1
|
Choi MG, Han J, Ahn S, Chang SK. A colorimetric and fluorescent signaling probe for assaying Pd 2+ in practical samples. RSC Adv 2023; 13:31962-31968. [PMID: 37920198 PMCID: PMC10618942 DOI: 10.1039/d3ra05549c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 10/19/2023] [Indexed: 11/04/2023] Open
Abstract
We developed an optical signaling probe to detect Pd2+ ions in Pd-containing catalyst and drug candidate. The Pd2+ signaling probe (Res-DT) was readily prepared by reacting the versatile fluorochrome resorufin with phenyl chlorodithioformate. In a phosphate-buffered saline solution (pH 7.4) containing sodium dodecyl sulfate (SDS) as a signal-boosting surfactant, Res-DT exhibited a pronounced colorimetric response with a chromogenic yellow to magenta shift, leading to a substantial increase in the fluorescence intensity. The Pd2+ signaling performance of Res-DT was attributed to the Pd2+-promoted hydrolysis of the dithioate moiety. The probe displayed high selectivity toward Pd2+ ions and remained unaffected by commonly encountered coexisting components. Moreover, the detection limit of Res-DT for Pd2+ ions was 10 nM, and the signaling was achieved within 7 min. Furthermore, to demonstrate the real-world applicability of Res-DT, a Pd2+ assay was performed in Pd-containing catalyst and drug candidate using an office scanner as an easily accessible measurement device. Our results highlight the prospects of Res-DT as a tool to detect Pd2+ ions in various practical samples, with potential applications in catalysis, medicine, and environmental science.
Collapse
Affiliation(s)
- Myung Gil Choi
- Department of Chemistry, Chung-Ang University Seoul 06974 Republic of Korea +82 2 825 4736 +82 2 820 5199
| | - Juyoung Han
- Department of Chemistry, Chung-Ang University Seoul 06974 Republic of Korea +82 2 825 4736 +82 2 820 5199
| | - Sangdoo Ahn
- Department of Chemistry, Chung-Ang University Seoul 06974 Republic of Korea +82 2 825 4736 +82 2 820 5199
| | - Suk-Kyu Chang
- Department of Chemistry, Chung-Ang University Seoul 06974 Republic of Korea +82 2 825 4736 +82 2 820 5199
| |
Collapse
|
2
|
Moon S, Kim C. A Fluorescent and Colorimetric Chemosensor Detecting Pd 2+ Based on Chalcone Structure with Triphenylamine. J Fluoresc 2023; 33:1739-1748. [PMID: 36826725 DOI: 10.1007/s10895-023-03176-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Accepted: 02/11/2023] [Indexed: 02/25/2023]
Abstract
A fluorometric and colorimetric chemosensor DiPP ((E)-3-(4-(diphenylamino)phenyl)-1-(pyridin-2-yl)prop-2-en-1-one) based on chalcone structure with a triphenylamine group was synthesized. Sensor DiPP detected Pd2+ with fluorescence turn-off and via colorimetry variation of yellow to purple. The binding ratio of DiPP to Pd2+ turned out to be 1 : 1. Detection limits for Pd2+ by DiPP were analyzed to be 0.67 µM and 0.80 µM through the fluorescent and colorimetric methods. Additionally, the fluorescent and colorimetric test strips were applied for probing Pd2+ and displayed that DiPP could obviously discriminate Pd2+ from other metals. The binding feature of DiPP to Pd2+ was presented by ESI-mass, Job plot, NMR titration, ESI-mass, and DFT calculations.
Collapse
Affiliation(s)
- Sungjin Moon
- Dept of New and Renewable Energy Convergence and Fine Chem, Seoul National Univ. of Sci. and Tech. (SNUT), 01811, Seoul, Korea
| | - Cheal Kim
- Dept of New and Renewable Energy Convergence and Fine Chem, Seoul National Univ. of Sci. and Tech. (SNUT), 01811, Seoul, Korea.
| |
Collapse
|
3
|
Tang FK, Chen Y, Nnaemaka Tritton D, Cai Z, Cham-Fai Leung K. A Piperazine Linked Rhodamine-BODIPY FRET-based Fluorescent Sensor for Highly Selective Pd 2+ and Biothiol Detection. Chem Asian J 2023; 18:e202300477. [PMID: 37390079 DOI: 10.1002/asia.202300477] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 06/27/2023] [Accepted: 06/30/2023] [Indexed: 07/02/2023]
Abstract
A class of rhodamine-based fluorescent sensors for the selective and sensitive detection of Pd2+ metal ions in aqueous media has been developed. A rhodamine-based sensor PMS and a rhodamine-BODIPY Förster resonance energy transfer (FRET)-pair sensor PRS have been incorporated with a piperazine linker and an O-N-S-N podand ligand for specific recognition of Pd2+ ion. Both probes displayed colorimetric and fluorescent ratiometric changes when exposed to Pd2+ , due to their spirolactam rings opening and restoring rhodamine conjugation. PRS is highly selective to Pd2+ over 22 other metal ions, showing a 0.6-fold ratiometric difference at I600nm /I515nm . Additionally, the lactam ring in Pd2+ coordinated PRS-Pd could be switched back to the closed form in the presence of various thiols, providing a "red-green traffic light" detection mechanism between red and green emission. Furthermore, PRS showed excellent cell viability and was successfully employed to image Pd2+ and the PRS-Pd complex ensemble could interchangeably detect biothiols including glutathione (GSH) in A549 human lung cancer cells.
Collapse
Affiliation(s)
- Fung-Kit Tang
- Department of Chemistry and State Key Laboratory of Environmental and Biological Analysis, Hong Kong Baptist University, 224 Waterloo Road, Kowloon Tong, Kowloon, Hong Kong SAR, P. R. China
| | - Yanyan Chen
- Department of Chemistry and State Key Laboratory of Environmental and Biological Analysis, Hong Kong Baptist University, 224 Waterloo Road, Kowloon Tong, Kowloon, Hong Kong SAR, P. R. China
| | - Daniel Nnaemaka Tritton
- Department of Chemistry and State Key Laboratory of Environmental and Biological Analysis, Hong Kong Baptist University, 224 Waterloo Road, Kowloon Tong, Kowloon, Hong Kong SAR, P. R. China
| | - Zongwei Cai
- Department of Chemistry and State Key Laboratory of Environmental and Biological Analysis, Hong Kong Baptist University, 224 Waterloo Road, Kowloon Tong, Kowloon, Hong Kong SAR, P. R. China
| | - Ken Cham-Fai Leung
- Department of Chemistry and State Key Laboratory of Environmental and Biological Analysis, Hong Kong Baptist University, 224 Waterloo Road, Kowloon Tong, Kowloon, Hong Kong SAR, P. R. China
| |
Collapse
|
4
|
Ziarani GM, Khademi M, Mohajer F, Badiei A. The Application of Modified SBA-15 as a Chemosensor. CURRENT NANOMATERIALS 2022; 7:4-24. [DOI: 10.2174/2405461506666210420132630] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 01/13/2021] [Accepted: 03/04/2021] [Indexed: 06/17/2023]
Abstract
:
The Santa Barbara Amorphous (SBA-15), with a large surface area covered with abundant
Si-OH active groups on the walls of its pores, can be modified with various organic compounds
to build organic-inorganic hybrid materials, which can be used as a catalyst in organic reactions,
drug delivery systems, nano sorbent due to its high capacity for removing heavy metals in
waste water and as chemosensors for ions. Tunable and straight channels of SBA-15 facilitate the
entrance and diffusion of ions through the channels. This paper presents a review of the past five
years of literature covering the application of SBA-15 as an ions chemosensor in the liquid and
gaseous media.
Collapse
Affiliation(s)
- Ghodsi Mohammadi Ziarani
- Department of Chemistry, Faculty of Physics and Chemistry, Alzahra University, Tehran, Tehran, Iran
| | - Mahdieh Khademi
- Department of Chemistry, Faculty of Physics and Chemistry, Alzahra University, Tehran, Tehran, Iran
| | - Fatemeh Mohajer
- Department of Chemistry, Faculty of Physics and Chemistry, Alzahra University, Tehran, Tehran, Iran
| | - Alireza Badiei
- School of
Chemistry, Collage of Science, University of Tehran, Tehran, Iran
| |
Collapse
|
5
|
Banik D, Manna SK, Maiti A, Mahapatra AK. Recent Advancements in Colorimetric and Fluorescent pH Chemosensors: From Design Principles to Applications. Crit Rev Anal Chem 2022; 53:1313-1373. [PMID: 35086371 DOI: 10.1080/10408347.2021.2023002] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/24/2023]
Abstract
Due to the immense biological significance of pH in diverse living systems, the design, synthesis, and development of pH chemosensors for pH monitoring has been a very active research field in recent times. In this review, we summarize the designing strategies, sensing mechanisms, biological and environmental applications of fluorogenic and chromogenic pH chemosensors of the last three years (2018-2020). We categorized these pH probes into seven types based on their applications, including 1) Cancer cell discriminating pH probes; 2) Lysosome targetable pH probes; 3) Mitochondria targetable pH probes; 4) Golgi body targetable pH probes; 5) Endoplasmic reticulum targetable pH probes; 6) pH probes used in nonspecific cell imaging; and 7) pH probes without cell imaging. All these different categories exhibit diverse applications of pH probes in biological and environmental fields.
Collapse
Affiliation(s)
- Dipanjan Banik
- Department of Chemistry, Indian Institute of Engineering Science and Technology, Shibpur, Howrah, West Bengal, India
| | - Saikat Kumar Manna
- Department of Chemistry, Haldia Government College, Purba Medinipur, West Bengal, India
| | - Anwesha Maiti
- Department of Chemistry, Indian Institute of Engineering Science and Technology, Shibpur, Howrah, West Bengal, India
| | - Ajit Kumar Mahapatra
- Department of Chemistry, Indian Institute of Engineering Science and Technology, Shibpur, Howrah, West Bengal, India
| |
Collapse
|
6
|
Wu S, Jiang H, Zhang Y, Wu L, Jiang P, Ding N, Zhang H, Zhao L, Yin F, Yang Q. A novel “on-off-on” acylhydrazone-based fluorescent chemosensor for ultrasensitive detection of Pd2+. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2020.114836] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
7
|
Singh G, Sharma G, Satija P, Singh A, Pawan, Ruiz CE, Silvera DG, Esteban MA, Soni S. Design and Synthesis of Heterocyclic Encapsulated Organosilatranes for In Silico, In Vitro Antioxidant and Cytotoxicity Evaluation. ChemistrySelect 2020. [DOI: 10.1002/slct.202004164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
| | - Geetika Sharma
- Department of Chemistry GGDSD College, Sector 32 C Chandigarh India
| | - Pinky Satija
- Department of Chemistry Panjab University Chandigarh 160014 India
| | - Akshpreet Singh
- Department of Chemistry GGDSD College, Sector 32 C Chandigarh India
| | - Pawan
- Department of Chemistry Panjab University Chandigarh 160014 India
| | - Cristóbal E. Ruiz
- Department of Cell Biology & Histology Faculty of Biology University of Murcia 30100 Murcia Spain
| | | | - María A. Esteban
- Department of Cell Biology & Histology Faculty of Biology University of Murcia 30100 Murcia Spain
| | - Sajeev Soni
- Department of Chemistry GGDSD College, Sector 32 C Chandigarh India
| |
Collapse
|
8
|
A dual-functional colorimetric and “on-off” fluorescent probe based on purine derivative for detecting Pd2+ and Cu2+: Application as test strips. INORG CHEM COMMUN 2020. [DOI: 10.1016/j.inoche.2020.107915] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
9
|
Highly selective detection of Pd2+ ion in aqueous solutions with rhodamine-based colorimetric and fluorescent chemosensors. Talanta 2020; 210:120634. [DOI: 10.1016/j.talanta.2019.120634] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Revised: 12/03/2019] [Accepted: 12/08/2019] [Indexed: 12/22/2022]
|
10
|
Mondal S, Manna SK, Pathak S, Ghosh A, Datta P, Mandal D, Mukhopadhyay S. A “turn-on” fluorescent and colorimetric chemodosimeter for selective detection of Au3+ ions in solution and in live cells via Au3+-induced hydrolysis of a rhodamine-derived Schiff base. NEW J CHEM 2020. [DOI: 10.1039/d0nj01273d] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A chromogenic and “off–on” fluorogenic chemodosimeter (L) based on a naphthalene–rhodamine B derivative was designed, synthesized and characterized for the selective and sensitive detection of Au3+ ions in mixed acetonitrile aqueous media.
Collapse
Affiliation(s)
- Sanchita Mondal
- Department of Chemistry
- Jadavpur University
- Kolkata 700032
- India
| | | | - Sudipta Pathak
- Department of Chemistry
- Haldia Government College
- Purba Medinipur
- India
| | - Aritri Ghosh
- Centre for Healthcare Science
- Indian Institute of Engineering Science and Technology
- Howrah 711103
- India
| | - Pallab Datta
- Centre for Healthcare Science
- Indian Institute of Engineering Science and Technology
- Howrah 711103
- India
| | - Debasish Mandal
- School of Chemistry and Biochemistry
- Thapar Institute of Engineering and Technology
- Patiala 147004
- India
| | | |
Collapse
|
11
|
Singh G, Suman, Satija P, Singh A, Shilpy, González-Silvera D, Espinosa Ruiz C, Esteban MA, Sahoo SC. Synthesis and X-ray characterization of antipyrine-tethered organosilanes and their magnetic nanoparticles: potent anti-oxidants and receptors for Sn( ii) ions. NEW J CHEM 2020. [DOI: 10.1039/d0nj03300f] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
This study focuses on the synthesis and X-ray characterization of antipyrine-tethered organosilanes for their potential applications in the fields of material science, pharmaceuticals and chemosensing.
Collapse
Affiliation(s)
- Gurjaspreet Singh
- Department of Chemistry and Centre of Advanced Studies
- Panjab University
- Chandigarh
- India
| | - Suman
- Department of Chemistry and Centre of Advanced Studies
- Panjab University
- Chandigarh
- India
| | - Pinky Satija
- Department of Chemistry and Centre of Advanced Studies
- Panjab University
- Chandigarh
- India
| | - Akshpreet Singh
- Department of Chemistry
- GGDSD College, Sector-32
- Chandigarh
- India
| | - Shilpy
- Department of Chemistry and Centre of Advanced Studies
- Panjab University
- Chandigarh
- India
| | - D. González-Silvera
- Department of Cell Biology and Histology
- Faculty of Biology
- University of Murcia
- 30100 Murcia
- Spain
| | - Cristobal Espinosa Ruiz
- Department of Cell Biology and Histology
- Faculty of Biology
- University of Murcia
- 30100 Murcia
- Spain
| | - M. Angeles Esteban
- Department of Cell Biology and Histology
- Faculty of Biology
- University of Murcia
- 30100 Murcia
- Spain
| | - Subash Chandra Sahoo
- Department of Chemistry and Centre of Advanced Studies
- Panjab University
- Chandigarh
- India
| |
Collapse
|
12
|
Sequential Detection of Palladium and Chromium Oxyanion by a Fluorescein Based Chemosensor in Mixed Aqueous Media. CHEMOSENSORS 2019. [DOI: 10.3390/chemosensors8010004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
A new highly selective chemosensor, based on fluorescein-allyloxy benzene conjugate 1, was developed for the sequential detection of palladium and chromium oxyanions in a mixed aqueous media, and was studied by UV-visible and fluorescence spectroscopy. The sensing of palladium ions produces a chemodosimetric and ratiometric change in the emission band of 1 from 450 to 525 nm, followed by the sensing of chromate ions by 2 that quenches the emission band at 525 nm in a buffered H2O: DMF solution (9:1, pH = 7.4). The rate constants of palladium and chromate ions were found to be 8.6 × 105 M−1, 2.1 × 105 M−1, and 5.4 × 104 M−1 respectively. The chemosensor 1 has a palladium detection limit of 49 ppb while the sequential detection limit of chromate ions (CrO42− and Cr2O72−) were 127 and 259 ppb. The ratiometric change in the emission is produced due to the deallylation of 1 by palladium to produce 2 that restores the ESIPT (excited state intramolecular proton transfer) of the phenolic ring and enhances the electron transfer (ET) phenomenon from the phenolic group to fluorescein. The sequential binding of chromate ions to 2 inhibits the ESIPT and causes chelation enhanced quenching (CHEQ) of the fluorescence.
Collapse
|
13
|
Adak AK, Dutta B, Manna SK, Sinha C. Rhodamine-Appended Benzophenone Probe for Trace Quantity Detection of Pd 2+ in Living Cells. ACS OMEGA 2019; 4:18987-18995. [PMID: 31763520 PMCID: PMC6868589 DOI: 10.1021/acsomega.9b01860] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2019] [Accepted: 08/27/2019] [Indexed: 05/15/2023]
Abstract
Designing a fluorogenic probe for the determination of Pd2+ is a challenging analytical task. Pd2+ is a potentially toxic and harmful substance even at a very low level of contamination in the end product. Herein, a promising spirolactam-functionalized chemosensor, rhodamine-appended benzophenone (HBR), is designed and characterized by spectroscopic (1H NMR, 13C NMR, ESI-MS, and FT-IR) data along with the single-crystal X-ray diffraction technique. It acts as a highly sensitive and selective fluorogenic chemosensor for Pd2+ ions over other environmentally relevant cations in aqueous ethanol (1:1, v/v) at pH 7.4. The limit of detection (LOD) is 34 nM that is far below the WHO recommended Pd uptake (47 μM). The plausible mechanism involves the specific binding of HBR with Pd2+ and the formation of 1:1 stoichiometry of the complex, which has been supported by ESI-MS, FT-IR data, Job plot, and association constant data (Benesi-Hildebrand plot). The computation study has been attempted to explain the ring cleavage fluorescence enhancement scheme of HBR upon binding with Pd2+. Furthermore, this "turn-on" probe has successfully applied to image the Pd2+ ion in cultured MDA-MB-231 cells.
Collapse
Affiliation(s)
- Arup Kumar Adak
- Bidhannagar
College, EB-2, Sector −1, Salt Lake, Kolkata 700064, West Bengal, India
- Department
of Chemistry, Jadavpur University, Kolkata 700032, West Bengal, India
| | - Basudeb Dutta
- Department
of Chemistry, Aliah University, Kolkata 700156, West Bengal, India
| | - Saikat Kumar Manna
- Haldia
Government College, Debhog, Haldia, Purba Medinipur 721657, West Bengal, India
| | - Chittaranjan Sinha
- Department
of Chemistry, Jadavpur University, Kolkata 700032, West Bengal, India
- E-mail:
| |
Collapse
|
14
|
Manna CK, Gharami S, Aich K, Patra L, Mondal TK. Simple fabrication of a carbaldehyde based fluorescent “turn-on” probe for the selective and sole detection of Pd2+: application as test strips. NEW J CHEM 2019. [DOI: 10.1039/c9nj04313f] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A simple fluorescent “turn-on” probe (DHMC) has been designed for selective and sole detection of Pd2+.
Collapse
Affiliation(s)
| | - Saswati Gharami
- Department of Chemistry
- Jadavpur University
- Kolkata – 700032
- India
| | - Krishnendu Aich
- Department of Chemistry
- Jadavpur University
- Kolkata – 700032
- India
| | - Lakshman Patra
- Department of Chemistry
- Jadavpur University
- Kolkata – 700032
- India
| | - Tapan K. Mondal
- Department of Chemistry
- Jadavpur University
- Kolkata – 700032
- India
| |
Collapse
|