1
|
Tang Q, Li Q, Shi L, Liu W, Li B, Jin Y. Multifunctional DNA nanoprobe for tumor-targeted synergistic therapy by integrating chemodynamic therapy with gene silencing. NANOSCALE HORIZONS 2023; 8:1106-1112. [PMID: 37317707 DOI: 10.1039/d2nh00575a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Due to the high complexity, diversity and heterogeneity of tumor occurrence and development, multi-mode synergistic therapy is more effective than single treatment modes to improve the antitumor efficacy. Also, multifunctional probes are crucial to realize synergistic therapy. Herein, a multifunctional DNA tetrahedron nanoprobe was ingeniously designed to simultaneously achieve chemodynamic therapy (CDT) and gene silencing for synergistic antitumor. The multifunctional DNA tetrahedron nanoprobe, DNA tetrahedron-silver nanocluster-antagomir-21 (D-sgc8-DTNS-AgNCs-Anta-21), integrated a CDT reagent (DNA-AgNCs) and miRNA-21 inhibitor (Anta-21) with a specific recognition probe (aptamer). After targeted entry in cancer cells, D-sgc8-DTNS-AgNCs-Anta-21 silenced endogenous miRNA-21 by Anta-21 and produced highly toxic ˙OH by reacting with H2O2, which induced apoptosis in the tumor cells. The targeted recognition of aptamers led to the concentration-dependent death of HeLa cells. On the contrary, the cell survival rate of normal cells was basically unaffected with an increase in the concentration of D-sgc8-DTNS-AgNCs-Anta-21. Therefore, the diverse functions, biocompatibility and programmability of DNA provide a useful and easy way to assemble multifunctional probes for synergistic therapy.
Collapse
Affiliation(s)
- Qiaorong Tang
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, China.
| | - Qianqian Li
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, China.
| | - Lu Shi
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, China.
| | - Wei Liu
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, China.
| | - Baoxin Li
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, China.
| | - Yan Jin
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, China.
| |
Collapse
|
2
|
Chen K, Wang G, Wang X, Wang H. A smartphone-based ratiometric fluoroprobe based on blue-red dual-emission signals of thiochrome and copper nanoclusters for sensitive assay of metam-sodium in cucumbers. Talanta 2023; 261:124673. [PMID: 37207510 DOI: 10.1016/j.talanta.2023.124673] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Revised: 05/01/2023] [Accepted: 05/12/2023] [Indexed: 05/21/2023]
Abstract
It is of great importance to develop the highly efficient fluorescence strategy for rapid/sensitive detection of metam-sodium (MES) in evaluating its residual safety, especially in fresh vegetables. Herein, we prepared an organic fluorophore (thiochrome, TC) and glutathione-capped copper nanoclusters (GSH-CuNCs), and their combination (TC/GSH-CuNCs) was sucessfully employed as a ratiometric fluoroprobe by means of the blue-red dual emission. The fluorescence intensities (FIs) of TC decreased upon the addition of GSH-CuNCs via the fluorescence resonance energy transfer (FRET) process. When fortified at the constant levels of GSH-CuNCs and TC, MES substantially reduced the FIs of GSH-CuNCs, while this was not the case in the FIs of TC except for the prominent red-shift of ∼30 nm. Compared to the previous fluoroprobes, the TC/GSH-CuNCs based fluoroprobe supplied wider linear range of 0.2-500 μM, lower detection limit (60 nM), and satisfactory fortification recoveries (80-107%) for MES in the cucumber samples. Based on the fluorescence quenching phenomenon, a smartphone application was used to output RGB values of the captured images for the colored solution. The smartphone-based ratiometric sensor could be utilized for the visual fluorescent quantitation of MES by virtue of the R/B values in cucumbers, which gave linear range (1-200 μM) and LOD (0.3 μM). By means of blue-red dual-emission fluorescence, the smartphone-based fluoroprobe provides a cost-effective, portable and reliable avenue for the on-site, rapid and sensitive assay of MES's residues in complex vegetable samples.
