1
|
Bagheri B, Surwase SS, Lee SS, Park H, Faraji Rad Z, Trevaskis NL, Kim YC. Carbon-based nanostructures for cancer therapy and drug delivery applications. J Mater Chem B 2022; 10:9944-9967. [PMID: 36415922 DOI: 10.1039/d2tb01741e] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Synthesis, design, characterization, and application of carbon-based nanostructures (CBNSs) as drug carriers have attracted a great deal of interest over the past half of the century because of their promising chemical, thermal, physical, optical, mechanical, and electrical properties and their structural diversity. CBNSs are well-known in drug delivery applications due to their unique features such as easy cellular uptake, high drug loading ability, and thermal ablation. CBNSs, including carbon nanotubes, fullerenes, nanodiamond, graphene, and carbon quantum dots have been quite broadly examined for drug delivery systems. This review not only summarizes the most recent studies on developing carbon-based nanostructures for drug delivery (e.g. delivery carrier, cancer therapy and bioimaging), but also tries to deal with the challenges and opportunities resulting from the expansion in use of these materials in the realm of drug delivery. This class of nanomaterials requires advanced techniques for synthesis and surface modifications, yet a lot of critical questions such as their toxicity, biodistribution, pharmacokinetics, and fate of CBNSs in biological systems must be answered.
Collapse
Affiliation(s)
- Babak Bagheri
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea. .,School of Engineering, University of Southern Queensland, Springfield Central, QLD, 4300, Australia
| | - Sachin S Surwase
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea.
| | - Su Sam Lee
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea.
| | - Heewon Park
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea.
| | - Zahra Faraji Rad
- School of Engineering, University of Southern Queensland, Springfield Central, QLD, 4300, Australia
| | - Natalie L Trevaskis
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, 399 Royal Parade, Parkville, VIC, 3052, Australia
| | - Yeu-Chun Kim
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea.
| |
Collapse
|
2
|
Ai T, Feng W, Ren Z, Li F, Wang P, Zou G, Ji J. Simultaneous enhancement of mechanical performance and thermal conductivity for polyamide 10T by nanodiamond compositing. J Appl Polym Sci 2021. [DOI: 10.1002/app.52098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Tianhao Ai
- National Engineering Research Center of Engineering Plastics and Ecological Plastics Technical Institute of Physics and Chemistry, Chinese Academy of Sciences Beijing China
- College of Materials Sciences and Opto‐Electronic Technology University of Chinese Academy of Sciences Beijing China
| | - Wutong Feng
- National Engineering Research Center of Engineering Plastics and Ecological Plastics Technical Institute of Physics and Chemistry, Chinese Academy of Sciences Beijing China
- College of Materials Sciences and Opto‐Electronic Technology University of Chinese Academy of Sciences Beijing China
| | - Zhonglai Ren
- National Engineering Research Center of Engineering Plastics and Ecological Plastics Technical Institute of Physics and Chemistry, Chinese Academy of Sciences Beijing China
| | - Fei Li
- National Engineering Research Center of Engineering Plastics and Ecological Plastics Technical Institute of Physics and Chemistry, Chinese Academy of Sciences Beijing China
| | - Pingli Wang
- National Engineering Research Center of Engineering Plastics and Ecological Plastics Technical Institute of Physics and Chemistry, Chinese Academy of Sciences Beijing China
| | - Guangji Zou
- National Engineering Research Center of Engineering Plastics and Ecological Plastics Technical Institute of Physics and Chemistry, Chinese Academy of Sciences Beijing China
| | - Junhui Ji
- National Engineering Research Center of Engineering Plastics and Ecological Plastics Technical Institute of Physics and Chemistry, Chinese Academy of Sciences Beijing China
| |
Collapse
|
3
|
Nishikawa M, Kang HG, Zou Y, Takeuchi H, Matsuno N, Suzuki M, Komatsu N. Conjugation of Phenylboronic Acid Moiety through Multistep Organic Transformations on Nanodiamond Surface for an Anticancer Nanodrug for Boron Neutron Capture Therapy. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2021. [DOI: 10.1246/bcsj.20210200] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Masahiro Nishikawa
- Graduate School of Human and Environmental Studies, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
- Business Development Center, Daicel Corporation, 1239 Shinzaike, Aboshi-ku, Himeji, Hyogo 671-1283, Japan
| | - Heon Gyu Kang
- Graduate School of Human and Environmental Studies, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
| | - Yajuan Zou
- Graduate School of Human and Environmental Studies, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
| | - Hidekazu Takeuchi
- Business Development Center, Daicel Corporation, 1239 Shinzaike, Aboshi-ku, Himeji, Hyogo 671-1283, Japan
| | - Naoyoshi Matsuno
- Business Development Center, Daicel Corporation, 1239 Shinzaike, Aboshi-ku, Himeji, Hyogo 671-1283, Japan
| | - Minoru Suzuki
- Institute for Integrated Radiation and Nuclear Science, Kyoto University, 2-1010 Asashiro-nishi, Kumatori-cho, Sennan-gun, Osaka 590-0494, Japan
| | - Naoki Komatsu
- Graduate School of Human and Environmental Studies, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
| |
Collapse
|
4
|
Cui X, Liang Z, Lu J, Wang X, Jia F, Hu Q, Xiao X, Deng X, Wu Y, Sheng W. A multifunctional nanodiamond-based nanoplatform for the enhanced mild-temperature photothermal/chemo combination therapy of triple negative breast cancer via an autophagy regulation strategy. NANOSCALE 2021; 13:13375-13389. [PMID: 34477743 DOI: 10.1039/d1nr03161a] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Owing to its aggressive biological behavior, the lack of specific targets, and the strong therapeutic resistance of triple negative breast cancer (TNBC), current therapeutic strategies are still limited. The combination of multiple treatments has been confirmed as a promising strategy for TNBC therapy. However, the efficacy of combination therapy can be restricted due to increasing therapeutic resistance to various treatments. Herein, we constructed a nanodiamond (ND)-based nanoplatform for augmented mild-temperature photothermal/chemo combination therapy against TNBC, weakening the therapeutic resistance via autophagy inhibition enabled by the NDs. A layer-by-layer self-assembly approach was utilized to construct the ND-based nanoplatform. First, the NDs were modified with protamine sulphate (PS). Meanwhile, the photosensitizer indocyanine green (ICG) and the HSP70 small molecule inhibitor apoptozole (APZ) could be synchronously incorporated to form positively charged PS@ND (ICG + APZ). Then negatively charged hyaluronic acid (HA) was assembled onto the outer face of PS@ND (ICG + APZ) to form the NPIAs. Finally, the positively charged small molecule anti-cancer drug doxorubicin (DOX) could be adsorbed onto the surface of the NPIAs through electrostatic interactions (NPIADs). The resulting NPIADs could be triggered by NIR laser irradiation to exhibit enhanced mild-temperature photothermal therapy (PTT) effects via suppressing the expression of HSP70, and PTT combined with chemotherapy could further enhance the anti-tumor efficacy. Subsequently, the sensitivity of MDA-MB-231 cells could be significantly improved through the weakening of the thermal/drug resistance via autophagy inhibition, leading to augmented combination therapy that is efficient both in vitro and in vivo. Furthermore, the NPIADs could be used as a theranostic nanoplatform for fluorescence (FL) and photoacoustic (PA) imaging. Taken together, this study demonstrated a multifunctional ND-based nanoplatform for FL/PA imaging-guided augmented mild-temperature photothermal/chemo combination therapy via an autophagy regulation strategy against TNBC.
