1
|
Recent developments in the colorimetric sensing of biological molecules using gold nanoparticles-based probes. TALANTA OPEN 2022. [DOI: 10.1016/j.talo.2022.100122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
2
|
Arul P, Huang ST, Mani V, Huang CH. Graphene quantum dots-based nanocomposite for electrocatalytic application of L-cysteine in whole blood and live cells. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2022.140937] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
3
|
Kappen J, Bharathi S, John SA. Probing the Interaction of Heavy and Transition Metal Ions with Silver Nanoparticles Decorated on Graphene Quantum Dots by Spectroscopic and Microscopic Methods. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:4442-4451. [PMID: 35352934 DOI: 10.1021/acs.langmuir.2c00273] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
We report a comprehensive study of the interaction of transition and heavy metal ions with graphene quantum dots-capped silver nanoparticles (AgGQDs) using different spectroscopic and microscopic techniques. High-resolution transmission electron microscopy studies show that the interaction of metal ions with AgGQDs leads to the formation of metal oxides, the formation of zerovalent metals, and the aggregation of Ag nanoparticles (AgNPs). The metal ions may interact with AgGQDs through selective coordination with -OH and -COOH functionalities, adsorption on the graphene moiety, and directly to AgNPs. For instance, the interaction of Cd2+ with AgGQDs altered the spherical shape of AgNPs into a chain-like structure. On the contrary, the formation of PbO is observed after the addition of Pb2+ to AgGQDs. Interestingly, the interaction of AgGQDs with Hg2+ results in the complete dissolution of Ag0 from the surface of GQDs and subsequent deposition of Hg0 on the graphene moiety of GQDs. Unlike transition metal ions, Cd2+, Pb2+, and Hg2+ can adsorb strongly on the graphene surface at the bridge, hollow, and top sites, respectively. This special interaction of heavy metal ions with the graphene surface would decide the mechanistic pathway in which the reaction proceeds. The transition metal ions Cu2+, Zn2+, Co3+, Mn2+, Ni2+, and Fe3+ induced the aggregation of AgNPs.
Collapse
Affiliation(s)
- Jincymol Kappen
- Centre for Nanoscience and Nanotechnology, Department of Chemistry, The Gandhigram Rural Institute-Deemed to be University Gandhigram, Dindigul 624 302, Tamil Nadu, India
| | - Sinduja Bharathi
- Centre for Nanoscience and Nanotechnology, Department of Chemistry, The Gandhigram Rural Institute-Deemed to be University Gandhigram, Dindigul 624 302, Tamil Nadu, India
| | - S Abraham John
- Centre for Nanoscience and Nanotechnology, Department of Chemistry, The Gandhigram Rural Institute-Deemed to be University Gandhigram, Dindigul 624 302, Tamil Nadu, India
| |
Collapse
|
4
|
Kappen J, Bharathi S, John SA. Unusual Reactivity of Graphene Quantum Dot-Wrapped Silver Nanoparticles with Hg(II): Spontaneous Growth of Hg Flowers and Their Electrocatalytic Activity. Inorg Chem 2021; 60:8200-8210. [PMID: 34008969 DOI: 10.1021/acs.inorgchem.1c00843] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The galvanic reaction (GR) between a graphene quantum dot (GQD)-stabilized AgNP (Ag-GQD)-modified glassy carbon (GC) surface and Hg(II) leads to complete dissolution of AgNPs within 15 min and subsequent growth of Hg(0) as a "flower" on the GQD surface. This is unusual because generally the GR of bulk Ag/AgNPs with Hg(II) leads to the formation of a Hg-Ag amalgam/core shell structure. The appearance of peaks at 99.9 and 103.9 eV in X-ray photoelectron spectroscopy confirms Hg(0) on GQDs, whereas the disappearance of a peak at 370 eV indicates complete dissolution of Ag(0). When 200 ppm Hg(II) interacts with Ag-GQDs for 10 min, coalescence of AgNPs takes place along with the formation of Hg(0) petals separately. However, Hg(0) is grown as a flower with 2 μm size, and complete dissolution of AgNPs occurs subsequently after 15 min. The reason for anti-amalgamation is the direct deposition of Hg(0) by the available oxygen functional groups, followed by its strong adsorption on the graphene surface of GQDs. The subsequent growth of Hg(0) as a flower is due to the GR between AgNPs and Hg(II). Interestingly, the Hg flower-GQD-modified GC electrode acts as a good electrocatalyst toward H2O2 reduction by decreasing its overpotential by 150 mV in contrast to GC/Ag-GQDs.
Collapse
Affiliation(s)
- Jincymol Kappen
- Centre for Nanoscience and Nanotechnology, Department of Chemistry, The Gandhigram Rural Institute (Deemed to be University), Gandhigram, 624 302 Dindigul, Tamilnadu, India
| | - Sinduja Bharathi
- Centre for Nanoscience and Nanotechnology, Department of Chemistry, The Gandhigram Rural Institute (Deemed to be University), Gandhigram, 624 302 Dindigul, Tamilnadu, India
| | - S Abraham John
- Centre for Nanoscience and Nanotechnology, Department of Chemistry, The Gandhigram Rural Institute (Deemed to be University), Gandhigram, 624 302 Dindigul, Tamilnadu, India
| |
Collapse
|
5
|
Kappen J, John SA. Formation of Mercury Droplets at Ambient Conditions through the Interaction of Hg(II) with Graphene Quantum Dots. Inorg Chem 2021; 60:7834-7843. [PMID: 34009972 DOI: 10.1021/acs.inorgchem.1c00324] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Unlike other metals, Hg forms droplets at ambient conditions when a Hg(II) salt interacts with hydroxyl-enriched graphene quantum dots (HEGQDs). The hydroxylation of GQD surface is evident from FT-IR, Raman spectroscopy, and X-ray photoelectron spectroscopy (XPS) techniques. The scanning electron microscopy images of Hg(II)-HEGQDs incubated for 0, 1, 24, and 168 h show Hg droplets with the size of 0.1, 0.3, 0.8, and 2 μm, respectively. The XPS studies confirm the presence of Hg(0) and also reveal a noticeable decline in the composition percentage of C-O, whereas a marked increase is observed in the C═O composition percentage. The pathway for the formation of droplets induces immediate reduction of Hg(II) to Hg(0) by both hydroxyl groups and π electron cloud present on the surface of HEGQDs, followed by coalescence. The formed Hg(0) is then strongly adsorbed on the hollow sites of graphene and acts as a nucleation site for the growth of droplets. The kinetics of the reaction obeys LaMer Burst nucleation followed by coalescent growth in addition to autocatalytic reduction and finally follows the Oswald ripening mechanism. The internal pressure of Hg droplets gradually decreases as the radius of the drop increases over the incubation time and liquid-rhombohedral transformation is likely to take place at a radius of 0.8 nm.
Collapse
Affiliation(s)
- Jincymol Kappen
- Centre for Nanoscience and Nanotechnology, Department of Chemistry, The Gandhigram Rural Institute-Deemed to be University, Gandhigram, 624 302 Dindigul, Tamilnadu, India
| | - S Abraham John
- Centre for Nanoscience and Nanotechnology, Department of Chemistry, The Gandhigram Rural Institute-Deemed to be University, Gandhigram, 624 302 Dindigul, Tamilnadu, India
| |
Collapse
|
6
|
Graphene quantum dot-stabilized gold nanoparticles as a new colorimetric probe for in situ quantification of phenytoin in biological samples. Microchem J 2020. [DOI: 10.1016/j.microc.2020.105331] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
7
|
Zou H, Zhang Y, Zhang C, Sheng R, Zhang X, Qi Y. Fluorometric Detection of Thiamine Based on Hemoglobin-Cu 3(PO 4) 2 Nanoflowers (NFs) with Peroxidase Mimetic Activity. SENSORS (BASEL, SWITZERLAND) 2020; 20:E6359. [PMID: 33171820 PMCID: PMC7664642 DOI: 10.3390/s20216359] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 10/29/2020] [Accepted: 11/04/2020] [Indexed: 12/17/2022]
Abstract
Component analysis plays an important role in food production, pharmaceutics and agriculture. Nanozymes have attracted wide attention in analytical applications for their enzyme-like properties. In this work, a fluorometric method is described for the determination of thiamine (TH) (vitamin B1) based on hemoglobin-Cu3(PO4)2 nanoflowers (Hb-Cu3(PO4)2 NFs) with peroxidase-like properties. The Hb-Cu3(PO4)2 NFs catalyzed the decomposition of H2O2 into ·OH radicals in an alkaline solution that could efficiently react with nonfluorescent thiamine to fluoresce thiochrome. The fluorescence of thiochrome was further enhanced with a nonionic surfactant, Tween 80. Under optimal reaction conditions, the linear range for thiamine was from 5 × 10-8 to 5 × 10-5 mol/L. The correlation coefficient for the calibration curve and the limit of detection (LOD) were 0.9972 and 4.8 × 10-8 mol/L, respectively. The other vitamins did not bring about any obvious changes in fluorescence. The developed method based on hybrid nanoflowers is specific, pragmatically simple and sensitive, and has potential for application in thiamine detection.