Collapse
Affiliation(s)
- Kun Chen
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China; College of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, 325035, China
| | - Guixin Wang
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China
| | - Xuedong Wang
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China.
| | - Huili Wang
- College of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, 325035, China.
| |
Collapse
|
3
|
Liu H, Zhu C, Mou C. Duplex-specific nuclease and Exo-III enzyme-assisted signal amplification cooperating DNA-templated silver nanoclusters for label-free and sensitive miRNA detection. J Anal Sci Technol 2022. [DOI: 10.1186/s40543-022-00335-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
AbstractDevelopment of novel miRNA detection strategies plays a crucial role in fundamental research and clinical diagnosis of various diseases, such as infantile pneumonia. We herein develop a rapid and sensitive DNA-templated AgNCs-based miRNA detection approach, pinning the hope on an improved detection sensitivity in an easy-to-operate way. In the method, a hairpin probe is designed to specifically bind with target miRNA, and to initiate the DSN enzyme and Exo-III-assisted dual signal recycles. The resultant guanine-rich DNA sequences after signal amplification turn on the fluorescence of the dark AgNCs by hybridizing with the DNA template of the dark AgNCs. The generated signals are correlated with the amounts of target miRNA in the sensing system. Through a series of experiments, the established approach exhibits a great dynamic range of more than seven orders of magnitude with a low limit of detection of 245 aM, holding great promises for miRNA-related researches and disease diagnosis.
Graphical abstract
Collapse
|
4
|
Chen J, Liu J, Wu D, Pan R, Chen J, Wu Y, Huang M, Li G. CRISPR/Cas Precisely Regulated DNA-Templated Silver Nanocluster Fluorescence Sensor for Meat Adulteration Detection. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:14296-14303. [PMID: 36288511 DOI: 10.1021/acs.jafc.2c04500] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Meat adulteration can cause consumer fraud, food allergies, and religious issues. Rapid and sensitive detection methods are urgently demanded to supervise meat authenticity. Herein, a clustered regularly interspaced short palindromic repeats (CRISPR)/Cas precisely regulated DNA-templated silver nanocluster (DNA-AgNC) sensor was ingeniously designed to detect meat adulteration. Specific sequence recognition of CRISPR/Cas12a allowed accurate identification of target DNA. The emerging label-free fluorescent probes, DNA-AgNCs, a class of promising fluorophores in biochemical analysis with attractive photostability and remarkably enhanced fluorescence properties, were first introduced as the substrates of CRISPR/Cas12a system, allowing a sensitive output of amplified signals through the precise regulation of the unique target DNA-activated trans-cleavage activity of Cas12a. Based on this specific recognition, efficient signal transduction of CRISPR/Cas12a, and the outstanding fluorescence properties of DNA-AgNCs, the proposed strategy achieved a satisfactory linear range from 10 pM to 1 μM with a limit of detection (LOD) as low as 1.9 pM, which can achieve sensitive detection of meat adulteration.
