1
|
Barboza AM, da Silva-Santos JA, Aliaga LCR, Bastos IN, Faria DF. Silicene growth mechanisms on Au(111) and Au(110) substrates. NANOTECHNOLOGY 2024; 35:165602. [PMID: 38176066 DOI: 10.1088/1361-6528/ad1aff] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Accepted: 01/04/2024] [Indexed: 01/06/2024]
Abstract
Despite the remarkable theoretical applications of silicene, its synthesis remains a complex task, with epitaxial growth being one of the main routes involving depositing evaporated Si atoms onto a suitable substrate. Additionally, the requirement for a substrate to maintain the silicene stability poses several difficulties in accurately determining the growth mechanisms and the resulting structures, leading to conflicting results in the literature. In this study, large-scale molecular dynamics simulations are performed to uncover the growth mechanisms and characteristics of epitaxially grown silicene sheets on Au(111) and Au(110) substrates, considering different temperatures and Si deposition rates. The growth process has been found to initiate with the nucleation of several independent islands homogeneously distributed on the substrate surface, which gradually merge to form a complete silicene sheet. The results consistently demonstrate the presence of a buckled silicene structure, although this characteristic is notably reduced when using an Au(111) substrate. Furthermore, the analysis also focuses on the quality and growth mode of the silicene sheets, considering the influence of temperature and deposition rate. The findings reveal a prevalence of the Frank-van der Merwe growth mode, along with diverse forms of defects throughout the sheets.
Collapse
Affiliation(s)
- Alexandre M Barboza
- Rio de Janeiro State University, Polytechnic Institute, 28625-570 Nova Friburgo, Rio de Janeiro, Brazil
| | - José A da Silva-Santos
- Rio de Janeiro State University, Polytechnic Institute, 28625-570 Nova Friburgo, Rio de Janeiro, Brazil
| | - Luis C R Aliaga
- Rio de Janeiro State University, Polytechnic Institute, 28625-570 Nova Friburgo, Rio de Janeiro, Brazil
| | - Ivan N Bastos
- Rio de Janeiro State University, Polytechnic Institute, 28625-570 Nova Friburgo, Rio de Janeiro, Brazil
| | - Daiara F Faria
- Rio de Janeiro State University, Polytechnic Institute, 28625-570 Nova Friburgo, Rio de Janeiro, Brazil
| |
Collapse
|
2
|
Wang K, Prévot G, Aqua JN. Anomalous intralayer growth of epitaxial Si on Ag(111). Sci Rep 2024; 14:2401. [PMID: 38287099 PMCID: PMC10825137 DOI: 10.1038/s41598-024-52348-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 01/17/2024] [Indexed: 01/31/2024] Open
Abstract
The epitaxial growth of silicene has been the subject of many investigations, controversies and non-classical results. In particular, the initially promising deposition of Si on a metallic substrate such as Ag(111) has revealed unexpected growth modes where Si is inserted at the beginning of the growth in the first atomic plane of the substrate. In order to rationalize this anomalous growth mode, we develop an out-of-equilibrium description of a lattice-based epitaxial growth model, which growth dynamics are analyzed via kinetic Monte-Carlo simulations. This model incorporates several effects revealed by the experiments such as the intermixing between Si and Ag, and surface effects. It is parametrized thanks to an approach in which we show that relatively precise estimates of energy barriers can be deduced by meticulous analysis of atomic microscopy images. This analysis enables us to reproduce both qualitatively and quantitatively the anomalous growth patterns of Si on Ag(111). We show that the dynamics results in two modes, a classical sub-monolayer growth mode at low temperature, and an inserted growth mode at higher temperatures, where the deposited Si atoms insert in the first layer of the substrate by replacing Ag atoms. Furthermore, we reproduce the non-standard [Formula: see text] shape of the experimental plot of the island density as a function of temperature, with a shift in island density variation during the transition between the submonoloyer and inserted growth modes.
