1
|
Wang XY, Lv J, Wu X, Hong Q, Qian RC. The Modification and Applications of Nanopipettes in Electrochemical Analysis. Chempluschem 2023; 88:e202300100. [PMID: 37442793 DOI: 10.1002/cplu.202300100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 05/31/2023] [Indexed: 07/15/2023]
Abstract
Nanopipette, which is fabricated by glasses and possesses a nanoscale pore in the tip, has been proven to be immensely useful in electrochemical analysis. Numerous nanopipette-based sensors have emerged with improved sensitivity, selectivity, ease of use, and miniaturization. In this minireview, we provide an overview of the recent developments of nanopipette-based electrochemical sensors based on different types of nanopipettes, including single-nanopipettes, self-referenced nanopipettes, dual-nanopipettes, and double-barrel nanopipettes. Several important modification materials for nanopipette functionalization are highlighted, such as conductive materials, macromolecular materials, and functional molecules. These materials can improve the sensing performance and targeting specificities of nanopipettes. We also discuss examples of related applications and the future development of nanopipette-based strategies.
Collapse
Affiliation(s)
- Xiao-Yuan Wang
- Key Laboratory for Advanced Materials &, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 200237, Shanghai, P. R. China
| | - Jian Lv
- Key Laboratory for Advanced Materials &, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 200237, Shanghai, P. R. China
| | - Xue Wu
- Key Laboratory for Advanced Materials &, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 200237, Shanghai, P. R. China
| | - Qin Hong
- Key Laboratory for Advanced Materials &, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 200237, Shanghai, P. R. China
| | - Ruo-Can Qian
- Key Laboratory for Advanced Materials &, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 200237, Shanghai, P. R. China
| |
Collapse
|
2
|
Seifert J, Rheinlaender J, von Eysmondt H, Schäffer TE. Mechanics of migrating platelets investigated with scanning ion conductance microscopy. NANOSCALE 2022; 14:8192-8199. [PMID: 35621412 DOI: 10.1039/d2nr01187e] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Platelets are small blood cells involved in hemostasis, wound healing, and immune response. After adhesion and spreading, platelets can migrate at sites of injury inducing an early immune response to inflammation or infection. Platelet migration requires fibrinogen-integrin binding and fibrinogen depletion from the substrate inducing a self-generated ligand gradient guiding the direction of migration. This type of cellular motion is referred to as haptotactic migration. The underlying mechanisms of haptotactic platelet migration have just recently been discovered, but the connection to platelet mechanics has remained unknown yet. Using scanning ion conductance microscopy (SICM), we investigated the three-dimensional morphology and mechanics of platelets during haptotactic migration for the first time. Migrating platelets showed a polarized, anisotropic shape oriented in the direction of migration. This polarization goes hand in hand with a characteristic subcellular stiffness distribution showing a region of increased stiffness at the leading edge. Moreover, the mechanical properties of the leading edge revealed a highly dynamic stiffening and softening process with rapid changes of the elastic modulus by a factor of up to 5× per minute. Inhibition of actin polymerization stopped the dynamic stiffening and softening process and halted the migration. By combining SICM with confocal fluorescence microscopy, we found that the increased stiffness and mechanical dynamics at the leading edge coincided with an increased volumetric F-actin density. Our data provide a connection between platelet mechanics and the cytoskeletal contribution to the migration process of platelets.
Collapse
Affiliation(s)
- Jan Seifert
- Institute of Applied Physics, University of Tübingen, Auf der Morgenstelle 10, 72076 Tübingen, Germany.
| | - Johannes Rheinlaender
- Institute of Applied Physics, University of Tübingen, Auf der Morgenstelle 10, 72076 Tübingen, Germany.
| | - Hendrik von Eysmondt
- Institute of Applied Physics, University of Tübingen, Auf der Morgenstelle 10, 72076 Tübingen, Germany.
| | - Tilman E Schäffer
- Institute of Applied Physics, University of Tübingen, Auf der Morgenstelle 10, 72076 Tübingen, Germany.