Collapse
Affiliation(s)
- Jiahui Chen
- School of Food Science and Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Jianghua Liu
- School of Food Science and Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Di Wu
- Institute for Global Food Security, School of Biological Sciences, Queen's University Belfast, 19 Chlorine Gardens, Belfast BT9 5DL, U.K
| | - Ruiyuan Pan
- School of Food Science and Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Jian Chen
- School of Food Science and Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Yongning Wu
- School of Food Science and Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
- NHC Key Laboratory of Food Safety Risk Assessment, Food Safety Research Unit (2019RU014) of Chinese Academy of Medical Science, China National Center for Food Safety Risk Assessment, Beijing 100021, China
| | - Mingquan Huang
- Beijing Laboratory of Food Quality and Safety, Beijing Technology and Business University, Beijing 100048, China
| | - Guoliang Li
- School of Food Science and Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| |
Collapse
|
5
|
Orientational screening of ssDNA-templated silver nanoclusters and application for bleomycin assay. Colloid Polym Sci 2021. [DOI: 10.1007/s00396-021-04890-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
6
|
Fluorometric detection of cancer marker FEN1 based on double-flapped dumbbell DNA nanoprobe functionalized with silver nanoclusters. Anal Chim Acta 2021; 1148:238194. [DOI: 10.1016/j.aca.2020.12.069] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 12/26/2020] [Accepted: 12/29/2020] [Indexed: 02/06/2023]
|
7
|
Qiu Q, Gao RR, Xie A, Jiao Y, Dong W. A ratiometric fluorescent sensor with different DNA-templated Ag NCs as signals for ATP detection. J Photochem Photobiol A Chem 2020. [DOI: 10.1016/j.jphotochem.2020.112725] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
8
|
Guo Y, Amunyela HTNN, Cheng Y, Xie Y, Yu H, Yao W, Li HW, Qian H. Natural protein-templated fluorescent gold nanoclusters: Syntheses and applications. Food Chem 2020; 335:127657. [PMID: 32738539 DOI: 10.1016/j.foodchem.2020.127657] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2020] [Revised: 07/01/2020] [Accepted: 07/21/2020] [Indexed: 12/19/2022]
Abstract
For the past decades, the synthesis of metal nanoclusters has been a great interest for research, for their unique physicochemical properties and great contributions to the catalytic, electrical and biomedical applications. Protein-templated gold nanoclusters (AuNCs) is a kind of fluorescent nanomaterials with good solubility, excellent stability, biocompatibility, decent quantum yields and active groups (-COOH, -NH2) for facilitating modifications. Natural proteins are easily available, commercially affordable, diverse and multitudinous in animals, plants and foods, which provide a template pool for the exploration of AuNCs. This is one of the few reviews of specifically focusing on the natural protein-templated fluorescent AuNCs. The syntheses, properties and applications of different AuNCs were enumerated. Prospects were given on utilizing structure-modified proteins, bioactive enzymes, antibodies which should endow the AuNCs more favourable fluorescence performances and functional characteristics. The applications of AuNCs in analytical, biomedical and food sciences would be further heightened.
Collapse
Affiliation(s)
- Yahui Guo
- State Key Laboratory of Food Science and Technology, National Center for Technology Innovation on Fast Biological Detection of Grain Quality and Safety, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; Department of Chemistry, Hong Kong Baptist University, Kowloon Tong, Hong Kong, China
| | - Helena T N N Amunyela
- State Key Laboratory of Food Science and Technology, National Center for Technology Innovation on Fast Biological Detection of Grain Quality and Safety, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Yuliang Cheng
- State Key Laboratory of Food Science and Technology, National Center for Technology Innovation on Fast Biological Detection of Grain Quality and Safety, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Yunfei Xie
- State Key Laboratory of Food Science and Technology, National Center for Technology Innovation on Fast Biological Detection of Grain Quality and Safety, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Hang Yu
- State Key Laboratory of Food Science and Technology, National Center for Technology Innovation on Fast Biological Detection of Grain Quality and Safety, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Weirong Yao
- State Key Laboratory of Food Science and Technology, National Center for Technology Innovation on Fast Biological Detection of Grain Quality and Safety, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Hung-Wing Li
- Department of Chemistry, Hong Kong Baptist University, Kowloon Tong, Hong Kong, China.
| | - He Qian
- State Key Laboratory of Food Science and Technology, National Center for Technology Innovation on Fast Biological Detection of Grain Quality and Safety, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China.