Collapse
Affiliation(s)
- Kejian Wang
- Sorbonne Université, Centre National de la Recherche Scientifique, Institut des NanoSciences de Paris, INSP, 4, place Jussieu, 75005, Paris, France
| | - Geoffroy Prévot
- Sorbonne Université, Centre National de la Recherche Scientifique, Institut des NanoSciences de Paris, INSP, 4, place Jussieu, 75005, Paris, France
| | - Jean-Noël Aqua
- Sorbonne Université, Centre National de la Recherche Scientifique, Institut des NanoSciences de Paris, INSP, 4, place Jussieu, 75005, Paris, France.
| |
Collapse
|
3
|
Kamal S, Seo I, Bampoulis P, Jugovac M, Brondin CA, Menteş TO, Šarić Janković I, Matetskiy AV, Moras P, Sheverdyaeva PM, Michely T, Locatelli A, Gohda Y, Kralj M, Petrović M. Unidirectional Nano-modulated Binding and Electron Scattering in Epitaxial Borophene. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 38041641 DOI: 10.1021/acsami.3c14884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/03/2023]
Abstract
A complex interplay between the crystal structure and the electron behavior within borophene renders this material an intriguing 2D system, with many of its electronic properties still undiscovered. Experimental insight into those properties is additionally hampered by the limited capabilities of the established synthesis methods, which, in turn, inhibits the realization of potential borophene applications. In this multimethod study, photoemission spectroscopies and scanning probe techniques complemented by theoretical calculations have been used to investigate the electronic characteristics of a high-coverage, single-layer borophene on the Ir(111) substrate. Our results show that the binding of borophene to Ir(111) exhibits pronounced one-dimensional modulation and transforms borophene into a nanograting. The scattering of photoelectrons from this structural grating gives rise to the replication of the electronic bands. In addition, the binding modulation is reflected in the chemical reactivity of borophene and gives rise to its inhomogeneous aging effect. Such aging is easily reset by dissolving boron atoms in iridium at high temperature, followed by their reassembly into a fresh atomically thin borophene mesh. Besides proving electron-grating capabilities of the boron monolayer, our data provide comprehensive insight into the electronic properties of epitaxial borophene which is vital for further examination of other boron systems of reduced dimensionality.
Collapse
Affiliation(s)
- Sherif Kamal
- Centre for Advanced Laser Techniques, Institute of Physics, 10000 Zagreb, Croatia
| | - Insung Seo
- Department of Materials Science and Engineering, Tokyo Institute of Technology, Yokohama 226-8502, Japan
| | - Pantelis Bampoulis
- Physics of Interfaces and Nanomaterials, MESA+ Institute, University of Twente, 7522 NB Enschede, The Netherlands
- Institute of Physics II, University of Cologne, 50937 Cologne, Germany
| | - Matteo Jugovac
- Elettra─Sincrotrone Trieste S.C.p.A., S.S. 14 km 163.5, 34149 Trieste, Italy
| | - Carlo Alberto Brondin
- Department of Molecular Sciences and Nanosystems, Ca' Foscari University of Venice, 30172 Venice, Italy
| | - Tevfik Onur Menteş
- Elettra─Sincrotrone Trieste S.C.p.A., S.S. 14 km 163.5, 34149 Trieste, Italy
| | - Iva Šarić Janković
- Faculty of Physics and Centre for Micro- and Nanosciences and Technologies, University of Rijeka, 51000 Rijeka, Croatia
| | - Andrey V Matetskiy
- Istituto di Struttura della Materia-CNR (ISM-CNR), S.S. 14 km 163.5, 34149 Trieste, Italy
| | - Paolo Moras
- Istituto di Struttura della Materia-CNR (ISM-CNR), S.S. 14 km 163.5, 34149 Trieste, Italy
| | - Polina M Sheverdyaeva