Collapse
Affiliation(s)
- Xinyue Cui
- The Faculty of Environment and Life, Beijing University of Technology, No. 100 Pingleyuan, Chaoyang District, Beijing 100124, P.R. China.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
5
|
Khamari L, Pramanik U, Shekhar S, Mohanakumar S, Mukherjee S. Thermal Reversibility and Structural Stability in Lysozyme Induced by Epirubicin Hydrochloride. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:3456-3466. [PMID: 33703900 DOI: 10.1021/acs.langmuir.1c00179] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Herein we report the binding interactions between lysozyme (Lyz) and an anthracycline drug, epirubicin hydrochloride (EPR), through an extensive spectroscopic approach at both ensemble average and single molecular resolution. Our steady-state and time-resolved fluorescence spectroscopy reveals that the drug-induced fluorescence quenching of the protein proceeds through a static quenching mechanism. Isothermal titration calorimetry (ITC) and steady-state experiments reveal almost similar thermodynamic signatures of the drug-protein interactions. The underlying force that plays pivotal roles in the said interaction is hydrophobic in nature, which is enhanced in the presence of a strong electrolyte (NaCl). Circular dichroism (CD) spectra indicate that there is a marginal increase in the secondary structure of the native protein (α-helical content increases from 26.9 to 31.4% in the presence of 100 μM EPR) upon binding with the drug. Fluorescence correlation spectroscopy (FCS) was used to monitor the changes in structure and conformational dynamics of Lyz upon interaction with EPR. The individual association (Kass = 0.33 × 106 ms-1 M-1) and dissociation (Kdiss = 1.79 ms-1) rate constants and the binding constant (Kb = 1.84 × 105 M-1) values, obtained from fluctuations of fluorescence intensity of the EPR-bound protein, have also been estimated. AutoDock results demonstrate that the drug molecule is encapsulated within the hydrophobic pocket of the protein (in close proximity to both Trp62 and Trp108) and resides ∼20 Å apart from the covalently labelled CPM dye. Förster resonance energy transfer (FRET) studies proved that the distance between the donor (CPM) and the acceptor (EPR) is ∼22 Å, which is very similar to that obtained from molecular docking analysis (∼20 Å). The system also shows temperature-dependent reversible FRET, which may be used as a thermal sensor for the temperature-sensitive biological systems.
Collapse
Affiliation(s)
- Laxmikanta Khamari
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal Bypass Road, Bhauri, Bhopal 426 066, Madhya Pradesh, India
| | - Ushasi Pramanik
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal Bypass Road, Bhauri, Bhopal 426 066, Madhya Pradesh, India
| | - Shashi Shekhar
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal Bypass Road, Bhauri, Bhopal 426 066, Madhya Pradesh, India
| | - Shilpa Mohanakumar
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal Bypass Road, Bhauri, Bhopal 426 066, Madhya Pradesh, India
| | - Saptarshi Mukherjee
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal Bypass Road, Bhauri, Bhopal 426 066, Madhya Pradesh, India
| |
Collapse
|
6
|
Li S, Guo X, Sun M, Qu A, Hao C, Wu X, Guo J, Xu C, Kuang H, Xu L. Self-limiting self-assembly of supraparticles for potential biological applications. NANOSCALE 2021; 13:2302-2311. [PMID: 33498081 DOI: 10.1039/d0nr08001b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Nanotechnology has largely spurred the development of biological systems by taking advantage of the unique chemical, physical, optical, magnetic, and electrical properties of nanostructures. Self-limiting self-assembly of supraparticles produce new nanostructures and display great potential to create biomimicking nanostructures with desired functionalities. In this minireview, we summarize the recent developments and outstanding achievements of colloidal supraparticles, such as the driving forces for self-limiting self-assembly of supraparticles and properties of constructed supraparticles. Their application values in biological systems have also been illustrated.
Collapse
Affiliation(s)
- Si Li
- International Joint Research Laboratory for Biointerface and Biodetection, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China and State Key Laboratory of Food Science and Technology, Jiangnan University, Jiangsu, People's Republic of China.
| | - Xiao Guo
- International Joint Research Laboratory for Biointerface and Biodetection, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China and State Key Laboratory of Food Science and Technology, Jiangnan University, Jiangsu, People's Republic of China.
| | - Maozhong Sun
- International Joint Research Laboratory for Biointerface and Biodetection, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China and State Key Laboratory of Food Science and Technology, Jiangnan University, Jiangsu, People's Republic of China.
| | - Aihua Qu
- International Joint Research Laboratory for Biointerface and Biodetection, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China and State Key Laboratory of Food Science and Technology, Jiangnan University, Jiangsu, People's Republic of China.
