1
|
Panahi F, Mahmoodi A, Ghodrati S, Abdi AA, Eshghi F. New white light-emitting halochromic stilbenes with remarkable quantum yields and aggregation-induced emission. Sci Rep 2022; 12:2385. [PMID: 35149741 PMCID: PMC8837803 DOI: 10.1038/s41598-022-06435-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Accepted: 01/31/2022] [Indexed: 12/21/2022] Open
Abstract
Highly efficient single-component white light emitters (SWLEs), are attractive candidates for the simple and cost-effective fabrication of high-performance lighting devices. This study introduced a donor-π-acceptor and a donor-π-donor stilbene-based chromophores, representing pH-responsive fluorescence. The emitters showed yellow and green fluorescence in their neutral form. At the same time, protonation of the chromophores caused blue fluorescence color with a strong hypsochromic shift. The white light emission (WLE) for these chromophores was observed at approximately pH 3 due to the simultaneous presence of the neutral and protonated forms of the chromophores, covering almost all the emission spectra in the visible region (400-700 nm). These chromophores presented exceptional white light quantum yields (Φ) between 31 and 54%, which was desirable for producing white light-emitting devices. Density functional theory (DFT) and time-dependent (TD)-DFT were applied to study the structural and electronic properties of the chromophores.
Collapse
Affiliation(s)
- Farhad Panahi
- Chemistry Department, College of Sciences, Shiraz University, 71454, Shiraz, Iran.
| | - Ali Mahmoodi
- Department of Polymer Engineering and Color Technology, Amirkabir University of Technology, Tehran, Iran
| | - Sajjad Ghodrati
- Department of Polymer Engineering and Color Technology, Amirkabir University of Technology, Tehran, Iran
| | - Ali Ashtiani Abdi
- Department of Organic Colorants, Institute for Color Science and Technology, Tehran, Iran
| | - Fazlolah Eshghi
- Chemistry Department, College of Sciences, Shiraz University, 71454, Shiraz, Iran
| |
Collapse
|
2
|
Takahashi M, Ito N, Haruta N, Ninagawa H, Yazaki K, Sei Y, Sato T, Obata M. Environment-sensitive emission of anionic hydrogen-bonded urea-derivative-acetate-ion complexes and their aggregation-induced emission enhancement. Commun Chem 2021; 4:168. [PMID: 36697743 PMCID: PMC9814938 DOI: 10.1038/s42004-021-00601-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Accepted: 11/08/2021] [Indexed: 01/28/2023] Open
Abstract
Anions often quench fluorescence (FL). However, strong ionic hydrogen bonding between fluorescent dyes and anion molecules has the potential to control the electronic state of FL dyes, creating new functions via non-covalent interactions. Here, we propose an approach, utilising ionic hydrogen bonding between urea groups and anions, to control the electronic states of fluorophores and develop an aggregation-induced emission enhancement (AIEE) system. The AIEE ionic hydrogen-bonded complex (IHBC) formed between 1,8-diphenylnaphthalene (p-2Urea), with aryl urea groups at the para-positions on the peri-phenyl rings, and acetate ions exhibits high environmental sensitivities in solution phases, and the FL quantum yield (QY) in ion-pair assemblies of the IHBC and tetrabutylammonium cations is more than five times higher than that of the IHBC in solution. Our versatile and simple approach for the design of AIEE dye facilitates the future development of environment-sensitive probes and solid-state emitting materials.
Collapse
Affiliation(s)
- Masaki Takahashi
- Interdisciplinary Graduate School of Medicine and Engineering, University of Yamanashi, 4-4-37 Takeda, Kofu, Japan.
| | - Nozomu Ito
- Interdisciplinary Graduate School of Medicine and Engineering, University of Yamanashi, 4-4-37 Takeda, Kofu, Japan
| | - Naoki Haruta
- Fukui Institute for Fundamental Chemistry, Kyoto University, Takano-Nishihiraki-cho 34-4, Sakyo-ku, Kyoto, 606-8103, Japan.,Department of Molecular Engineering, Graduate School of Engineering, Kyoto University, Nishikyo-ku, Kyoto, 615-8510, Japan.,Unit of Elements Strategy Initiative for Catalysts & Batteries, Kyoto University, Nishikyo-ku, Kyoto, 615-8510, Japan
| | - Hayato Ninagawa
- Interdisciplinary Graduate School of Medicine and Engineering, University of Yamanashi, 4-4-37 Takeda, Kofu, Japan
| | - Kohei Yazaki
- Interdisciplinary Graduate School of Medicine and Engineering, University of Yamanashi, 4-4-37 Takeda, Kofu, Japan
| | - Yoshihisa Sei
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama, 226-8503, Japan
| | - Tohru Sato
- Fukui Institute for Fundamental Chemistry, Kyoto University, Takano-Nishihiraki-cho 34-4, Sakyo-ku, Kyoto, 606-8103, Japan.,Department of Molecular Engineering, Graduate School of Engineering, Kyoto University, Nishikyo-ku, Kyoto, 615-8510, Japan.,Unit of Elements Strategy Initiative for Catalysts & Batteries, Kyoto University, Nishikyo-ku, Kyoto, 615-8510, Japan
| | - Makoto Obata