- Istituto di Struttura della Materia-CNR (ISM-CNR), S.S. 14 km 163.5, 34149 Trieste, Italy
| | - Thomas Michely
- Institute of Physics II, University of Cologne, 50937 Cologne, Germany
| | - Andrea Locatelli
- Elettra─Sincrotrone Trieste S.C.p.A., S.S. 14 km 163.5, 34149 Trieste, Italy
| | - Yoshihiro Gohda
- Department of Materials Science and Engineering, Tokyo Institute of Technology, Yokohama 226-8502, Japan
| | - Marko Kralj
- Centre for Advanced Laser Techniques, Institute of Physics, 10000 Zagreb, Croatia
| | - Marin Petrović
- Centre for Advanced Laser Techniques, Institute of Physics, 10000 Zagreb, Croatia
| |
Collapse
|
4
|
Masson L, Prévot G. Epitaxial growth and structural properties of silicene and other 2D allotropes of Si. NANOSCALE ADVANCES 2023; 5:1574-1599. [PMID: 36926561 PMCID: PMC10012843 DOI: 10.1039/d2na00808d] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 02/13/2023] [Indexed: 06/18/2023]
Abstract
Since the breakthrough of graphene, considerable efforts have been made to search for two-dimensional (2D) materials composed of other group 14 elements, in particular silicon and germanium, due to their valence electronic configuration similar to that of carbon and their widespread use in the semiconductor industry. Silicene, the silicon counterpart of graphene, has been particularly studied, both theoretically and experimentally. Theoretical studies were the first to predict a low-buckled honeycomb structure for free-standing silicene possessing most of the outstanding electronic properties of graphene. From an experimental point of view, as no layered structure analogous to graphite exists for silicon, the synthesis of silicene requires the development of alternative methods to exfoliation. Epitaxial growth of silicon on various substrates has been widely exploited in attempts to form 2D Si honeycomb structures. In this article, we provide a comprehensive state-of-the-art review focusing on the different epitaxial systems reported in the literature, some of which having generated controversy and long debates. In the search for the synthesis of 2D Si honeycomb structures, other 2D allotropes of Si have been discovered and will also be presented in this review. Finally, with a view to applications, we discuss the reactivity and air-stability of silicene as well as the strategy devised to decouple epitaxial silicene from the underlying surface and its transfer to a target substrate.
Collapse
Affiliation(s)
| | - Geoffroy Prévot
- Sorbonne Université, CNRS, Institut des NanoSciences de Paris, INSP F-75005 Paris France
| |
Collapse
|
5
|
Ben Jabra Z, Abel M, Fabbri F, Aqua JN, Koudia M, Michon A, Castrucci P, Ronda A, Vach H, De Crescenzi M, Berbezier I. Van der Waals Heteroepitaxy of Air-Stable Quasi-Free-Standing Silicene Layers on CVD Epitaxial Graphene/6H-SiC. ACS NANO 2022; 16:5920-5931. [PMID: 35294163 DOI: 10.1021/acsnano.1c11122] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Graphene, consisting of an inert, thermally stable material with an atomically flat, dangling-bond-free surface, is by essence an ideal template layer for van der Waals heteroepitaxy of two-dimensional materials such as silicene. However, depending on the synthesis method and growth parameters, graphene (Gr) substrates could exhibit, on a single sample, various surface structures, thicknesses, defects, and step heights. These structures noticeably affect the growth mode of epitaxial layers, e.g., turning the layer-by-layer growth into the Volmer-Weber growth promoted by defect-assisted nucleation. In this work, the growth of silicon on chemical vapor deposited epitaxial Gr (1 ML Gr/1 ML Gr buffer) on a 6H-SiC(0001) substrate is