| | - Changlong Hao
- International Joint Research Laboratory for Biointerface and Biodetection, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China and State Key Laboratory of Food Science and Technology, Jiangnan University, Jiangsu, People's Republic of China.
| | - Xiaoling Wu
- International Joint Research Laboratory for Biointerface and Biodetection, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China and State Key Laboratory of Food Science and Technology, Jiangnan University, Jiangsu, People's Republic of China.
| | - Jun Guo
- Analysis and Testing Center, Soochow University, Suzhou, 215123, People's Republic of China
| | - Chuanlai Xu
- International Joint Research Laboratory for Biointerface and Biodetection, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China and State Key Laboratory of Food Science and Technology, Jiangnan University, Jiangsu, People's Republic of China.
| | - Hua Kuang
- International Joint Research Laboratory for Biointerface and Biodetection, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China and State Key Laboratory of Food Science and Technology, Jiangnan University, Jiangsu, People's Republic of China.
| | - Liguang Xu
- International Joint Research Laboratory for Biointerface and Biodetection, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China and State Key Laboratory of Food Science and Technology, Jiangnan University, Jiangsu, People's Republic of China.
| |
Collapse
|
7
|
Uthappa U, Arvind O, Sriram G, Losic D, Ho-Young-Jung, Kigga M, Kurkuri MD. Nanodiamonds and their surface modification strategies for drug delivery applications. J Drug Deliv Sci Technol 2020. [DOI: 10.1016/j.jddst.2020.101993] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
8
|
Yakovlev RY, Mingalev PG, Leonidov NB, Lisichkin GV. Detonation Nanodiamonds as Promising Drug Carriers. Pharm Chem J 2020. [DOI: 10.1007/s11094-020-02210-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
9
|
Aubert S, Bezagu M, Spivey AC, Arseniyadis S. Spatial and temporal control of chemical processes. Nat Rev Chem 2019. [DOI: 10.1038/s41570-019-0139-6] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
10
|
Yu Y, Yang X, Liu M, Nishikawa M, Tei T, Miyako E. Anticancer drug delivery to cancer cells using alkyl amine-functionalized nanodiamond supraparticles. NANOSCALE ADVANCES 2019; 1:3406-3412. [PMID: 36133565 PMCID: PMC9417144 DOI: 10.1039/c9na00453j] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Accepted: 08/13/2019] [Indexed: 06/16/2023]
Abstract
Nanocarriers have attracted increasing interest due to their potential applications in anticancer drug delivery. In particular, the ability of nanodiamonds (NDs) to spontaneously self-assemble into unique nano-structured architectures has been exploited in the development of nanocarriers. In this context, we synthesized functional supraparticles (SPs) by the self-assembly of alkyl amine-modified NDs for use in anticancer chemotherapy. The structural, physical, and physiological properties of these ND-SPs as well as their high biocompatibility were assessed using microscopic techniques and various characterization experiments. Finally, a model anticancer drug (CPT; camptothecin) was loaded into the ND-SPs to investigate their anticancer efficacy in vitro and in vivo. After incubation of CPT-loaded ND-SPs with cancer cells, a dramatic anticancer effect of ND-SPs was expressed, compared to CPT-loaded ordinary nanocarriers of polyethylene glycol-modified polymer micelles and conventional Intralipid® 20% emulsions containing CPT. Our results demonstrated that ND-SPs may serve as a nanomedicine with significant therapeutic potential.
