1
|
Li JG, Ying YL, Long YT. