1
|
Poudel DP, Taylor RT. Thiol-Ene Click-Inspired Late-Stage Modification of Long-Chain Polyurethane Dendrimers. REACTIONS 2021; 3:12-29. [DOI: 10.3390/reactions3010002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2025] Open
Abstract
The construction of well-defined polyurethane dendrimers is challenging due to the high reactivity of externally added or in situ formed isocyanates leading to the formation of side products. With a primary focus of dendrimer research being the interaction of the periphery and the core, we report the synthesis of a common polyurethane dendron, which allows for the late-stage variation of both the periphery and the core. The periphery can be varied simply by installing a clickable unit in the dendron and then attaching to the core and vice-versa. Thus, a common dendron allows for varying periphery and core in the final two steps. To accomplish this, a protecting group-free, one-pot multicomponent Curtius reaction was utilized to afford a robust and versatile AB2 type polyurethane dendron employing commercially available simple molecules: 5-hydroxyisophthalic acid, 11-bromoundecanol, and 4-penten-1-ol. Subsequent late-stage modifications of either dendrons or dendrimers via a thiol-ene click reaction gave surface-functionalized alternating aromatic-aliphatic polyurethane homodendrimers to generation-three (G3). The dendrons and the dendrimers were characterized by NMR, mass spectrometry, and FT-IR analysis. A bifunctional AB2 type dendritic monomer demonstrated this approach’s versatility that can either undergo a thiol-ene click or attachment to the core. This approach enables the incorporation of functionalities at the periphery and the core that may not withstand the dendrimer growth for the synthesis of polyurethane dendrimers and other dendritic macromolecules.
Collapse
Affiliation(s)
- Dhruba P. Poudel
- Department of Chemistry and Biochemistry, Miami University, Oxford, OH 45056, USA
| | - Richard T. Taylor
- Department of Chemistry and Biochemistry, Miami University, Oxford, OH 45056, USA
| |
Collapse
|
2
|
Zirar FE, Anouar A, Katir N, Ichou IA, El Kadib A. Growth of binary anatase–rutile on phosphorylated graphene through strong P–O–Ti bonding affords a stable visible-light photocatalyst. RSC Adv 2021; 11:28116-28125. [PMID: 35480731 PMCID: PMC9038032 DOI: 10.1039/d1ra05275f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Accepted: 08/06/2021] [Indexed: 01/26/2023] Open
Abstract
Phosphorylated graphene sheets covalently bind, grow and stabilize biphasic anatase–rutile clusters through strong P–O–Ti bridges. The resulting nanocomposites stands as efficient visible-light photocatalysts for the degradation of dyes from water.
Collapse
Affiliation(s)
- Fatima-Ezzahra Zirar
- Euromed Research Center, Engineering Division, Euro-Med University of Fes (UEMF), Route de Meknes, Rond-point de Bensouda, 30070, Fès, Morocco
- Materials, Photocatalysis and Environment Team, Department of Chemistry, Faculty of Sciences, Ibn Zohr University, B.P. 8106, Dakhla City, Agadir, Morocco
| | - Aicha Anouar
- Euromed Research Center, Engineering Division, Euro-Med University of Fes (UEMF), Route de Meknes, Rond-point de Bensouda, 30070, Fès, Morocco
| | - Nadia Katir
- Euromed Research Center, Engineering Division, Euro-Med University of Fes (UEMF), Route de Meknes, Rond-point de Bensouda, 30070, Fès, Morocco
| | - Ihya Ait Ichou
- Materials, Photocatalysis and Environment Team, Department of Chemistry, Faculty of Sciences, Ibn Zohr University, B.P. 8106, Dakhla City, Agadir, Morocco
| | - Abdelkrim El Kadib
- Euromed Research Center, Engineering Division, Euro-Med University of Fes (UEMF), Route de Meknes, Rond-point de Bensouda, 30070, Fès, Morocco
| |
Collapse
|
3
|
Majoral JP, Zablocka M, Ciepluch K, Milowska K, Bryszewska M, Shcharbin D, Katir N, El Kadib A, Caminade AM, Mignani S. Hybrid phosphorus–viologen dendrimers as new soft nanoparticles: design and properties. Org Chem Front 2021; 8:4607-4622. [DOI: 10.1039/d1qo00511a] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
Abstract
Design of new families of dendritic soft nanoparticles constituted of phosphorus, viologen and carbosilane fragments and their properties as nanomaterials and applications in biology.
Collapse
Affiliation(s)
- Jean-Pierre Majoral
- Laboratoire de Chimie de Coordination
- CNRS
- UPR 8241
- 31077 Toulouse CEDEX 4
- France
| | - Maria Zablocka
- Center of Molecular and Macromolecular Studies
- Polish Academy of Science
- 90001 Lodz
- Poland
| | - Karol Ciepluch
- Division of Medical Biology
- Jan Kochanowski University
- Kielce
- Poland
| | - Katarzyna Milowska
- Department of General Biophysics
- Faculty of Biology and Environmental Protection
- University of Lodz
- Lodz
- Poland
| | - Maria Bryszewska
- Department of General Biophysics
- Faculty of Biology and Environmental Protection
- University of Lodz
- Lodz
- Poland
| | | | - Nadia Katir
- Euromed Research Center
- Engineering Division
- Euro-Med University of Fes (UEMF)
- Fès
- Morocco
| | - Abdelkrim El Kadib
- Euromed Research Center
- Engineering Division
- Euro-Med University of Fes (UEMF)
- Fès
- Morocco
| | - Anne-Marie Caminade
- Laboratoire de Chimie de Coordination
- CNRS
- UPR 8241
- 31077 Toulouse CEDEX 4
- France
| | - Serge Mignani
- Laboratoire de Chimie et de Biochimie Pharmacologiques et Toxicologique
- Université Paris Descartes
- PRES Sorbonne Paris Cité
- CNRS UMR 860
- 75006 Paris
| |
Collapse
|
4
|
Blilid S, Katir N, El Haskouri J, Lahcini M, Royer S, El Kadib A. Phosphorylated micro- vs. nano-cellulose: a comparative study on their surface functionalisation, growth of titanium-oxo-phosphate clusters and removal of chemical pollutants. NEW J CHEM 2019. [DOI: 10.1039/c9nj03187a] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Phosphorylation imparts cellulose (amorphous or crystalline) with original surface reactivity to bridge metal oxide clusters and to scavenge for chemicals.
Collapse
Affiliation(s)
- Sara Blilid
- Euromed Research Center
- Engineering Division
- Euro-Med University of Fes (UEMF)
- Route de Meknes
- Fès
| | - Nadia Katir
- Euromed Research Center
- Engineering Division
- Euro-Med University of Fes (UEMF)
- Route de Meknes
- Fès
| | - Jamal El Haskouri
- Instituto de Ciència de los Materials de la Universidad de Valencia
- Calle catedratico José Beltran
- 46980 Valencia
- Spain
| | - Mohamed Lahcini
- Laboratory of Organometallic and Macromolecular Chemistry-Composites Materials
- Faculty of Sciences and Technologies
- Cadi Ayyad University
- 40000 Marrakech
- Morocco
| | - Sébastien Royer
- Univ. Lille, CNRS, ENSCL
- Centrale Lille
- Univ Artois
- UMR 8181 – UCCS – Unité de Catalyse et Chimie du Solide
- F-59000 Lille
| | - Abdelkrim El Kadib
- Euromed Research Center
- Engineering Division
- Euro-Med University of Fes (UEMF)
- Route de Meknes
- Fès
| |
Collapse
|