1
|
Stojkovski D, Szafrański M. High-Pressure Structural and Optical Studies of Pure Low-Dimensional Cesium Lead Chlorides CsPb 2Cl 5 and Cs 4PbCl 6. Inorg Chem 2024; 63:7903-7911. [PMID: 38629161 PMCID: PMC11061828 DOI: 10.1021/acs.inorgchem.4c00809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 04/04/2024] [Accepted: 04/09/2024] [Indexed: 04/30/2024]
Abstract
We report high-pressure single-crystal X-ray diffraction, optical absorption, and photoluminescence investigations of all-inorganic perovskite-related materials CsPb2Cl5 and Cs4PbCl6. The crystal structure of CsPb2Cl5, composed of alternate layers of Cs+ cations and Pb-Cl frameworks, is stable under pressure up to at least 4.2 GPa. Because external stress is mainly absorbed by the Cs+ layers, the optical absorption edge of the crystal only slightly red-shifts with increasing pressure, which correlates well with a moderate shortening of the Pb-Cl bonds. A quite different response to pressure shows Cs4PbCl6, the crystal built of isolated PbCl64- octahedra and Cs+ cations. During the compression at around 3.4 GPa, the trigonal phase I, space group R3̅c, transforms to the orthorhombic phase II, space group Cmce, which at around 4 GPa transforms into phase III. On decompression, phase II is not restored, but phase III converts through a diffuse phase transition into another high-pressure phase IV, which is stable in a wide pressure range and transforms to the initial phase I only around atmospheric pressure. The red shift of the absorption edge and the profound modification of the absorption spectrum in phase II were ascribed to the deformation of the PbCl64- octahedra. The transition to phase III induces a blue shift of the absorption edge, while the transition to phase IV is associated with a large red shift. Photoluminescence was detected in phases I and II with the intensity quenched with increasing pressure.
Collapse
Affiliation(s)
- Darko Stojkovski
- Faculty of Physics, Adam Mickiewicz University, Uniwersytetu Poznańskiego
2, 61-614 Poznań, Poland
| | - Marek Szafrański
- Faculty of Physics, Adam Mickiewicz University, Uniwersytetu Poznańskiego
2, 61-614 Poznań, Poland
| |
Collapse
|
2
|
Alam MK, Nobin MNM, Ali ML. Pressure-induced tuning of physical properties in high-throughput metal halide MSn 2Br 5 (M = K, Cs) perovskites for optoelectronic applications. RSC Adv 2024; 14:1267-1283. [PMID: 38174239 PMCID: PMC10762723 DOI: 10.1039/d3ra06215e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 12/19/2023] [Indexed: 01/05/2024] Open
Abstract
The physical properties of the ferromagnetic oxide perovskites MSn2Br5 (M = K, Cs) were thoroughly examined using the GGA + PBE formalism of density functional theory. The investigation includes a comprehensive characterization of these materials under hydrostatic pressures ranging up to 25 GPa. Our work represents the first theoretical framework for exploring the behavior of MSn2Br5 (M = K, Cs) under pressure, providing valuable insights into their properties. To ensure the thermodynamic and mechanical stability of the studied compounds, we justified their stability through the analysis of formation energy and Born stability criteria. Furthermore, we conducted a thorough examination of the mechanical features of MSn2Br5 (M = K, Cs) based on various parameters, such as elastic constants, elastic moduli, the Kleinman parameter, the machinability index, and the Vickers hardness. Pugh's ratio and Poisson's ratio data show a ductile behavior for both compounds under stress. Moreover, our analysis of the refractive index suggests that both materials hold significant potential as candidates for ultrahigh-density optical data storage devices, particularly when subjected to appropriate laser irradiation. This finding opens up exciting possibilities for utilizing MSn2Br5 (M = K, Cs) in advanced optical technologies.
Collapse
Affiliation(s)
- Md Khairul Alam
- Department of Physics, Pabna University of Science and Technology Pabna-6600 Bangladesh
| | | | - Md Lokman Ali
- Department of Physics, Pabna University of Science and Technology Pabna-6600 Bangladesh
| |
Collapse
|
3
|
Hooper RW, Lin K, Veinot JGC, Michaelis VK. 3D to 0D cesium lead bromide: A 79/81Br NMR, NQR and theoretical investigation. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2023; 352:107472. [PMID: 37186965 DOI: 10.1016/j.jmr.2023.107472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 04/26/2023] [Accepted: 04/30/2023] [Indexed: 05/17/2023]
Abstract
Inorganic metal halides offer unprecedented tunability through elemental variation of simple three-element compositions, but can exhibit complicated phase behaviour, degradation, and microscopic phenomena (disorder/dynamics) that play an integral role for the bulk-level chemical and physical properties of these materials. Understanding the halogen chemical environment in such materials is crucial to addressing many of the concerns regarding implementing these materials in commercial applications. In this study, a combined solid-state nuclear magnetic resonance, nuclear quadrupole resonance and quantum chemical computation approach is used to interrogate the Br chemical environment in a series of related inorganic lead bromide materials: CsPbBr3, CsPb2Br5, and Cs4PbBr6. The quadrupole coupling constants (CQ) were determined to range from 61 to 114 MHz for 81Br, with CsPbBr3 exhibiting the largest measured CQ and Cs4PbBr6 the smallest. GIPAW DFT was shown to be an excellent pre-screening tool for estimating the EFG of Br materials and can increase experimental efficiency by providing good starting estimates for acquisition. Finally, the combination of theory and experiment to inform the best methods for expanding further to the other quadrupolar halogens is discussed.
Collapse
Affiliation(s)
- Riley W Hooper
- Department of Chemistry, University of Alberta, Edmonton, Alberta T6G 2G2, Canada
| | - Katherine Lin
- Department of Chemistry, University of Alberta, Edmonton, Alberta T6G 2G2, Canada
| | - Jonathan G C Veinot
- Department of Chemistry, University of Alberta, Edmonton, Alberta T6G 2G2, Canada
| | - Vladimir K Michaelis
- Department of Chemistry, University of Alberta, Edmonton, Alberta T6G 2G2, Canada.
| |
Collapse
|
4
|
Kumar A, Dutta S, Kim S, Kwon T, Patil SS, Kumari N, Jeevanandham S, Lee IS. Solid-State Reaction Synthesis of Nanoscale Materials: Strategies and Applications. Chem Rev 2022; 122:12748-12863. [PMID: 35715344 DOI: 10.1021/acs.chemrev.1c00637] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Nanomaterials (NMs) with unique structures and compositions can give rise to exotic physicochemical properties and applications. Despite the advancement in solution-based methods, scalable access to a wide range of crystal phases and intricate compositions is still challenging. Solid-state reaction (SSR) syntheses have high potential owing to their flexibility toward multielemental phases under feasibly high temperatures and solvent-free conditions as well as their scalability and simplicity. Controlling the nanoscale features through SSRs demands a strategic nanospace-confinement approach due to the risk of heat-induced reshaping and sintering. Here, we describe advanced SSR strategies for NM synthesis, focusing on mechanistic insights, novel nanoscale phenomena, and underlying principles using a series of examples under different categories. After introducing the history of classical SSRs, key theories, and definitions central to the topic, we categorize various modern SSR strategies based on the surrounding solid-state media used for nanostructure growth, conversion, and migration under nanospace or dimensional confinement. This comprehensive review will advance the quest for new materials design, synthesis, and applications.
Collapse
Affiliation(s)
- Amit Kumar
- Creative Research Initiative Center for Nanospace-confined Chemical Reactions (NCCR) and Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang 37673, Korea
| | - Soumen Dutta
- Creative Research Initiative Center for Nanospace-confined Chemical Reactions (NCCR) and Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang 37673, Korea
| | - Seonock Kim
- Creative Research Initiative Center for Nanospace-confined Chemical Reactions (NCCR) and Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang 37673, Korea
| | - Taewan Kwon
- Creative Research Initiative Center for Nanospace-confined Chemical Reactions (NCCR) and Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang 37673, Korea
| | - Santosh S Patil
- Creative Research Initiative Center for Nanospace-confined Chemical Reactions (NCCR) and Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang 37673, Korea
| | - Nitee Kumari
- Creative Research Initiative Center for Nanospace-confined Chemical Reactions (NCCR) and Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang 37673, Korea
| | - Sampathkumar Jeevanandham
- Creative Research Initiative Center for Nanospace-confined Chemical Reactions (NCCR) and Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang 37673, Korea
| | - In Su Lee
- Creative Research Initiative Center for Nanospace-confined Chemical Reactions (NCCR) and Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang 37673, Korea.,Institute for Convergence Research and Education in Advanced Technology (I-CREATE), Yonsei University, Seoul 03722, Korea
| |
Collapse
|
5
|
Chen T, Wang C, Xing X, Qin Z, Qin F, Wang Y, Alam MK, Hadjiev VG, Yang G, Ye S, Yang J, Wang R, Yue S, Zhang D, Shang Z, Robles-Hernandez FC, Calderon HA, Wang H, Wang Z, Bao J. Integration of Highly Luminescent Lead Halide Perovskite Nanocrystals on Transparent Lead Halide Nanowire Waveguides through Morphological Transformation and Spontaneous Growth in Water. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2105009. [PMID: 35060296 DOI: 10.1002/smll.202105009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 12/08/2021] [Indexed: 06/14/2023]
Abstract
The integration of highly luminescent CsPbBr3 quantum dots on nanowire waveguides has enormous potential applications in nanophotonics, optical sensing, and quantum communications. On the other hand, CsPb2 Br5 nanowires have also attracted a lot of attention due to their unique water stability and controversial luminescent property. Here, the growth of CsPbBr3 nanocrystals on CsPb2 Br5 nanowires is reported first by simply immersing CsPbBr3 powder into pure water, CsPbBr3- γ Xγ (X = Cl, I) nanocrystals on CsPb2 Br5 -γ Xγ nanowires are then synthesized for tunable light sources. Systematic structure and morphology studies, including in situ monitoring, reveal that CsPbBr3 powder is first converted to CsPb2 Br5 microplatelets in water, followed by morphological transformation from CsPb2 Br5 microplatelets to nanowires, which is a kinetic dissolution-recrystallization process controlled by electrolytic dissociation and supersaturation of CsPb2 Br5 . CsPbBr3 nanocrystals are spontaneously formed on CsPb2 Br5 nanowires when nanowires are collected from the aqueous solution. Raman spectroscopy, combined photoluminescence, and SEM imaging confirm that the bright emission originates from CsPbBr3 -γ Xγ nanocrystals while CsPb2 Br5 -γ Xγ nanowires are transparent waveguides. The intimate integration of nanoscale light sources with a nanowire waveguide is demonstrated through the observation of the wave guiding of light from nanocrystals and Fabry-Perot interference modes of the nanowire cavity.