investigated by a combination of atomic force microscopy (AFM), scanning tunneling microscopy (STM), X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM), and Raman spectroscopy measurements. It is shown that the perfect control of full-scale almost defect-free 1 ML Gr with a single surface structure and the ultraclean conditions for molecular beam epitaxy deposition of silicon represent key prerequisites for ensuring the growth of extended silicene sheets on epitaxial graphene. At low coverages, the deposition of Si produces large silicene sheets (some hundreds of nanometers large) attested by both AFM and SEM observations and the onset of a Raman peak at 560 cm-1, very close to the theoretical value of 570 cm-1 calculated for free-standing silicene. This vibrational mode at 560 cm-1 represents the highest ever experimentally measured value and is representative of quasi-free-standing silicene with almost no interaction with inert nonmetal substrates. From a coverage rate of 1 ML, the silicene sheets disappear at the expense of 3D Si dendritic islands whose density, size, and thickness increase with the deposited thickness. From this coverage, the Raman mode assigned to quasi-free-standing silicene totally vanishes, and the 2D flakes of silicene are no longer observed by AFM. The experimental results are in very good agreement with the results of kinetic Monte Carlo simulations that rationalize the initial flake growth in solid-state dewetting conditions, followed by the growth of ridges surrounding and eventually covering the 2D flakes. A full description of the growth mechanism is given. This study, which covers a wide range of growth parameters, challenges recent results stating the impossibility to grow silicene on a carbon inert surface and is very promising for large-scale silicene growth. It shows that silicene growth can be achieved using perfectly controlled and ultraclean deposition conditions and an almost defect-free Gr substrate.
Collapse
Affiliation(s)
| | - Mathieu Abel
- Aix Marseille University, CNRS, IM2NP, Marseille 13397, France
| | - Filippo Fabbri
- NEST, Istituto Nanoscienze-CNR, Scuola Normale Superiore, Piazza San Silvestro 12, 56127 Pisa, Italy
| | - Jean-Noel Aqua
- Institut des Nanosciences de Paris, Sorbonne Université, CNRS, INSP, UMR 7588, 75005 Paris, France
| | - Mathieu Koudia
- Aix Marseille University, CNRS, IM2NP, Marseille 13397, France
| | - Adrien Michon
- Université Côte d'Azur, CNRS, CRHEA, Valbonne 06560, France
| | - Paola Castrucci
- Dipartimento di Fisica, Università di Roma Tor Vergata, Roma 00133, Italy
| | - Antoine Ronda
- Aix Marseille University, CNRS, IM2NP, Marseille 13397, France
| | - Holger Vach
- LPICM, CNRS, Ecole Polytechnique, IP Paris, Palaiseau 91128, France
| | | | | |
Collapse
|
6
|
Colonna S, Flammini R, Ronci F. Silicene growth on Ag(110) and Ag(111) substrates reconsidered in light of Si-Ag reactivity. NANOTECHNOLOGY 2021; 32:152001. [PMID: 33412522 DOI: 10.1088/1361-6528/abd974] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Silicene, the 2D silicon allotrope analogue of graphene, was theoretically predicted in 1994 as a metastable buckled honeycomb silicon monolayer. Similarly to its carbon counterpart it was predicted to present an electronic structure hosting Dirac cones. In the last decade a great deal of work has been done to synthesize silicene and exploit its properties. In this paper we will review our research group activity in the field, dealing in particular with silicon-substrate interaction upon silicon deposition, and discuss the still debated silicene formation starting from the chemistry of silicon unsaturated compounds.