- Interdisciplinary Graduate School of Medicine and Engineering, University of Yamanashi, 4-4-37 Takeda, Kofu, Japan
| |
Collapse
|
3
|
Panahi F, Mahmoodi A, Ghodrati S, Eshghi F. A novel donor-π-acceptor halochromic 2,6-distyrylnaphthalene chromophore: synthesis, photophysical properties and DFT studies. RSC Adv 2020; 11:168-176. [PMID: 35423043 PMCID: PMC8690040 DOI: 10.1039/d0ra08508a] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Accepted: 12/09/2020] [Indexed: 11/21/2022] Open
Abstract
In this study a new 2,6-distyryl naphthalene [2-((4-((E)-2-(6-((E)-2,4-bis(methylsulfonyl)styryl)naphthalen-2-yl)vinyl)phenyl)(ethyl)amino)ethan-1-ol; ASDSN] was synthesized successfully using Heck chemistry as the main reaction. The ASDSN compound is a donor-pi-acceptor (D-π-A) conjugated system with amino as electron donating and sulfonyl as electron withdrawing groups. The UV-vis absorption of ASDSN was observed in the range of 403-417 nm with high molar extinction coefficients (ε = 15 300-56 200 M-1 cm-1) in some different solvents. This new fluorescent 2,6-distyryl naphthalene compound emits in the yellow region of the visible spectrum (557 nm) with Stokes shifts of 5930 cm-1. ASDSN is a pH-responsive fluorescence compound that shows yellow fluorescence in neutral form and blue fluorescence in the protonated form. A white light emission (WLE) for the chromophore was observed at pH = 3.0. The ASDSN chromophore presented a satisfactory white light quantum yield (Φ) of 13% which was desirable for producing white light emitting devices. Density functional theory (DFT) and time-dependent (TD)-DFT were applied to study structural and electronic properties of the chromophore.
Collapse
Affiliation(s)
- Farhad Panahi
- Chemistry Department, College of Sciences, Shiraz University Shiraz 71454 Iran
| | - Ali Mahmoodi
- Department of Polymer Engineering and Color Technology, Amirkabir University of Technology Tehran Iran
| | - Sajjad Ghodrati
- Department of Polymer Engineering and Color Technology, Amirkabir University of Technology Tehran Iran
| | - Fazlolah Eshghi
- Chemistry Department, College of Sciences, Shiraz University Shiraz 71454 Iran
| |
Collapse
|
4
|
Cao C, You X, Feng L, Luo G, Yue G, Ji X. Synthesis of new chromogenic sensors containing thiourea and selective detection for F–, H2PO4–, and Ac– anions. CAN J CHEM 2020. [DOI: 10.1139/cjc-2020-0120] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Two new chromogenic sensors 1-(2-hydroxyphenyl)-3-(4-nitrophenyl)thiourea 1 and 1-(3-hydroxypyridin-2-yl)-3-(4-nitrophenyl)thiourea 2 bearing nitrophenyl and thiourea groups were designed and synthesized by one-step procedure and characterized through 1H NMR, 13C NMR, FTIR, and MS. The anion recognition property of the receptors was studied via naked-eye detection, UV–vis, and 1H NMR. Based on the existence of amino gen and hydroxyl moieties in receptors, receptors 1 and 2 exhibit obvious selectivity by the redshift of UV–vis signals, colour changes through naked-eye detection, and binding effects for F–, H2PO4–, and Ac–. Surprisingly, the detection limits of receptor 1 for F– and Ac– were calculated to be 5.45 × 10−7 and 2.11 × 10−7 (mol/L)−1, respectively, which indicated that F– and Ac– can be identified with high sensitivity by receptor 1. Besides, simple “test strips” were developed and were used as sensors for recognition of F–, H2PO4–, or Ac– in DMSO solution. Lastly, the mechanisms of the recognition process were studied through DFT calculation and 1H NMR titration.
Collapse
Affiliation(s)
- Cheng Cao
- College of Chemistry and Chemical Engineering, Key Laboratory of Hexi Corridor Resources Utilization of Gansu, Kaiyuan Biology Technology Develop Centre, Hexi University, Zhangye 734000, P.R. China
- Key Laboratory of Clay Mineral Applied Research of Gansu Province, Center of Eco-Materials and Green Chemistry, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, P.R. China
| | - Xingmei You
- College of Chemistry and Chemical Engineering, Key Laboratory of Hexi Corridor Resources Utilization of Gansu, Kaiyuan Biology Technology Develop Centre, Hexi University, Zhangye 734000, P.R. China
| | - Lei Feng
- College of Chemistry and Chemical Engineering, Key Laboratory of Hexi Corridor Resources Utilization of Gansu, Kaiyuan Biology Technology Develop Centre, Hexi University, Zhangye 734000, P.R. China
| | - Guanghong Luo
- College of Chemistry and Chemical Engineering, Key Laboratory of Hexi Corridor Resources Utilization of Gansu, Kaiyuan Biology Technology Develop Centre, Hexi University, Zhangye 734000, P.R. China
| | - Guoren Yue
- College of Chemistry and Chemical Engineering, Key Laboratory of Hexi Corridor Resources Utilization of Gansu, Kaiyuan Biology Technology Develop Centre, Hexi University, Zhangye 734000, P.R. China
| | - Xiangdong Ji
- College of Chemistry and Chemical Engineering, Key Laboratory of Hexi Corridor Resources Utilization of Gansu, Kaiyuan Biology Technology Develop Centre, Hexi University, Zhangye 734000, P.R. China
| |
Collapse
|