Collapse
Affiliation(s)
- Tao Chen
- National Center for International Research on Photoelectric and Energy Materials, School of Materials and Energy, Yunnan University, Kunming, 650091, P. R. China
| | - Chong Wang
- National Center for International Research on Photoelectric and Energy Materials, School of Materials and Energy, Yunnan University, Kunming, 650091, P. R. China
| | - Xinxin Xing
- Department of Electrical and Computer Engineering, University of Houston, Houston, TX, 77204, USA
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, Sichuan, 610054, P. R. China
| | - Zhaojun Qin
- Department of Electrical and Computer Engineering, University of Houston, Houston, TX, 77204, USA
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, Sichuan, 610054, P. R. China
| | - Fan Qin
- Department of Electrical and Computer Engineering, University of Houston, Houston, TX, 77204, USA
| | - Yanan Wang
- Department of Electrical and Computer Engineering, University of Houston, Houston, TX, 77204, USA
| | - Md Kamrul Alam
- Department of Electrical and Computer Engineering, University of Houston, Houston, TX, 77204, USA
| | - Viktor G Hadjiev
- Department of Mechanical Engineering, University of Houston, Houston, TX, 77204, USA
- Texas Center for Superconductivity, University of Houston, Houston, TX, 77204, USA
| | - Guang Yang
- Department of Electrical and Computer Engineering, University of Houston, Houston, TX, 77204, USA
| | - Shuming Ye
- National Center for International Research on Photoelectric and Energy Materials, School of Materials and Energy, Yunnan University, Kunming, 650091, P. R. China
| | - Jie Yang
- National Center for International Research on Photoelectric and Energy Materials, School of Materials and Energy, Yunnan University, Kunming, 650091, P. R. China
| | - Rongfei Wang
- National Center for International Research on Photoelectric and Energy Materials, School of Materials and Energy, Yunnan University, Kunming, 650091, P. R. China
| | - Shuai Yue
- Department of Electrical and Computer Engineering, University of Houston, Houston, TX, 77204, USA
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, Sichuan, 610054, P. R. China
| | - Di Zhang
- School of Materials Engineering, Purdue University, West Lafayette, IN, 47907, USA
| | - Zhongxia Shang
- School of Materials Engineering, Purdue University, West Lafayette, IN, 47907, USA
| | - Francisco C Robles-Hernandez
- Department of Electrical and Computer Engineering, University of Houston, Houston, TX, 77204, USA
- Mechanical Engineering Technology, University of Houston, Houston, TX, 77204, USA
| | - Hector A Calderon
- Instituto Politecnico Nacional, ESFM-IPN, UPALM, Departamento de Física, Mexico CDMX, 07338, Mexico
| | - Haiyan Wang
- School of Materials Engineering, Purdue University, West Lafayette, IN, 47907, USA
| | - Zhiming Wang
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, Sichuan, 610054, P. R. China
| | - Jiming Bao
- Department of Electrical and Computer Engineering, University of Houston, Houston, TX, 77204, USA
- Texas Center for Superconductivity, University of Houston, Houston, TX, 77204, USA
| |
Collapse
|
6
|
Zhou Y, Yu Y, Zhang Y, Liu X, Yang H, Liang X, Xia W, Xiang W. Highly Photoluminescent CsPbBr 3/CsPb 2Br 5 NCs@TEOS Nanocomposite in Light-Emitting Diodes. Inorg Chem 2021; 60:3814-3822. [PMID: 33570916 DOI: 10.1021/acs.inorgchem.0c03573] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
All-inorganic halide perovskite (CsPb2Br5) nanocrystals (NCs) have received widespread attention owing to their unique photoelectric properties. This work reports a novel strategy to control the phase transition from CsPbBr3 to CsPb2Br5 and investigates the effects of different treatment times and treatment temperatures on perovskite NCs formation. By controlling the volume of tetraethoxysilane (TEOS) added, the formation of different phases of perovskite powder can be well controlled. In addition, a white light-emitting diode (WLED) device is designed by coupling the CsPbBr3/CsPbBr3-CsPb2Br5 NCs@TEOS nanocomposite and CaAlSiN3:Eu2+ commercial phosphor with a 460 nm InGaN blue chip, exhibiting a high luminous efficiency of 57.65 lm/W, color rendering index (CRI) of 91, and a low CCT of 5334 K. The CIE chromaticity coordinates are (0.3363, 0.3419). This work provides a new strategy for the synthesis of CsPbBr3/CsPbBr3-CsPb2Br5 NCs@TEOS nanocomposite, which can be applied to the field of WLEDs and display devices.