Collapse
Affiliation(s)
- S Colonna
- Istituto di Struttura della Materia-CNR (ISM-CNR), Via del Fosso del Cavaliere 100, I-00133 Roma, Italy
| | - R Flammini
- Istituto di Struttura della Materia-CNR (ISM-CNR), Via del Fosso del Cavaliere 100, I-00133 Roma, Italy
| | - F Ronci
- Istituto di Struttura della Materia-CNR (ISM-CNR), Via del Fosso del Cavaliere 100, I-00133 Roma, Italy
| |
Collapse
|
7
|
Lizzit D, Trioni MI, Bignardi L, Lacovig P, Lizzit S, Martinazzo R, Larciprete R. Dual-Route Hydrogenation of the Graphene/Ni Interface. ACS NANO 2019; 13:1828-1838. [PMID: 30633501 DOI: 10.1021/acsnano.8b07996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Nanostructured architectures based on graphene/metal interfaces might be efficiently exploited in hydrogen storage due to the attractive capability to provide adsorption sites both at the top side of graphene and at the metal substrate after intercalation. We combined in situ high-resolution X-ray photoelectron spectroscopy and scanning tunneling microscopy with theoretical calculations to determine the arrangement of hydrogen atoms at the graphene/Ni(111) interface at room temperature. Our results show that at low coverage H atoms predominantly adsorb as monomers and that chemisorption saturates when ∼25% of the surface is hydrogenated. In parallel, with a much lower rate, H atoms intercalate below graphene and bind to Ni surface sites. Intercalation progressively destabilizes the C-H bonds and triggers the release of the hydrogen chemisorbed on graphene. Valence band and near-edge absorption spectroscopy demonstrate that the graphene layer is fully lifted when the Ni surface is saturated with H. Thermal programmed desorption was used to determine the stability of the hydrogenated interface. Whereas the H atoms chemisorbed on graphene remain unperturbed over a wide temperature range, the intercalated phase abruptly desorbs 50-100 K above room temperature.
Collapse
Affiliation(s)
- Daniel Lizzit
- Elettra-Sincrotrone Trieste S.C.p.A. , AREA Science Park , S.S. 14 km 163.5, 34149 Trieste , Italy
| | - Mario I Trioni
- CNR-Institute of Molecular Science and Technologies (ISTM) , Via Golgi 19 , 20133 Milano , Italy
| | - Luca Bignardi
- Elettra-Sincrotrone Trieste S.C.p.A. , AREA Science Park , S.S. 14 km 163.5, 34149 Trieste , Italy
| | - Paolo Lacovig
- Elettra-Sincrotrone Trieste S.C.p.A. , AREA Science Park , S.S. 14 km 163.5, 34149 Trieste , Italy
| | - Silvano Lizzit
- Elettra-Sincrotrone Trieste S.C.p.A. , AREA Science Park , S.S. 14 km 163.5, 34149 Trieste , Italy
| | - Rocco Martinazzo
- Dipartimento di Chimica , Università degli Studi di Milano , Via Golgi 19 , 20133 Milano , Italy
| | - Rosanna Larciprete
- CNR-Institute for Complex Systems (ISC) , Via dei Taurini 19 , 00185 Roma , Italy
| |
Collapse
|
8
|
Pazhamalai P, Krishnamoorthy K, Sahoo S, Mariappan VK, Kim SJ. Understanding the Thermal Treatment Effect of Two-Dimensional Siloxene Sheets and the Origin of Superior Electrochemical Energy Storage Performances. ACS APPLIED MATERIALS & INTERFACES 2019; 11:624-633. [PMID: 30474949 DOI: 10.1021/acsami.8b15323] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Two-dimensional siloxene sheets are an emerging class of materials with an eclectic range of potential applications including electrochemical energy conversion and storage sectors. Here, we demonstrated the dehydrogenation/dehydroxylation of siloxene sheets by thermal annealing at high temperature (HT) and investigated their supercapacitive performances using ionic liquid electrolyte. The X-ray diffraction analysis, spectroscopic (Fourier transform infrared, laser Raman, and X-ray photoelectron spectroscopy) studies, and morphological analysis of HT-siloxene revealed the removal of functional groups at the edges/basal planes of siloxene, and preservation of oxygen-interconnected Si6 rings with sheet-like structures. The HT-siloxene symmetric supercapacitor (SSC) operates over a wide potential window (0-3.0 V), delivers a high specific capacitance (3.45 mF cm-2), high energy density of about 15.53 mJ cm-2 (almost 2-fold higher than that of the as-prepared siloxene SSC), and low equivalent series resistance (compared to reported silicon-based SSCs) with excellent rate capability and long cycle life over 10 000 cycles.
Collapse
|