| |
Collapse
|
3
|
Ghiman R, Pop R, Rugina D, Focsan M. Recent progress in preparation of microcapsules with tailored structures for bio-medical applications. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2021.131366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
4
|
Abstract
Scanning ion conductance microscopy (SICM) has emerged as a versatile tool for studies of interfaces in biology and materials science with notable utility in biophysical and electrochemical measurements. The heart of the SICM is a nanometer-scale electrolyte filled glass pipette that serves as a scanning probe. In the initial conception, manipulations of ion currents through the tip of the pipette and appropriate positioning hardware provided a route to recording micro- and nanoscopic mapping of the topography of surfaces. Subsequent advances in instrumentation, probe design, and methods significantly increased opportunities for SICM beyond recording topography. Hybridization of SICM with coincident characterization techniques such as optical microscopy and faradaic electrodes have brought SICM to the forefront as a tool for nanoscale chemical measurement for a wide range of applications. Modern approaches to SICM realize an important tool in analytical, bioanalytical, biophysical, and materials measurements, where significant opportunities remain for further exploration. In this review, we chronicle the development of SICM from the perspective of both the development of instrumentation and methods and the breadth of measurements performed.
Collapse
Affiliation(s)
- Cheng Zhu
- Department of Chemistry, Indiana University, 800 E. Kirkwood Avenue, Bloomington, Indiana 47405, United States
| | - Kaixiang Huang
- Department of Chemistry, Indiana University, 800 E. Kirkwood Avenue, Bloomington, Indiana 47405, United States
| | - Natasha P Siepser
- Department of Chemistry, Indiana University, 800 E. Kirkwood Avenue, Bloomington, Indiana 47405, United States
| | - Lane A Baker
- Department of Chemistry, Indiana University, 800 E. Kirkwood Avenue, Bloomington, Indiana 47405, United States
| |
Collapse
|
5
|
Klenerman D, Korchev Y, Novak P, Shevchuk A. Noncontact Nanoscale Imaging of Cells. ANNUAL REVIEW OF ANALYTICAL CHEMISTRY (PALO ALTO, CALIF.) 2021; 14:347-361. [PMID: 34314223 DOI: 10.1146/annurev-anchem-091420-120101] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
The reduction in ion current as a fine pipette approaches a cell surface allows the cell surface topography to be imaged, with nanoscale resolution, without contact with the delicate cell surface. A variety of different methods have been developed and refined to scan the topography of the dynamic cell surface at high resolution and speed. Measurement of cell topography can be complemented by performing local probing or mapping of the cell surface using the same pipette. This can be done by performing single-channel recording, applying force, delivering agonists, using pipettes fabricated to contain an electrochemical probe, or combining with fluorescence imaging. These methods in combination have great potential to image and map the surface of live cells at the nanoscale.
Collapse
Affiliation(s)
- David Klenerman
- Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, United Kingdom;
| | - Yuri Korchev
- Imperial College Faculty of Medicine, London Centre for Nanotechnology, London W12 0NN, United Kingdom
- Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
| | - Pavel Novak
- Imperial College Faculty of Medicine, London Centre for Nanotechnology, London W12 0NN, United Kingdom
- National University of Science and Technology (MISiS), Moscow 119991, Russia
| | - Andrew Shevchuk
- Imperial College Faculty of Medicine, London Centre for Nanotechnology, London W12 0NN, United Kingdom
| |
Collapse
|
6
|
Demina PA, Sindeeva OA, Abramova AM, Prikhozhdenko ES, Verkhovskii RA, Lengert EV, Sapelkin AV, Goryacheva IY, Sukhorukov GB. Fluorescent Convertible Capsule Coding Systems for Individual Cell Labeling and Tracking. ACS APPLIED MATERIALS & INTERFACES 2021; 13:19701-19709. [PMID: 33900738 DOI: 10.1021/acsami.1c02767] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
In modern biomedical science and developmental biology, there is significant interest in optical tagging to study individual cell behavior and migration in large cellular populations. However, there is currently no tagging system that can be used for labeling individual cells on demand in situ with subsequent discrimination in between and long-term tracking of individual cells. In this article, we demonstrate such a system based on photoconversion of the fluorescent dye rhodamine B co-confined with carbon nanodots in the volume of micron-sized polyelectrolyte capsules. We show that this new fluorescent convertible capsule coding system is robust and is actively uptaken by cell lines while demonstrating low toxicity. Using a variety of cellular lines, we demonstrate how this tagging system can be used for code-like marking and long-term tracking of multiple individual cells in large cellular populations.