| |
Collapse
|
9
|
Dang W, Luo R, Fan J, Long Y, Tong C, Xiao F, Xiong X, Liu B. RNase A activity analysis and imaging using label-free DNA-templated silver nanoclusters. Talanta 2020; 209:120512. [PMID: 31892040 DOI: 10.1016/j.talanta.2019.120512] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Revised: 10/19/2019] [Accepted: 10/26/2019] [Indexed: 01/14/2023]
Abstract
A label-free, ultra-sensitive and turn-on method for detecting RNase A has been developed using enhanced DNA-templated silver nanoclusters (DNA-AgNCs) as the fluorescence probe. In this system, an RNA strand, which can perfectly hybridize with DNA template of nanocluster synthesis, was applied to lock the fluorescent signal of DNA-AgNCs by forming an RNA/DNA duplex. Meanwhile, the hybridized RNA/DNA duplex was used as the substrate of RNase A. The fluorescence signal of AgNCs was restored due to the degradation of RNA by RNase A. From the fluorescence signal change of this system caused by RNase A, it was found that the fluorescence signal showed a positive linear relation with RNase A concentration in the range from 0.2 pg/μL to 10 pg/μL with a detection limit of 0.098 pg/μL. Except for potential inhibitor screening and the kinetic study of this enzyme, this strategy was further used for monitoring dynamic change of RNase A in living cells successfully. In summary, the simple and sensitive method for RNase A assay can be hopefully used for drug screening in vitro and in vivo.
Collapse
Affiliation(s)
- Wenya Dang
- College of Biology, Hunan University, Changsha, 410082, China
| | - Ruxin Luo
- College of Biology, Hunan University, Changsha, 410082, China
| | - Jialong Fan
- College of Biology, Hunan University, Changsha, 410082, China
| | - Ying Long
- College of Biology, Hunan University, Changsha, 410082, China
| | - Chunyi Tong
- College of Biology, Hunan University, Changsha, 410082, China
| | - Feng Xiao
- College of Biology, Hunan University, Changsha, 410082, China
| | - Xiang Xiong
- Department of Burn and Plastic Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China.
| | - Bin Liu
- College of Biology, Hunan University, Changsha, 410082, China.
| |
Collapse
|
10
|
Guo Y, Shen F, Cheng Y, Yu H, Xie Y, Yao W, Pei R, Qian H, Li HW. DNA-Hairpin-Templated Silver Nanoclusters: A Study on Stem Sequence. J Phys Chem B 2020; 124:1592-1601. [PMID: 32045529 DOI: 10.1021/acs.jpcb.9b09741] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
DNA hairpins are widely used to synthesize silver nanoclusters (AgNCs) with excellent optical properties due to their specific secondary structure. Hairpin-AgNCs have been popularly employed for sensoring applications, while no systematic study has been done about the effect of stem sequence on the fluorescence property of hairpin-AgNCs. In this presented work, the synthesizing conditions of hairpin-AgNCs were fully examined first. Then, the effect of percentage content and distribution of GC base pairs as well as stem length on the fluorescence property of hairpin-AgNCs were studied. Intriguing phenomena were observed and basic conclusions were drawn, which would be helpful to understand the hairpin-AgNCs comprehensively and instructional for the applications using hairpin-AgNC probes.
Collapse
Affiliation(s)
- Yahui Guo
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China.,Department of Chemistry, Hong Kong Baptist University, Kowloon Tong, Hong Kong, China
| | - Fumiao Shen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Yuliang Cheng
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Hang Yu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Yunfei Xie
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Weirong Yao
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Renjun Pei
- CAS Key Laboratory of Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Ruoshui Road, Suzhou 215123, China
| | - He Qian
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Hung-Wing Li
- Department of Chemistry, Hong Kong Baptist University, Kowloon Tong, Hong Kong, China
| |
Collapse
|
11
|
Three-way junction-promoted recycling amplification for sensitive DNA detection using highly bright DNA-silver nanocluster as label-free output. Talanta 2020; 206:120216. [DOI: 10.1016/j.talanta.2019.120216] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Revised: 07/15/2019] [Accepted: 07/31/2019] [Indexed: 12/11/2022]
|
12
|
Guo Y, Pan X, Zhang W, Hu Z, Wong KW, He Z, Li HW. Label-free probes using DNA-templated silver nanoclusters as versatile reporters. Biosens Bioelectron 2019; 150:111926. [PMID: 31929081 DOI: 10.1016/j.bios.2019.111926] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2019] [Revised: 11/17/2019] [Accepted: 11/25/2019] [Indexed: 12/17/2022]
Abstract
DNA-templated silver nanoclusters (DNA-AgNCs) have demonstrated pervasive applications in analytical chemistry recently. As a way of signal output in DNA-based detection methods, DNA-AgNCs have prominent advantages: first, the recognition and synthesizing sequences are naturally integrated in one DNA probe without any chemical modification or connection; second, the emissive wavelength of DNA-AgNCs can be adjusted in a wide range by employing different sequences; third, DNA-AgNCs can be utilized for producing not only fluorescence, also electrochemiluminescence and electrochemical signals. Besides, they also show potential applications for cell imaging, and are considered to be one of the most ideal nanomaterials for in-vivo imaging due to their ultra-small particle size. In this review, a brief and comprehensive introduction of DNA-AgNCs is firstly given, then label-free probes using DNA-AgNCs are classified and summarized, lastly concluding perspectives are provided on the defects and application potentials.
