of the gel network. The solvated forms of mono-N-oxides support the fact that these compounds prefer crystalline state rather than gelation due to the increased hydrophilic interactions. The reduced gelation ability (minimum gel concentration (MGC)) and thermal strength of diNO may be attributed to the weak intermolecular C-H∙∙∙O interaction compared to the strong and unidirectional N-H∙∙∙N interactions in 4PINA.
Collapse
Affiliation(s)
- Dipankar Ghosh
- Department of Chemistry, Science Institute, University of Iceland, Dunhagi 3, 107 Reykjavík, Iceland.
| | - Matthew T Mulvee
- Department of Chemistry, Durham University, South Road, Durham DH1 3LE, UK.
| | - Krishna K Damodaran
- Department of Chemistry, Science Institute, University of Iceland, Dunhagi 3, 107 Reykjavík, Iceland.
| |
Collapse
|