Collapse
Affiliation(s)
- Polina A Demina
- Saratov State University, 83 Astrakhanskaya Street, Saratov 410012, Russia
| | - Olga A Sindeeva
- Saratov State University, 83 Astrakhanskaya Street, Saratov 410012, Russia
- Skolkovo Institute of Science and Technology, Moscow 121205, Russia
| | - Anna M Abramova
- Saratov State University, 83 Astrakhanskaya Street, Saratov 410012, Russia
| | | | | | | | - Andrei V Sapelkin
- Saratov State University, 83 Astrakhanskaya Street, Saratov 410012, Russia
- Queen Mary University of London, Mile End Road, London E1 4NS, U.K
| | | | - Gleb B Sukhorukov
- Skolkovo Institute of Science and Technology, Moscow 121205, Russia
- Queen Mary University of London, Mile End Road, London E1 4NS, U.K
| |
Collapse
|
7
|
Swiatlowska P, Sanchez-Alonso JL, Mansfield C, Scaini D, Korchev Y, Novak P, Gorelik J. Short-term angiotensin II treatment regulates cardiac nanomechanics via microtubule modifications. NANOSCALE 2020; 12:16315-16329. [PMID: 32720664 DOI: 10.1039/d0nr02474k] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Mechanical properties of single myocytes contribute to the whole heart performance, but the measurement of mechanics in living cells at high resolution with minimal force interaction remains challenging. Angiotensin II (AngII) is a peptide hormone that regulates a number of physiological functions, including heart performance. It has also been shown to contribute to cell mechanics by inducing cell stiffening. Using non-contact high-resolution Scanning Ion Conductance Microscopy (SICM), we determine simultaneously cell topography and membrane transverse Young's modulus (YM) by a constant pressure application through a nanopipette. While applying pressure, the vertical position is recorded and a deformation map is generated from which YM can be calculated and corrected for the uneven geometry. High resolution of this method also allows studying specific membrane subdomains, such as Z-grooves and crests. We found that short-term AngII treatment reduces the transversal YM in isolated adult rat cardiomyocytes acting via an AT1 receptor. Blocking either a TGF-β1 receptor or Rho kinase abolishes this effect. Analysis of the cytoskeleton showed that AngII depletes microtubules by decreasing long-lived detyrosinated and acetylated microtubule populations. Interestingly, in the failing cardiomyocytes, which are stiffer than controls, the short-term AngII treatment also reduces the YM, thus normalizing the mechanical state of cells. This suggests that the short-term softening effect of AngII on cardiac cells is opposite to the well-characterized long-term hypertrophic effect. In conclusion, we generate a precise nanoscale indication map of location-specific transverse cortical YM within the cell and this can substantially advance our understanding of cellular mechanics in a physiological environment, for example in isolated cardiac myocytes.
Collapse
Affiliation(s)
- Pamela Swiatlowska
- Department of Cardiovascular Sciences, National Heart and Lung Institute, Faculty of Medicine, Imperial College London, London, UK.
| | - Jose L Sanchez-Alonso
- Department of Cardiovascular Sciences, National Heart and Lung Institute, Faculty of Medicine, Imperial College London, London, UK.
| | - Catherine Mansfield
- Department of Cardiovascular Sciences, National Heart and Lung Institute, Faculty of Medicine, Imperial College London, London, UK.
| | - Denis Scaini
- Department of Medicine, Imperial College London, London, UK and International School for Advanced Studies, Trieste, Italy
| | - Yuri Korchev
- Department of Medicine, Imperial College London, London, UK and Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
| | - Pavel Novak
- Department of Medicine, Imperial College London, London, UK and National University of Science and Technology, MISiS, Leninskiy prospect 4, Moscow, 119991, Russia
| | - Julia Gorelik
- Department of Cardiovascular Sciences, National Heart and Lung Institute, Faculty of Medicine, Imperial College London, London, UK.