Collapse
Affiliation(s)
| | | | | | | | | | - Yanfei Qi
- School of Public Health, Jilin University, Changchun 130021, Jilin, China; (H.Z.); (Y.Z.); (C.Z.); (R.S.); (X.Z.)
| |
Collapse
|
8
|
Ravi PV, Thangadurai DT, Nehru K, Lee YI, Nataraj D, Thomas S, Kalarikkal N, Jose J. Surface and morphology analyses, and voltammetry studies for electrochemical determination of cerium(iii) using a graphene nanobud-modified-carbon felt electrode in acidic buffer solution (pH 4.0 ± 0.05). RSC Adv 2020; 10:37409-37418. [PMID: 35521276 PMCID: PMC9057166 DOI: 10.1039/d0ra07555h] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Accepted: 09/25/2020] [Indexed: 12/25/2022] Open
Abstract
Trace determination of radioactive waste, especially Ce3+, by electrochemical methods has rarely been attempted. Ce3+ is (i) a fluorescence quencher, (ii) an antiferromagnet, and (iii) a superconductor, and it has been incorporated into fast scintillators, LED phosphors, and fluorescent lamps. Although Ce3+ has been utilized in many industries due to its specific properties, it causes severe health problems to human beings because of its toxicity. Nanomaterials with fascinating electrical properties can play a vital role in the fabrication of a sensor device to detect the analyte of interest. In the present study, surfactant-free 1,8-diaminonaphthalene (DAN)-functionalized graphene quantum dots (DAN-GQDs) with nanobud (NB) morphology were utilized for the determination of Ce3+ through electrochemical studies. The working electrode, graphene nanobud (GNB)-modified-carbon felt (CF), was developed by a simple drop-coating method for the sensitive detection of Ce3+ in acetate buffer solution (ABS, pH 4.0 ± 0.05) at a scan rate of 50 mV s-1 using cyclic voltammetry (CV) and differential pulse voltammetry (DPV) techniques. CV and DPV studies validated the existence of distinctive peaks at approximately +0.20 and +0.93 V (vs. SCE), respectively, with a limit of detection of approximately 2.60 μM. Furthermore, electrochemical studies revealed that the GNB-modified-CF electrode was (i) stable even after fifteen cycles, (ii) reproducible, (iii) selective towards Ce3+, (iv) strongly pH-dependent, and (v) favored Ce3+ sensing only at pH 4.0 ± 0.05. Impedance spectroscopy results indicated that the GNB-modified-CF electrode was more conductive (1.38 × 10-4 S m-1) and exhibited more rapid electron transfer than bare CF, which agrees with the attained Randles equivalent circuit. Microscopy (AFM, FE-SEM, and HR-TEM), spectroscopy (XPS and Raman), XRD, and energy-dispersive X-ray (EDX) analyses of the GNB-modified-CF electrode confirmed the adsorption of Ce3+ onto the electrode surface and the size of the electrode material. Ce3+ nanobuds increased from 35-40 to 50-55 nm without changing their morphology. The obtained results provide an insight into the determination of Ce3+ to develop an electrochemical device with low sensitivity.