Collapse
Affiliation(s)
- Yufeng Zhou
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035, China
| | - Yanxia Yu
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035, China
| | - Yaqian Zhang
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035, China
| | - Xiaodong Liu
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035, China
| | - Haisheng Yang
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035, China
| | - Xiaojuan Liang
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035, China
| | - Wei Xia
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035, China
| | - Weidong Xiang
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035, China
| |
Collapse
|
7
|
Shen W, Lu Y, Xia P, Zhang W, Chen Y, Wang W, Wu Y, Liu L, Chen S. A donor-acceptor ligand boosting the performance of FA 0.8Cs 0.2PbBr 3 nanocrystal light-emitting diodes. NANOSCALE 2021; 13:1791-1799. [PMID: 33433543 DOI: 10.1039/d0nr07913h] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
A donor-acceptor ligand, 3-amino-2-bromo-6-methoxypyridine (ABMeoPy), was introduced to passivate FA0.8Cs0.2PbBr3 nanocrystals (NCs) by a post-processing method. The donor-acceptor interaction can greatly enhance the coordination bond of pyridine-Pb2+, and improve FA0.8Cs0.2PbBr3 NC performance with 95.99% photoluminescence quantum yield (PLQY), 6-month stability in solution, and 26% trap density decrease. In the light of ABMeoPy passivation of FA0.8Cs0.2PbBr3 NCs, the maximum luminance, the maximum current efficiency, and EQE of light-emitting diodes (LEDs) increased 69%, 110%, and 111%, respectively. The strategy of using D-A molecules to passivate perovskite NCs is quite simple and effective, which can be widely promoted in perovskite-based LEDs or solar cells.
Collapse
Affiliation(s)
- Wei Shen
- Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts & Telecommunications (NUPT), 9 Wenyuan Road, Nanjing 210023, P. R. China.
| | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Huang ZP, Ma B, Wang H, Li N, Liu RT, Zhang ZQ, Zhang XD, Zhao JH, Zheng PZ, Wang Q, Zhang HL. In Situ Growth of 3D/2D (CsPbBr 3/CsPb 2Br 5) Perovskite Heterojunctions toward Optoelectronic Devices. J Phys Chem Lett 2020; 11:6007-6015. [PMID: 32628484 DOI: 10.1021/acs.jpclett.0c01757] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Two-dimensional (2D) CsPb2Br5 exhibits intriguing functions in enhancing the performance of optoelectronic devices in terms of environmental stability and luminescence properties when composited with other perovskites in different dimensionalities. We built a type I three-dimensional (3D) CsPbBr3/2D CsPb2Br5 heterojunction through phase transition where CsPbBr3 quantum dots in situ grew into 2D CsPb2Br5. A thorough growth mechanism study in combination with excited state dynamic investigations via femtosecond spectroscopy and first-principles calculations revealed that the type I hierarchy enhanced the stability of the heterojunction and spurred its luminous quantum yield by prolonging the lifetime of photogenerated carriers. Mixing the heterojunction with other phosphors yielded white-light-emitting diodes with a color rendering index of 94%. The work thus not only offered one new avenue for building heterojunctions by using the "soft crystal" nature of perovskites but also disentangled the enhanced luminescence mechanism of the heterojunction that can be harnessed for promising applications in the luminescence and display fields.
Collapse
Affiliation(s)
- Zhi-Peng Huang
- State Key Laboratory of Applied Organic Chemistry (SKLAOC), Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Key Laboratory of Special Function Materials and Structure Design, Ministry of Education, Lanzhou University, Lanzhou 730000, China
| | - Bo Ma
- State Key Laboratory of Applied Organic Chemistry (SKLAOC), Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Key Laboratory of Special Function Materials and Structure Design, Ministry of Education, Lanzhou University, Lanzhou 730000, China
| | - Hao Wang
- State Key Laboratory of Applied Organic Chemistry (SKLAOC), Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Key Laboratory of Special Function Materials and Structure Design, Ministry of Education, Lanzhou University, Lanzhou 730000, China
| | - Na Li
- State Key Laboratory of Applied Organic Chemistry (SKLAOC), Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Key Laboratory of Special Function Materials and Structure Design, Ministry of Education, Lanzhou University, Lanzhou 730000, China
| | - Rui-Tong Liu
- State Key Laboratory of Applied Organic Chemistry (SKLAOC), Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Key Laboratory of Special Function Materials and Structure Design, Ministry of Education, Lanzhou University, Lanzhou 730000, China
| | - Ze-Qi Zhang
- State Key Laboratory of Applied Organic Chemistry (SKLAOC), Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Key Laboratory of Special Function Materials and Structure Design, Ministry of Education, Lanzhou University, Lanzhou 730000, China