Collapse
Affiliation(s)
- Yahui Guo
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, China; Department of Chemistry, Hong Kong Baptist University, Kowloon Tong, Hong Kong, China
| | - Xinyue Pan
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
| | - Wenya Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
| | - Zhigang Hu
- Wuxi Children's Hospital, Wuxi People's Hospital Affiliated to Nanjing Medical University, Wuxi, China
| | - Ka-Wang Wong
- Department of Chemistry, Hong Kong Baptist University, Kowloon Tong, Hong Kong, China
| | - Zhike He
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, China
| | - Hung-Wing Li
- Department of Chemistry, Hong Kong Baptist University, Kowloon Tong, Hong Kong, China.
| |
Collapse
|
13
|
Cao X, Bai Y, Li F, Liu F, Lu S. One‐Pot Synthesis of Highly Fluorescent Poly(methacrylic acid)‐Capped Silver Nanoclusters for the Specific Detection of Iron(II). ChemistrySelect 2019. [DOI: 10.1002/slct.201903673] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Xueling Cao
- College of Chemical & Pharmaceutical EngineeringJilin Institute of Chemical Technology Jilin City 132022 China
| | - Yageng Bai
- College of Chemical & Pharmaceutical EngineeringJilin Institute of Chemical Technology Jilin City 132022 China
| | - Fei Li
- College of Chemical & Pharmaceutical EngineeringJilin Institute of Chemical Technology Jilin City 132022 China
| | - Faxian Liu
- Jilin Petrochemical Company Jilin City 130012 China
| | - Shulai Lu
- Jilin Petrochemical Company Jilin City 130012 China
| |
Collapse
|
14
|
Shen F, Cheng Y, Xie Y, Yu H, Yao W, Li HW, Guo Y, Qian H. DNA-silver nanocluster probe for norovirus RNA detection based on changes in secondary structure of nucleic acids. Anal Biochem 2019; 583:113365. [DOI: 10.1016/j.ab.2019.113365] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Revised: 07/15/2019] [Accepted: 07/16/2019] [Indexed: 02/06/2023]
|
15
|
Cheng H, Yang L, Zhang S, Rao D, Lu X. Two‐channel near‐infrared fluorescence Ag
+
ion sensing of a new star‐shaped dendrimer. LUMINESCENCE 2019; 34:615-622. [DOI: 10.1002/bio.3647] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Revised: 04/18/2019] [Accepted: 04/26/2019] [Indexed: 01/26/2023]
Affiliation(s)
- Huan‐ren Cheng
- School of Chemistry and Chemical EngineeringHubei Polytechnic University China
| | - Ling Yang
- Huangshi Environmental Protection Institution Huangshi China
| | - Song Zhang
- School of Chemistry and Chemical EngineeringHubei Polytechnic University China
| | - Di Rao
- School of Chemistry and Chemical EngineeringHubei Polytechnic University China
| | - Xiao‐ju Lu
- School of Chemistry and Chemical EngineeringHubei Polytechnic University China
| |
Collapse
|