Collapse
Affiliation(s)
- Yue Yu
- Department of Materials and Chemistry, Nanomaterials Research Institute (NMRI), National Institute of Advanced Industrial Science and Technology (AIST) Central 5, 1-1-1 Higashi Tsukuba Ibaraki 305-8565 Japan
| | - Xi Yang
- Department of Materials and Chemistry, Nanomaterials Research Institute (NMRI), National Institute of Advanced Industrial Science and Technology (AIST) Central 5, 1-1-1 Higashi Tsukuba Ibaraki 305-8565 Japan
| | - Ming Liu
- Corporate Research Center, R&D Headquarters, Daicel Corporation 1239, Shinzaike, Aboshi-ku Himeji Hyogo 671-1283 Japan
| | - Masahiro Nishikawa
- Corporate Research Center, R&D Headquarters, Daicel Corporation 1239, Shinzaike, Aboshi-ku Himeji Hyogo 671-1283 Japan
| | - Takahiro Tei
- Advanced Materials Planning, R&D Headquarters, Daicel Corporation 2-19-1 Konan, Minato-ku Tokyo 108-8230 Japan
| | - Eijiro Miyako
- Department of Materials and Chemistry, Nanomaterials Research Institute (NMRI), National Institute of Advanced Industrial Science and Technology (AIST) Central 5, 1-1-1 Higashi Tsukuba Ibaraki 305-8565 Japan
| |
Collapse
|
11
|
Yu Y, Yang X, Liu M, Nishikawa M, Tei T, Miyako E. Multifunctional Cancer Phototherapy Using Fluorophore-Functionalized Nanodiamond Supraparticles. ACS APPLIED BIO MATERIALS 2019; 2:3693-3705. [DOI: 10.1021/acsabm.9b00603] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Yue Yu
- Department of Materials and Chemistry, Nanomaterials Research Institute (NMRI), National Institute of Advanced Industrial Science and Technology (AIST), Central 5, 1-1-1, Higashi, Tsukuba, Ibaraki 305-8565, Japan
| | - Xi Yang
- Department of Materials and Chemistry, Nanomaterials Research Institute (NMRI), National Institute of Advanced Industrial Science and Technology (AIST), Central 5, 1-1-1, Higashi, Tsukuba, Ibaraki 305-8565, Japan
| | - Ming Liu
- Corporate Research Center, R&D Headquarters, Daicel Corporation, 1239, Shinzaike, Aboshi-ku, Himeji, Hyogo 671-1283, Japan
| | - Masahiro Nishikawa
- Corporate Research Center, R&D Headquarters, Daicel Corporation, 1239, Shinzaike, Aboshi-ku, Himeji, Hyogo 671-1283, Japan
| | - Takahiro Tei
- Advanced Materials Planning, R&D Headquarters, Daicel Corporation, 2-19-1 Konan, Minato-ku, Tokyo 108-8230, Japan
| | - Eijiro Miyako
- Department of Materials and Chemistry, Nanomaterials Research Institute (NMRI), National Institute of Advanced Industrial Science and Technology (AIST), Central 5, 1-1-1, Higashi, Tsukuba, Ibaraki 305-8565, Japan
| |
Collapse
|
12
|
Yu Y, Wang J, Kaul SC, Wadhwa R, Miyako E. Folic Acid Receptor-Mediated Targeting Enhances the Cytotoxicity, Efficacy, and Selectivity of Withania somnifera Leaf Extract: In vitro and in vivo Evidence. Front Oncol 2019; 9:602. [PMID: 31334122 PMCID: PMC6621239 DOI: 10.3389/fonc.2019.00602] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Accepted: 06/18/2019] [Indexed: 11/17/2022] Open
Abstract
Nanomedicine holds great potential for drug delivery to achieve more effective and safer cancer treatment. Earlier, we reported that the alcoholic extract of Withania somnifera leaves (i-Extract) has selective cancer cell killing activity. Herein, we developed a folate receptor-targeting i-Extract nanocomplex (FRi-ExNC) that suspends well in water and possesses enhanced selective anticancer activity in both in vitro and in vivo assays. Comparative analyses of folate receptor (FR)-positive and -negative cells revealed that FRi-ExNC caused a stronger decrease in Cyclin D/Cdk4 and anti-apoptotic protein Bcl-2, as well as a higher increase in the growth arrest regulating protein p21WAF1 and pro-apoptotic protein PARP-1, in FR-enriched cancer cells. Our results demonstrate that FRi-ExNC could be a natural source-based nanomedicine for targeted cancer therapy.
Collapse
Affiliation(s)
- Yue Yu
- Department of Materials and Chemistry, Nanomaterials Research Institute, National Institute of Advanced Industrial Science and Technology, Tsukuba, Japan
| | - Jia Wang
- DAILAB, DBT-AIST International Center for Translational and Environmental Research (DAICENTER), AIST, Tsukuba, Japan.,Graduate School of Life and Environmental Sciences, University of Tsukuba, Ibaraki, Japan
| | - Sunil C Kaul
- DAILAB, DBT-AIST International Center for Translational and Environmental Research (DAICENTER), AIST, Tsukuba, Japan
| | - Renu Wadhwa
- DAILAB, DBT-AIST International Center for Translational and Environmental Research (DAICENTER), AIST, Tsukuba, Japan
| | - Eijiro Miyako
- Department of Materials and Chemistry, Nanomaterials Research Institute, National Institute of Advanced Industrial Science and Technology, Tsukuba, Japan
| |
Collapse
|
13
|
Yu Y, Yang X, Liu M, Nishikawa M, Tei T, Miyako E. Amphipathic Nanodiamond Supraparticles for Anticancer Drug Loading and Delivery. ACS APPLIED MATERIALS & INTERFACES 2019; 11:18978-18987. [PMID: 31090388 DOI: 10.1021/acsami.9b04792] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Nanodiamonds (NDs) have been attracting considerable attention due to their outstanding chemical, physical, and physiological properties. Additional functionalization of NDs can be carried out by the self-assembly technique. This study reports a straightforward chemical route for self-assembled supraparticles (SPs) based on ND (ND-SPs) using alkyl carboxylic acids with different aliphatic alkyl chain lengths by carbodiimide chemistry and sonication. Poly(ethylene glycol) (PEG)-modified ND-SPs are synthesized successfully for effective nanodrug formulations with the hydrophobic anticancer drug paclitaxel (PTX). The properties of these ND-SP nanomedicines are investigated thoroughly by complementary analytical, spectroscopic, and microscopic techniques. This simple methodology permitted the application of PEG-modified ND-SP-encapsulating PTX as a potent drug carrier, achieving greater efficacy than commercial Abraxane. Results revealed that the morphology, particle size, and water dispersibility of the prepared ND-SP nanoclusters affect the drug efficacy. These PEG-modified ND-SP nanoclusters serve as novel nanomedicine for a passive drug delivery system as well as anticancer chemotherapy.
Collapse
Affiliation(s)
- Yue Yu
- Department of Materials and Chemistry, Nanomaterials Research Institute (NMRI) , National Institute of Advanced Industrial Science and Technology (AIST) , Central 5, 1-1-1 Higashi , Tsukuba , Ibaraki 305-8565 , Japan
| | - Xi Yang
- Department of Materials and Chemistry, Nanomaterials Research Institute (NMRI) , National Institute of Advanced Industrial Science and Technology (AIST) , Central 5, 1-1-1 Higashi , Tsukuba , Ibaraki 305-8565 , Japan
| | - Ming Liu
- Corporate Research Center, R&D Headquarters, Daicel Corporation , 1239, Shinzaike , Aboshi-ku, Himeji , Hyogo 671-1283 , Japan
| | - Masahiro Nishikawa
- Corporate Research Center, R&D Headquarters, Daicel Corporation , 1239, Shinzaike , Aboshi-ku, Himeji , Hyogo 671-1283 , Japan
| | - Takahiro Tei
- Advanced Materials Planning, R&D Headquarters, Daicel Corporation , 2-19-1 Konan , Minato-ku , Tokyo 108-8230 , Japan
| | - Eijiro Miyako
- Department of Materials and Chemistry, Nanomaterials Research Institute (NMRI) , National Institute of Advanced Industrial Science and Technology (AIST) , Central 5, 1-1-1 Higashi , Tsukuba , Ibaraki 305-8565 , Japan