| | - Xiao-Dong Zhang
- National Key Laboratory of Materials Behavior and Evaluation Technology in Space Environment, Harbin 150001, China
| | - Ji-Hua Zhao
- State Key Laboratory of Applied Organic Chemistry (SKLAOC), Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Key Laboratory of Special Function Materials and Structure Design, Ministry of Education, Lanzhou University, Lanzhou 730000, China
| | - Pei-Zhu Zheng
- State Key Laboratory of Applied Organic Chemistry (SKLAOC), Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Key Laboratory of Special Function Materials and Structure Design, Ministry of Education, Lanzhou University, Lanzhou 730000, China
| | - Qiang Wang
- State Key Laboratory of Applied Organic Chemistry (SKLAOC), Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Key Laboratory of Special Function Materials and Structure Design, Ministry of Education, Lanzhou University, Lanzhou 730000, China
| | - Hao-Li Zhang
- State Key Laboratory of Applied Organic Chemistry (SKLAOC), Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Key Laboratory of Special Function Materials and Structure Design, Ministry of Education, Lanzhou University, Lanzhou 730000, China
| |
Collapse
|
9
|
Zhou YQ, Xu J, Liu JB, Liu BX. Green Emission Induced by Intrinsic Defects in All-Inorganic Perovskite CsPb 2Br 5. J Phys Chem Lett 2019; 10:6118-6123. [PMID: 31538483 DOI: 10.1021/acs.jpclett.9b02367] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
All-inorganic perovskites with improved stability are expected to be better candidates for optoelectronics, compared to organic-inorganic hybrid perovskites. A new member of all-inorganic perovskites, CsPb2Br5, has attracted great attention for its promising applications in optoelectronic devices. However, the origins of the green emission in CsPb2Br5 have been actively debated. By using first-principles calculations, we find that CsPb and VBr are dominant intrinsic defects independent of the growth conditions within the stable region of CsPb2Br5. Interestingly, we suggest that individual intrinsic defects do not lead to the green emission of CsPb2Br5, while the donor-acceptor pair recombination of CsPb and VBr possibly does. Our findings provide new insights into the experimental controversy about the green emission and its origins in CsPb2Br5 from the perspective of intrinsic defects, which help to extend the application of CsPb2Br5 in optoelectronic devices.
Collapse
Affiliation(s)
- Yu-Qian Zhou
- Key Laboratory of Advanced Materials (MOE), School of Materials Science and Engineering , Tsinghua University , Beijing 100084 , China
| | - Jian Xu
- Key Laboratory of Advanced Materials (MOE), School of Materials Science and Engineering , Tsinghua University , Beijing 100084 , China
| | - Jian-Bo Liu
- Key Laboratory of Advanced Materials (MOE), School of Materials Science and Engineering , Tsinghua University , Beijing 100084 , China
| | - Bai-Xin Liu
- Key Laboratory of Advanced Materials (MOE), School of Materials Science and Engineering , Tsinghua University , Beijing 100084 , China
| |
Collapse
|
10
|
Wang C, Wang Y, Su X, Hadjiev VG, Dai S, Qin Z, Calderon Benavides HA, Ni Y, Li Q, Jian J, Alam MK, Wang H, Robles Hernandez FC, Yao Y, Chen S, Yu Q, Feng G, Wang Z, Bao J. Extrinsic Green Photoluminescence from the Edges of 2D Cesium Lead Halides. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2019; 31:e1902492. [PMID: 31231895 DOI: 10.1002/adma.201902492] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Revised: 06/07/2019] [Indexed: 05/06/2023]
Abstract
Since the first report of the green emission of 2D all-inorganic CsPb2 Br5 , its bandgap and photoluminescence (PL) origin have generated intense debate and remained controversial. After the discovery that PL centers occupy only specific morphological structures in CsPb2 Br5 , a two-step highly sensitive and noninvasive optical technique is employed to resolve the controversy. Same-spot Raman-PL as a static property-structure probe reveals that CsPbBr3 nanocrystals are contributing to the green emission of CsPb2 Br5 ; pressure-dependent Raman-PL with a diamond anvil cell as a dynamic probe further rules out point defects such as Br vacancies as an alternative mechanism. Optical absorption under hydrostatic pressure shows that the bandgap of CsPb2 Br5 is 0.3-0.4 eV higher than previously reported values and remains nearly constant with pressure up to 2 GPa in good agreement with full-fledged density functional theory (DFT) calculations. Using ion exchange of Br with Cl and I, it is further proved that CsPbBr3- x Xx (X = Cl or I) is responsible for the strong visible PL in CsPb2 Br5- x Xx . This experimental approach is applicable to all PL-active materials to distinguish intrinsic defects from extrinsic nanocrystals, and the findings pave the way for new design and development of highly efficient optoelectronic devices based on all-inorganic lead halides.