| |
Collapse
|
8
|
Zhuang J, Cheng L, Liao X, Zia AA, Wang Z. A fuzzy control for high-speed and low-overshoot hopping probe ion conductance microscopy. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2020; 91:033703. [PMID: 32259936 DOI: 10.1063/1.5114642] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Accepted: 02/07/2020] [Indexed: 06/11/2023]
Abstract
At present, hopping probe ion conductance microscopy (HPICM) is the most capable ion conductance microscopy for imaging complex surface topography. However, the HPICM controller usually does not begin to stop the pipette sample approach until the ion current reaches a threshold, which results in short deceleration distances. Furthermore, closed-loop piezo actuation usually increases the response time. These problems tend to increase the ion current overshoot and affect imaging speed and quality. A fuzzy control system was developed to solve these problems via ion current deviation and deviation rate. This lengthens the deceleration distance to enable a high-speed approach toward the sample and smooth deceleration. Open-loop control of the piezo actuator is also used to increase sensitivity. To compensate for the nonlinearity of the actuator, a multi-section fuzzy logic strategy was used to maintain performance in all sections. Glass and poly(dimethylsiloxane) samples were used to demonstrate greater imaging speed and stability of the fuzzy controller relative to those of conventional controllers.
Collapse
Affiliation(s)
- Jian Zhuang
- Key Laboratory of Education Ministry for Modern Design Rotor-Bearing System, Xi'an Jiaotong University, Xi'an 710049, China
| | - Lei Cheng
- Key Laboratory of Education Ministry for Modern Design Rotor-Bearing System, Xi'an Jiaotong University, Xi'an 710049, China
| | - Xiaobo Liao
- Key Laboratory of Education Ministry for Modern Design Rotor-Bearing System, Xi'an Jiaotong University, Xi'an 710049, China
| | - Ali Akmal Zia
- Key Laboratory of Education Ministry for Modern Design Rotor-Bearing System, Xi'an Jiaotong University, Xi'an 710049, China
| | - Zhiwu Wang
- Key Laboratory of Education Ministry for Modern Design Rotor-Bearing System, Xi'an Jiaotong University, Xi'an 710049, China
| |
Collapse
|
9
|
Roy S, Elbaz NM, Parak WJ, Feliu N. Biodegradable Alginate Polyelectrolyte Capsules As Plausible Biocompatible Delivery Carriers. ACS APPLIED BIO MATERIALS 2019; 2:3245-3256. [DOI: 10.1021/acsabm.9b00203] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Sathi Roy
- Faculty of Physics, Center for Hybrid Nanostructures (CHyN), Universität Hamburg, Hamburg, Germany
| | - Nancy M. Elbaz
- Department of Chemistry, University of Liverpool, Crown Street, Liverpool L69 7ZD, United Kingdom
| | - Wolfgang J. Parak
- Faculty of Physics, Center for Hybrid Nanostructures (CHyN), Universität Hamburg, Hamburg, Germany
| | - Neus Feliu
- Faculty of Physics, Center for Hybrid Nanostructures (CHyN), Universität Hamburg, Hamburg, Germany
| |
Collapse
|
10
|
Zyuzin MV, Timin AS, Sukhorukov GB. Multilayer Capsules Inside Biological Systems: State-of-the-Art and Open Challenges. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:4747-4762. [PMID: 30840473 DOI: 10.1021/acs.langmuir.8b04280] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
There are many reports about the interaction of multilayer capsules with biological systems in the literature. A majority of them are devoted to the in vitro study with two-dimensional cell cultures. Multilayer capsule fabrication had been under intensive investigation from 1990s and 2000s by Prof. Helmuth Möhwald, and many of his followers further developed their own research directions, focusing on capsule implementation in various fields of biology and medicine. The aim of this future article is to consistently consider the most recent advances in cell-capsule interactions for different biomedical applications, including functionalization of clinically relevant cells, nonviral gene delivery, magnetization of cells to control their movement, and in vivo drug delivery. Finally, the description and discussion of the new trends and perspectives for improved functionalities of capsules in design and functionalization of cell-assisted drug vehicles are the major topics of this work.
Collapse
Affiliation(s)
- Mikhail V Zyuzin
- Faculty of Physics and Engineering , ITMO University , Lomonosova 9 , 191002 St. Petersburg , Russia
| | - Alexander S Timin
- National Research Tomsk Polytechnic University , Lenin Avenue, 30 , 634050 Tomsk , Russian Federation
- First I. P. Pavlov State Medical University of St. Petersburg , Lev Tolstoy Street, 6/8 , 197022 St. Petersburg , Russian Federation
| | - Gleb B Sukhorukov
- National Research Tomsk Polytechnic University , Lenin Avenue, 30 , 634050 Tomsk , Russian Federation
- School of Engineering and Materials Science , Queen Mary University of London , Mile End Road , E1 4NS London , U.K
| |
Collapse
|