| |
Collapse
|
14
|
Grodzik M, Szczepaniak J, Strojny-Cieslak B, Hotowy A, Wierzbicki M, Jaworski S, Kutwin M, Soltan E, Mandat T, Lewicka A, Chwalibog A. Diamond Nanoparticles Downregulate Expression of CycD and CycE in Glioma Cells. Molecules 2019; 24:molecules24081549. [PMID: 31010146 PMCID: PMC6515518 DOI: 10.3390/molecules24081549] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Revised: 04/15/2019] [Accepted: 04/17/2019] [Indexed: 01/06/2023] Open
Abstract
Our previous studies have shown that diamond nanoparticles (NDs) exhibited antiangiogenic and proapoptotic properties in vitro in glioblastoma multiforme (GBM) cells and in tumors in vivo. Moreover, NDs inhibited adhesion, leading to the suppression of migration and invasion of GBM. In the present study, we hypothesized that the NDs might also inhibit proliferation and cell cycle in glioma cells. Experiments were performed in vitro with the U87 and U118 lines of GBM cells, and for comparison, the Hs5 line of stromal cells (normal cells) after 24 h and 72 h of treatment. The analyses included cell morphology, cell death, viability, and cell cycle analysis, double timing assay, and gene expression (Rb, E2F1, CycA, CycB, CycD, CycE, PTEN, Ki-67). After 72 h of ND treatment, the expression level of Rb, CycD, and CycE in the U118 cells, and E2F1, CycD, and CycE in the U87 cells were significantly lower in comparison to those in the control group. We observed that decreased expression of cyclins inhibited the G1/S phase transition, arresting the cell cycle in the G0/G1 phase in glioma cells. The NDs did not affect the cell cycle as well as PTEN and Ki-67 expression in normal cells (Hs5), although it can be assumed that the NDs reduced proliferation and altered the cell cycle in fast dividing cells.
Collapse
Affiliation(s)
- Marta Grodzik
- Division of Nanobiotechnology, Faculty of Animal Sciences, Warsaw University of Life Sciences, Ciszewskiego 8, 02-786 Warsaw, Poland.
| | - Jaroslaw Szczepaniak
- Division of Nanobiotechnology, Faculty of Animal Sciences, Warsaw University of Life Sciences, Ciszewskiego 8, 02-786 Warsaw, Poland.
| | - Barbara Strojny-Cieslak
- Division of Nanobiotechnology, Faculty of Animal Sciences, Warsaw University of Life Sciences, Ciszewskiego 8, 02-786 Warsaw, Poland.
| | - Anna Hotowy
- Division of Nanobiotechnology, Faculty of Animal Sciences, Warsaw University of Life Sciences, Ciszewskiego 8, 02-786 Warsaw, Poland.
| | - Mateusz Wierzbicki
- Division of Nanobiotechnology, Faculty of Animal Sciences, Warsaw University of Life Sciences, Ciszewskiego 8, 02-786 Warsaw, Poland.
| | - Slawomir Jaworski
- Division of Nanobiotechnology, Faculty of Animal Sciences, Warsaw University of Life Sciences, Ciszewskiego 8, 02-786 Warsaw, Poland.
| | - Marta Kutwin
- Division of Nanobiotechnology, Faculty of Animal Sciences, Warsaw University of Life Sciences, Ciszewskiego 8, 02-786 Warsaw, Poland.
| | - Emilia Soltan
- Department of Neurosurgery, Oncology Center- Maria Sklodowska Curie Memorial, Warsaw, Roentgena 5, 02-781 Warsaw, Poland.
| | - Tomasz Mandat
- Department of Neurosurgery, Oncology Center- Maria Sklodowska Curie Memorial, Warsaw, Roentgena 5, 02-781 Warsaw, Poland.
| | - Aneta Lewicka
- Laboratory of Epidemiology, Military Institute of Hygiene and Epidemiology, Kozielska 4, 01-163 Warsaw, Poland.
| | - Andre Chwalibog
- Department of Veterinary and Animal Sciences, University of Copenhagen, Groennegaardsvej 3, 1870 Frederiksberg, Denmark.