Collapse
Affiliation(s)
- Chong Wang
- School of Materials Science and Engineering, Yunnan University, Kunming, Yunnan, 650500, China
- Department of Electrical and Computer Engineering, University of Houston, Houston, TX, 77204, USA
| | - Yanan Wang
- Department of Electrical and Computer Engineering, University of Houston, Houston, TX, 77204, USA
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, Sichuan, 610054, China
| | - Xinghua Su
- Department of Electrical and Computer Engineering, University of Houston, Houston, TX, 77204, USA
- School of Materials Science and Engineering, Chang'an University, Xi'an, Shaanxi, 710061, China
| | - Viktor G Hadjiev
- Texas Center for Superconductivity, University of Houston, Houston, TX, 77204, USA
- Department of Mechanical Engineering, University of Houston, Houston, TX, 77204, USA
| | - Shenyu Dai
- Department of Electrical and Computer Engineering, University of Houston, Houston, TX, 77204, USA
- College of Electronics and Information Engineering, Sichuan University, Chengdu, Sichuan, 610064, China
| | - Zhaojun Qin
- Department of Electrical and Computer Engineering, University of Houston, Houston, TX, 77204, USA
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, Sichuan, 610054, China
| | | | - Yizhou Ni
- Texas Center for Superconductivity, University of Houston, Houston, TX, 77204, USA
- Department of Physics, University of Houston, Houston, TX, 77204, USA
| | - Qiang Li
- Department of Materials Engineering, Purdue University West Lafayette, IN, 47907, USA
| | - Jie Jian
- Department of Materials Engineering, Purdue University West Lafayette, IN, 47907, USA
| | - Md Kamrul Alam
- Materials Science and Engineering, University of Houston, Houston, TX, 77204, USA
| | - Haiyan Wang
- Department of Materials Engineering, Purdue University West Lafayette, IN, 47907, USA
| | - Francisco C Robles Hernandez
- Department of Electrical and Computer Engineering, University of Houston, Houston, TX, 77204, USA
- Mechanical Engineering Technology, University of Houston, Houston, TX, 77204, USA
| | - Yan Yao
- Department of Electrical and Computer Engineering, University of Houston, Houston, TX, 77204, USA
- Texas Center for Superconductivity, University of Houston, Houston, TX, 77204, USA
- Materials Science and Engineering, University of Houston, Houston, TX, 77204, USA
| | - Shuo Chen
- Texas Center for Superconductivity, University of Houston, Houston, TX, 77204, USA
- Department of Physics, University of Houston, Houston, TX, 77204, USA
| | - Qingkai Yu
- Ingram School of Engineering, Texas State University, San Marcos, TX, 78666, USA
| | - Guoying Feng
- College of Electronics and Information Engineering, Sichuan University, Chengdu, Sichuan, 610064, China
| | - Zhiming Wang
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, Sichuan, 610054, China
| | - Jiming Bao
- Department of Electrical and Computer Engineering, University of Houston, Houston, TX, 77204, USA
- Materials Science and Engineering, University of Houston, Houston, TX, 77204, USA
| |
Collapse
|
11
|
Ghorai A, Midya A, Ray SK. Surfactant-Induced Anion Exchange and Morphological Evolution for Composition-Controlled Caesium Lead Halide Perovskites with Tunable Optical Properties. ACS OMEGA 2019; 4:12948-12954. [PMID: 31460421 PMCID: PMC6682105 DOI: 10.1021/acsomega.9b00829] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Accepted: 07/09/2019] [Indexed: 06/05/2023]
Abstract
Environmentally stable lead halide perovskite nanostructures with engineered composition and morphology are attractive because of their exotic optical properties. Here, we report the synthesis of monodispersed (∼20 nm) CsPbI3 cubic perovskite nanocrystals (NCs) using edible olive oil as a solvent as well as a chelating reagent. Thereafter, bromide anion exchange reaction using the cetyl trimethyl ammonium bromide surfactant in hexane is carried out at relatively lower temperatures to synthesize caesium lead halide perovskites with variable halide compositions and tunable band gaps. Interestingly, because of the formation of micelles, continuous morphology evolution varying from NCs of different sizes to nanowires (NWs) and nanosheets is observed. The anion exchange temperature has a distinct effect on the morphology of the CsPbBr3 nanostructure and the anion exchange reaction rate. Finally, an easy solution-processed photoconductive device is demonstrated using as-grown CsPbBr3 NWs, indicating its potential for optoelectronic applications.
Collapse
Affiliation(s)
- Arup Ghorai
- School
of Nanoscience and Technology and Department of Physics, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| | - Anupam Midya
- School
of Nanoscience and Technology and Department of Physics, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| | - Samit K. Ray
- School
of Nanoscience and Technology and Department of Physics, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
- S.
N. Bose National Centre for Basic Sciences, Kolkata 700106, India
| |
Collapse
|
12
|
Xu Y, Li S, Zhang Z, Hu Y, Yuan L, Chen W, Chen Z, Patterson R, Huang S. Ligand-mediated synthesis of colloidal Cs 2SnI 6 three-dimensional nanocrystals and two-dimensional nanoplatelets. NANOTECHNOLOGY 2019; 30:295601. [PMID: 30917354 DOI: 10.1088/1361-6528/ab13f6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Cs2SnI6 is a variant on tin-iodide solution-processable materials and may lead to a lead-free material for use in next-generation photovoltaic cells and other optoelectronics. So far, only a few studies have been conducted where shape and geometry control of Cs2SnI6 nanocrystals is demonstrated. Here we report a general approach to directly synthesize Cs2SnI6 of two-dimensional (2D) layered nanoplatelets as well as three-dimensional (3D) nanocrystals. The shape of Cs2SnI6 nanocrystals could be engineered into 3D nanoparticles and different 2D nanoplatelets with well-defined morphology by choosing different organic acid and amine ligands via a hot injection process. Moreover, the thickness of layered 2D nanoplatelets could be adjusted by changing the amount of Cs-oleate present during the synthesis. The photoluminescence emission peaks changed from 643 to 742 nm based on nanomaterial shape. Our method provides a facile and versatile route to rationally control the shape of the Cs2SnI6 nanocrystals, which will create opportunities for applications in lead-free optoelectronics.
