1
|
Yi J, Leung TL, Digweed J, Bing J, Bailey C, Liao C, Tao R, Wang G, Li Z, Nguyen HT, McCamey DR, Zheng J, Mahmud MA, Ho-Baillie AWY. CO 2 Laser Crystallization in Ambient for Highly Efficient FAPbI 3 Perovskite Solar Cells. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2402215. [PMID: 39045903 DOI: 10.1002/smll.202402215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 07/17/2024] [Indexed: 07/25/2024]
Abstract
Metal halide perovskite solar cells have achieved tremendous progress and have attracted enormous research and development efforts since the first report of demonstration in 2009. Due to fabrication versatility, many heat treatment methods can be utilized to achieve perovskite film crystallization. Herein, 10.6 µm carbon dioxide laser process is successfully developed for the first time for perovskite film crystallization. In addition, this is the first time formamidinium lead triiodide solar cells by laser annealing under ambient are demonstrated. The champion cell produces a power conversion efficiency of 21.8%, the highest for laser-annealed perovskite cells. And this is achieved without any additive, passivation, or post-treatment.
Collapse
Affiliation(s)
- Jianpeng Yi
- School of Physics, The University of Sydney, Sydney, NSW, 2006, Australia
- The University of Sydney Nano Institute (Sydney Nano), The University of Sydney, Sydney, NSW, 2006, Australia
| | - Tik-Lun Leung
- School of Physics, The University of Sydney, Sydney, NSW, 2006, Australia
- The University of Sydney Nano Institute (Sydney Nano), The University of Sydney, Sydney, NSW, 2006, Australia
| | - Justin Digweed
- Research & Prototype Foundry, Core Research Facilities, The University of Sydney, Sydney, NSW, 2006, Australia
| | - Jueming Bing
- School of Physics, The University of Sydney, Sydney, NSW, 2006, Australia
- The University of Sydney Nano Institute (Sydney Nano), The University of Sydney, Sydney, NSW, 2006, Australia
| | - Christopher Bailey
- School of Physics, The University of Sydney, Sydney, NSW, 2006, Australia
- The University of Sydney Nano Institute (Sydney Nano), The University of Sydney, Sydney, NSW, 2006, Australia
| | - Chwenhaw Liao
- School of Physics, The University of Sydney, Sydney, NSW, 2006, Australia
- The University of Sydney Nano Institute (Sydney Nano), The University of Sydney, Sydney, NSW, 2006, Australia
| | - Runmin Tao
- School of Physics, The University of Sydney, Sydney, NSW, 2006, Australia
- The University of Sydney Nano Institute (Sydney Nano), The University of Sydney, Sydney, NSW, 2006, Australia
| | - Guoliang Wang
- School of Physics, The University of Sydney, Sydney, NSW, 2006, Australia
- The University of Sydney Nano Institute (Sydney Nano), The University of Sydney, Sydney, NSW, 2006, Australia
| | - Zhuofeng Li
- School of Engineering, The Australian National University, ACT, 2601, Australia
| | - Hieu T Nguyen
- School of Engineering, The Australian National University, ACT, 2601, Australia
| | - Dane R McCamey
- ARC Centre of Excellence in Exciton Science, School of Physics, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Jianghui Zheng
- School of Physics, The University of Sydney, Sydney, NSW, 2006, Australia
- The University of Sydney Nano Institute (Sydney Nano), The University of Sydney, Sydney, NSW, 2006, Australia
| | - Md Arafat Mahmud
- School of Physics, The University of Sydney, Sydney, NSW, 2006, Australia
- The University of Sydney Nano Institute (Sydney Nano), The University of Sydney, Sydney, NSW, 2006, Australia
| | - Anita W Y Ho-Baillie
- School of Physics, The University of Sydney, Sydney, NSW, 2006, Australia
- The University of Sydney Nano Institute (Sydney Nano), The University of Sydney, Sydney, NSW, 2006, Australia
- Australian Centre for Advanced Photovoltaics (ACAP), School of Photovoltaic and Renewable Energy Engineering, University of New South Wales, Sydney, 2052, Australia
| |
Collapse
|
2
|
Li M, Zhu Z, Wang Z, Pan W, Cao X, Wu G, Chen R. High-Quality Hybrid Perovskite Thin Films by Post-Treatment Technologies in Photovoltaic Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2309428. [PMID: 37983565 DOI: 10.1002/adma.202309428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 11/02/2023] [Indexed: 11/22/2023]
Abstract
Incredible progress in photovoltaic devices based on hybrid perovskite materials has been made in the past few decades, and a record-certified power conversion efficiency (PCE) of over 26% has been achieved in single-junction perovskite solar cells (PSCs). In the fabrication of high-efficiency PSCs, the postprocessing procedures toward perovskites are essential for designing high-quality perovskite thin films; developing efficient and reliable post-treatment techniques is very important to promote the progress of PSCs. Here, recent post-treatment technological reforms toward perovskite thin films are summarized, and the principal functions of the post-treatment strategies on the design of high-quality perovskite films have been thoroughly analyzed by dividing into two categories in this review: thermal annealing (TA)-related technique and TA-free technique. The latest research progress of the above two types of post-treatment techniques is summarized and discussed, focusing on the optimization of postprocessing conditions, the regulation of perovskite qualities, and the enhancement of device performance. Finally, an outlook of the prospect trends and future challenges for the fabrication of the perovskite layer and the production of highly efficient PSCs is given.
Collapse
Affiliation(s)
- Mingguang Li
- State Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing, 210023, P. R. China
- Hunan Provincial Key Laboratory of Advanced Materials for New Energy Storage and Conversion, Hunan University of Science and Technology, Xiangtan, 411201, P. R. China
| | - Zheng Zhu
- State Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing, 210023, P. R. China
| | - Zhizhi Wang
- State Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing, 210023, P. R. China
| | - Wenjing Pan
- State Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing, 210023, P. R. China
| | - Xinxiu Cao
- Hunan Provincial Key Laboratory of Advanced Materials for New Energy Storage and Conversion, Hunan University of Science and Technology, Xiangtan, 411201, P. R. China
| | - Guangbao Wu
- State Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing, 210023, P. R. China
| | - Runfeng Chen
- State Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing, 210023, P. R. China
- School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou, 310018, P. R. China
| |
Collapse
|
4
|
Ahmadian-Yazdi MR, Barratt C, Rahimzadeh A, Eslamian M. Microstructural and Nanostructural Evolution of Light Harvester Perovskite Thin Film under the Influence of Ultrasonic Vibrations. ACS OMEGA 2020; 5:808-821. [PMID: 31956832 PMCID: PMC6964523 DOI: 10.1021/acsomega.9b03566] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Accepted: 12/16/2019] [Indexed: 06/10/2023]
Abstract
A key step of inexpensive and scalable perovskite thin-film formation is defect-free fabrication through low-cost and facile post-treatment processes. Methods using high annealing temperatures are not favorable for the scale-up of solution-processed thin-film solar cells, particularly on plastic/flexible substrates. This contribution analyzes the effect of ultrasonic vibrations, a recently developed low-cost post-treatment process, on thin-film quality. Ultrasonic vibrations were applied to as-spun CH3NH3PbI3 perovskite thin films prepared with various solvents and antisolvents deposited on substrates with compact and mesoporous textures. Then, mechanisms of solvent evaporation, nucleation, and crystallization of perovskite grains were characterized during ultrasonic vibration. These studies demonstrate that ultrasonic vibration at low temperature facilitates heterogeneous crystallization of perovskite grains with a higher conversion of nuclei into crystal, compared with the conventional annealing process. Topographic scanning electron microscopy images confirm the dense and fully covered thin films after the evaporation of solvent. Furthermore, it is shown that crystal orientation does not change with the choice of solvent, eliminating the effect of solvent on the deposition of thin-film perovskites with this method. Therefore, this ultrasonic vibration post-treatment method is applicable to any solution-processed material and deposition technique, and it can be used to fabricate a range of thin-film devices and printed electronics.
Collapse
Affiliation(s)
| | - Claire Barratt
- University
of Michigan-Shanghai Jiao Tong University, Shanghai 200240, China
- Case
Western Reserve University, Cleveland, Ohio 44106, United States
| | - Amin Rahimzadeh
- University
of Michigan-Shanghai Jiao Tong University, Shanghai 200240, China
- MOE
Key Laboratory for Power Machinery and Engineering, School of Mechanical
Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Morteza Eslamian
- University
of Michigan-Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
5
|
Li XM, Wang KL, Jiang YR, Yang YG, Gao XY, Ma H. Furrowed hole-transport layer using argon plasma in an inverted perovskite solar cell. NEW J CHEM 2019. [DOI: 10.1039/c9nj02763g] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In this study, a novel process was found to be effective using the argon-plasma treatment, in which the ion cluster was used to scour the PEDOT:PSS surface instead of the traditional bombardment method. The photoelectric conversion efficiency of the device reaches 14.8%.
Collapse
Affiliation(s)
- Xiao-Mei Li
- Henan Province Key Laboratory of Photovoltaic Materials
- College of Physics & Materials Science
- Henan Normal University
- Xinxiang 453007
- China
| | - Kai-li Wang
- Henan Province Key Laboratory of Photovoltaic Materials
- College of Physics & Materials Science
- Henan Normal University
- Xinxiang 453007
- China
| | - Yu-Rong Jiang
- Henan Province Key Laboratory of Photovoltaic Materials
- College of Physics & Materials Science
- Henan Normal University
- Xinxiang 453007
- China
| | - Ying-Guo Yang
- Shanghai Synchrotron Radiation Facility (SSRF)
- Shanghai Advanced Research Institute
- Chinese Academy of Sciences
- Shanghai 201204
- China
| | - Xing-Yu Gao
- Shanghai Synchrotron Radiation Facility (SSRF)
- Shanghai Advanced Research Institute
- Chinese Academy of Sciences
- Shanghai 201204
- China
| | - Heng Ma
- Henan Province Key Laboratory of Photovoltaic Materials
- College of Physics & Materials Science
- Henan Normal University
- Xinxiang 453007
- China
| |
Collapse
|