| |
Collapse
|
15
|
Targeting EGFR of triple-negative breast cancer enhances the therapeutic efficacy of paclitaxel- and cetuximab-conjugated nanodiamond nanocomposite. Acta Biomater 2019; 86:395-405. [PMID: 30660004 DOI: 10.1016/j.actbio.2019.01.025] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Revised: 01/15/2019] [Accepted: 01/15/2019] [Indexed: 12/17/2022]
Abstract
Breast cancer is the most common malignancy and a leading cause of cancer-related mortality among women worldwide. Triple-negative breast cancer (TNBC) is characterized by the lack of estrogen receptor (ER), progesterone receptor (PR) and human epidermal growth factor receptor-2 (HER2). However, epidermal growth factor receptor (EGFR) is highly expressed in most of the TNBCs, which may provide a potential target for EGFR targeting therapy. Nanodiamond (ND) is a carbon-based nanomaterial with several advantages, including fluorescence emission, biocompatibility, and drug delivery applications. In this study, we designed a nanocomposite by using ND conjugated with paclitaxel (PTX) and cetuximab (Cet) for targeting therapy on the EGFR-positive TNBC cells. ND-PTX inhibited cell viability and induced mitotic catastrophe in various human breast cancer cell lines (MDA-MB-231, MCF-7, and BT474); in contrast, ND alone did not induce cell death. ND-PTX inhibited the xenografted human breast tumors in nude mice. We further investigated ND-PTX-Cet drug efficacy on the TNBC of MDA-MB-231 breast cancer cells. ND-PTX-Cet could specifically bind to EGFR and enhanced the anticancer effects including drug uptake levels, mitotic catastrophe, and apoptosis in the EGFR-expressed MDA-MB-231 cells but not in the EGFR-negative MCF-7 cells. In addition, ND-PTX-Cet increased the protein levels of active caspase-3 and phospho-histone H3 (Ser10). Furthermore, ND-PTX-Cet showed more effective on the reduction of TNBC tumor volume by comparison with ND-PTX. Taken together, these results demonstrated that ND-PTX-Cet nanocomposite enhanced mitotic catastrophe and apoptosis by targeting EGFR of TNBC cells, which can provide a feasible strategy for TNBC therapy. STATEMENT OF SIGNIFICANCE: Current TNBC treatment is ineffective against the survival rate of TNBC patients. Therefore, the development of new treatment strategies for TNBC patients is urgently needed. Here, we have designed a nanocomposite by targeting on the EGFR of TNBC to enhance therapeutic efficacy by ND-conjugated PTX and Cet (ND-PTX-Cet). Interestingly, we found that the co-delivery of Cet and PTX by ND enhanced the apoptosis, mitotic catastrophe and tumor inhibition in the EGFR-expressed TNBC in vitro and in vivo. Consequently, this nanocomposite ND-PTX-Cet can be applied for targeting EGFR of human TNBC therapy.
Collapse
|
16
|
Saraf J, Kalia K, Bhattacharya P, Tekade RK. Growing synergy of nanodiamonds in neurodegenerative interventions. Drug Discov Today 2019; 24:584-594. [DOI: 10.1016/j.drudis.2018.10.012] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Revised: 09/30/2018] [Accepted: 10/22/2018] [Indexed: 12/24/2022]
|
17
|
Bazaka K, Baranov O, Cvelbar U, Podgornik B, Wang Y, Huang S, Xu L, Lim JWM, Levchenko I, Xu S. Oxygen plasmas: a sharp chisel and handy trowel for nanofabrication. NANOSCALE 2018; 10:17494-17511. [PMID: 30226508 DOI: 10.1039/c8nr06502k] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Although extremely chemically reactive, oxygen plasmas feature certain properties that make them attractive not only for material removal via etching and sputtering, but also for driving and sustaining nucleation and growth of various nanostructures in plasma bulk and on plasma-exposed surfaces. In this minireview, a number of representative examples is used to demonstrate key mechanisms and unique capabilities of oxygen plasmas and how these can be used in present-day nano-fabrication. In addition to modification and functionalisation processes typical for oxygen plasmas, their ability to catalyse the growth of complex nanoarchitectures is emphasized. Two types of technologies based on oxygen plasmas, namely surface treatment without a change in the size and shape of surface features, as well as direct growth of oxide structures, are used to better illustrate the capabilities of oxygen plasmas as a powerful process environment. Future applications and possible challenges for the use of oxygen plasmas in nanofabrication are discussed.
Collapse
Affiliation(s)
- K Bazaka
- School of Chemistry, Physics, Mechanical Engineering, Queensland University of Technology, Brisbane, Queensland 4000, Australia.
| | | | | | | | | | | | | | | | | | | |
Collapse
|