Collapse
Affiliation(s)
- Yanmei Xu
- College of Mathematics and Physics, North China Electric Power University-Baoding Campus, Baoding 071003, People's Republic of China
| | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Lou S, Zhou Z, Xuan T, Li H, Jiao J, Zhang H, Gautier R, Wang J. Chemical Transformation of Lead Halide Perovskite into Insoluble, Less Cytotoxic, and Brightly Luminescent CsPbBr 3/CsPb 2Br 5 Composite Nanocrystals for Cell Imaging. ACS APPLIED MATERIALS & INTERFACES 2019; 11:24241-24246. [PMID: 31245989 DOI: 10.1021/acsami.9b05484] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Lead halide perovskite nanocrystals (NCs) have been widely investigated owing to their potential applications as optoelectronic devices. However, these materials suffer from poor water stability, which make them impossible to be applied in biomedicine. Here, insoluble CsPbBr3/CsPb2Br5 composite NCs were successfully synthesized via simple water-assisted chemical transformation of perovskite NCs. Water plays two key roles in this synthesis: (i) stripping CsBr from CsPbBr3/Cs4PbBr6 and (ii) modifying the coordination number of Pb2+ (six in CsPbBr3 and Cs4PbBr6 vs eight in CsPb2Br5). The as-prepared CsPbBr3/CsPb2Br5 composite NCs not only retain the photoluminescence quantum yield (up to 80%) and a narrow full width to half-maximum of 16 nm, but also present excellent water stability and low cytotoxicity. With these properties, the CsPbBr3/CsPb2Br5 composite NCs were demonstrated as efficient fluorescent probes in live HeLa cells. We believe that our finding not only provides a new method to prepare insoluble, narrow-band, and brightly luminescent CsPbBr3/CsPb2Br5 composite NCs, but also extend the potential applications of lead halides in biomedicine.
Collapse
Affiliation(s)
- Sunqi Lou
- Ministry of Education Key Laboratory of Bioinorganic and Synthetic Chemistry, State Key Laboratory of Optoelectronic Materials and Technologies, School of Chemistry, School of Materials Science and Engineering , Sun Yat-Sen University , Guangzhou 510275 , China
| | - Zhi Zhou
- Hunan Provincial Engineering Technology Research Center for Optical Agriculture College of Science , Hunan Agricultural University , Changsha 410128 , China
| | - Tongtong Xuan
- Ministry of Education Key Laboratory of Bioinorganic and Synthetic Chemistry, State Key Laboratory of Optoelectronic Materials and Technologies, School of Chemistry, School of Materials Science and Engineering , Sun Yat-Sen University , Guangzhou 510275 , China
| | - Huili Li
- Engineering Research Center for Nanophotonics & Advanced Instrument, Ministry of Education, School of Physics and Materials Science , East China Normal University , Shanghai 200062 , China
| | - Ju Jiao
- Ministry of Education Key Laboratory of Bioinorganic and Synthetic Chemistry, State Key Laboratory of Optoelectronic Materials and Technologies, School of Chemistry, School of Materials Science and Engineering , Sun Yat-Sen University , Guangzhou 510275 , China
| | - Hongwu Zhang
- Key Lab of Urban Pollutant Conversion , Institute of Urban Environment, Chinese Academy of Sciences , Xiamen , Fujian 361021 , China
| | - Romain Gautier
- Ministry of Education Key Laboratory of Bioinorganic and Synthetic Chemistry, State Key Laboratory of Optoelectronic Materials and Technologies, School of Chemistry, School of Materials Science and Engineering , Sun Yat-Sen University , Guangzhou 510275 , China
- Institut des Matériaux Jean Rouxel (IMN) , Université de Nantes , 2 rue de la Houssinière , BP 32229, 44322 Nantes cedex 3 , France
| | - Jing Wang
- Ministry of Education Key Laboratory of Bioinorganic and Synthetic Chemistry, State Key Laboratory of Optoelectronic Materials and Technologies, School of Chemistry, School of Materials Science and Engineering , Sun Yat-Sen University , Guangzhou 510275 , China
| |
Collapse
|
14
|
Bao J, Hadjiev VG. Origin of Luminescent Centers and Edge States in Low-Dimensional Lead Halide Perovskites: Controversies, Challenges and Instructive Approaches. NANO-MICRO LETTERS 2019; 11:26. [PMID: 34137990 PMCID: PMC7770881 DOI: 10.1007/s40820-019-0254-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Accepted: 02/21/2019] [Indexed: 05/23/2023]
Abstract
With only a few deep-level defect states having a high formation energy and dominance of shallow carrier non-trapping defects, the defect-tolerant electronic and optical properties of lead halide perovskites have made them appealing materials for high-efficiency, low-cost, solar cells and light-emitting devices. As such, recent observations of apparently deep-level and highly luminescent states in low-dimensional perovskites have attracted enormous attention as well as intensive debates. The observed green emission in 2D CsPb2Br5 and 0D Cs4PbBr6 poses an enigma over whether it is originated from intrinsic point defects or simply from highly luminescent CsPbBr3 nanocrystals embedded in the otherwise transparent wide band gap semiconductors. The nature of deep-level edge emission in 2D Ruddlesden-Popper perovskites is also not well understood. In this mini review, the experimental evidences that support the opposing interpretations are analyzed, and challenges and root causes for the controversy are discussed. Shortcomings in the current density functional theory approaches to modeling of properties and intrinsic point defects in lead halide perovskites are also noted. Selected experimental approaches are suggested to better correlate property with structure of a material and help resolve the controversies. Understanding and identification of the origin of luminescent centers will help design and engineer perovskites for wide device applications.