Collapse
Affiliation(s)
- Pavithra V Ravi
- Department of Nanoscience and Technology, Sri Ramakrishana Engineering College, Affiliated to Anna University Coimbatore - 641 022 Tamilnadu India
| | - Daniel T Thangadurai
- Department of Nanoscience and Technology, Sri Ramakrishana Engineering College, Affiliated to Anna University Coimbatore - 641 022 Tamilnadu India
| | - Kasi Nehru
- Department of Chemistry, Anna University - Bharathidasan Institute of Technology Tiruchirappalli - 620 024 Tamilnadu India
| | - Yong Ill Lee
- Department of Chemistry, Changwon National University Changwon 641-773 South Korea
| | - Devaraj Nataraj
- Department of Physics, Bharathiar University Coimbatore - 641 046 Tamilnadu India
| | - Sabu Thomas
- International and Inter-University Centre for Nanoscience and Nontechnology, Mahatma Gandhi University Kottayam - 686 560 Kerala India
| | - Nandakumar Kalarikkal
- International and Inter-University Centre for Nanoscience and Nontechnology, Mahatma Gandhi University Kottayam - 686 560 Kerala India
| | - Jiya Jose
- International and Inter-University Centre for Nanoscience and Nontechnology, Mahatma Gandhi University Kottayam - 686 560 Kerala India
| |
Collapse
|
9
|
Abstract
AbstractConventional inorganic semiconductor quantum dots (QDs) have numerous applications ranging from energy harvesting to optoelectronic and bio-sensing devices primarily due to their unique size and shape tunable band-gap and also surface functionalization capability and consequently, have received significant interest in the last few decades. However, the high market cost of these QDs, on the order of thousands of USD/g and toxicity limit their practical utility in many industrial applications. In this context, graphene quantum dot (GQD), a nanocarbon material and a new entrant in the quantum-confined semiconductors could be a promising alternative to the conventional toxic QDs due to its potential tunability in optical and electronic properties and film processing capability for realizing many of the applications. Variation in optical as well as electronic properties as a function of size, shape, doping and functionalization would be discussed with relevant theoretical backgrounds along with available experimental results and limitations. The review deals with various methods available so far towards the synthesis of GQDs along with special emphasis on characterization techniques starting from spectroscopic, optical and microscopic techniques along with their the working principles, and advantages and limitations. Finally, we will comment on the environmental impact and toxicity limitations of these GQDs and their hybrid nanomaterials to facilitate their future prospects.Graphical Abstract:Structure of doped, functionalized and hybrid GQDs
Collapse
Affiliation(s)
- Sumana Kundu
- ECPS, CSIR-Central Electrochemical Research Institute, Karaikudi, India
| | - Vijayamohanan K. Pillai
- ECPS, CSIR-Central Electrochemical Research Institute, Karaikudi, India
- Indian Institute of Science Education and Research (IISER), Chemistry, Transit campus:Sree Rama Eng. CollegeTirupati, India
| |
Collapse
|
10
|
Chen Y, Chen T, Wu X, Yang G. Oxygen Vacancy-Engineered PEGylated MoO 3-x Nanoparticles with Superior Sulfite Oxidase Mimetic Activity for Vitamin B1 Detection. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2019; 15:e1903153. [PMID: 31583830 DOI: 10.1002/smll.201903153] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 09/17/2019] [Indexed: 06/10/2023]
Abstract
Sulfite oxidase (SuOx ) is a molybdenum-dependent enzyme that catalyzes the oxidation of sulfite to sulfate to maintain the intracellular levels of sulfite at an appropriate low level. The deficiency of SuOx would cause severe neurological damage and infant diseases, which makes SuOx of tremendous biomedical importance. Herein, a SuOx mimic nanozyme of PEGylated (polyethylene glycol)-MoO3-x nanoparticles (P-MoO3-x NPs) with abundant oxygen vacancies created by vacancy-engineering is reported. Their level of SuOx -like activity is 12 times higher than that of bulk-MoO3 . It is also established that the superior increased enzyme mimetic activity is due to the introduction of the oxygen vacancies acting as catalytic hotspots, which allows better sulfite capture ability. It is found that vitamin B1 (VB1) inhibits the SuOx mimic activity of P-MoO3-x NPs through the irreversible cleavage by sulfite and the electrostatic interaction with P-MoO3-x NPs. A colorimetric platform is developed for the detection of VB1 with high sensitivity (the low detection limit is 0.46 µg mL-1 ) and good selectivity. These findings pave the way for further investigating the nanozyme which possess intrinsic SuOx mimicing activity and is thus a promising candidate for biomedical detection.
Collapse
Affiliation(s)
- Yuan Chen
- State Key Laboratory of Optoelectronic Materials and Technologies, Nanotechnology Research Center, School of Materials Science & Engineering, School of Physics, Sun Yat-sen University, Guangzhou, 510275, Guangdong, P. R. China
| | - Tongming Chen
- State Key Laboratory of Optoelectronic Materials and Technologies, Nanotechnology Research Center, School of Materials Science & Engineering, School of Physics, Sun Yat-sen University, Guangzhou, 510275, Guangdong, P. R. China
| | - Xiaoju Wu
- State Key Laboratory of Optoelectronic Materials and Technologies, Nanotechnology Research Center, School of Materials Science & Engineering, School of Physics, Sun Yat-sen University, Guangzhou, 510275, Guangdong, P. R. China
| | - Guowei Yang
- State Key Laboratory of Optoelectronic Materials and Technologies, Nanotechnology Research Center, School of Materials Science & Engineering, School of Physics, Sun Yat-sen University, Guangzhou, 510275, Guangdong, P. R. China
| |
Collapse
|