Collapse
Affiliation(s)
- Jiming Bao
- Department of Electrical and Computer Engineering, University of Houston, Houston, TX, 77204, USA.
- Department of Chemistry, University of Houston, Houston, TX, 77204, USA.
- Materials Science and Engineering, University of Houston, Houston, TX, 77204, USA.
| | - Viktor G Hadjiev
- Texas Center for Superconductivity, University of Houston, Houston, TX, 77204, USA.
- Department of Mechanical Engineering, University of Houston, Houston, TX, 77204, USA.
| |
Collapse
|
15
|
Shamsi J, Urban AS, Imran M, De Trizio L, Manna L. Metal Halide Perovskite Nanocrystals: Synthesis, Post-Synthesis Modifications, and Their Optical Properties. Chem Rev 2019; 119:3296-3348. [PMID: 30758194 PMCID: PMC6418875 DOI: 10.1021/acs.chemrev.8b00644] [Citation(s) in RCA: 601] [Impact Index Per Article: 100.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Indexed: 01/17/2023]
Abstract
Metal halide perovskites represent a flourishing area of research, which is driven by both their potential application in photovoltaics and optoelectronics and by the fundamental science behind their unique optoelectronic properties. The emergence of new colloidal methods for the synthesis of halide perovskite nanocrystals, as well as the interesting characteristics of this new type of material, has attracted the attention of many researchers. This review aims to provide an up-to-date survey of this fast-moving field and will mainly focus on the different colloidal synthesis approaches that have been developed. We will examine the chemistry and the capability of different colloidal synthetic routes with regard to controlling the shape, size, and optical properties of the resulting nanocrystals. We will also provide an up-to-date overview of their postsynthesis transformations, and summarize the various solution processes that are aimed at fabricating halide perovskite-based nanocomposites. Furthermore, we will review the fundamental optical properties of halide perovskite nanocrystals by focusing on their linear optical properties, on the effects of quantum confinement, and on the current knowledge of their exciton binding energies. We will also discuss the emergence of nonlinear phenomena such as multiphoton absorption, biexcitons, and carrier multiplication. Finally, we will discuss open questions and possible future directions.
Collapse
Affiliation(s)
- Javad Shamsi
- Nanochemistry
Department, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genova, Italy
| | - Alexander S. Urban
- Nanospectroscopy
Group, Department of Physics and Center for Nanoscience (CeNS), Ludwig-Maximilians-Universität (LMU), Amalienstaße 54, 80799 Munich, Germany
| | - Muhammad Imran
- Nanochemistry
Department, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genova, Italy
- Dipartimento
di Chimica e Chimica Industriale, Università
degli Studi di Genova, Via Dodecaneso 31, 16146 Genova, Italy
| | - Luca De Trizio
- Nanochemistry
Department, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genova, Italy
| | - Liberato Manna
- Nanochemistry
Department, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genova, Italy
- Kavli
Institute of Nanoscience and Department of Chemical Engineering, Delft University of Technology, PO Box 5, 2600AA Delft, The Netherlands
| |
Collapse
|
16
|
Acharyya P, Pal P, Samanta PK, Sarkar A, Pati SK, Biswas K. Single pot synthesis of indirect band gap 2D CsPb 2Br 5 nanosheets from direct band gap 3D CsPbBr 3 nanocrystals and the origin of their luminescence properties. NANOSCALE 2019; 11:4001-4007. [PMID: 30768107 DOI: 10.1039/c8nr09349k] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Two-dimensional (2D) perovskites recently attracted significant interest due to their unique and novel optoelectronic properties. CsPb2Br5, a 2D inorganic perovskite halide, is an indirect band gap semiconductor, and hence it is not supposed to be luminescent. However, a fundamental understanding of the origin of its luminescence properties is still lacking as there are contradictory literature reports present concerning its luminescence properties. Here, we demonstrate a single pot solution based transformation of 2D CsPb2Br5 nanosheets from the nanocrystals of 3D CsPbBr3 and investigate the origin of its luminescence properties by detailed experiments and density functional theory (DFT) calculations. The photoluminescence of CsPb2Br5 originates from the different amorphous lead bromide ammonium complexes which are present at the surface of the nanosheets. We have also highlighted the formation mechanism of 2D nanosheets from 3D CsPbBr3 nanocrystals. These combined theoretical and experimental studies offer significant insights into the optical properties and formation mechanism of 2D CsPb2Br5 perovskites.
Collapse
Affiliation(s)
- Paribesh Acharyya
- New Chemistry Unit, Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Bangalore 560064, India.
| | | | | | | | | | | |
Collapse
|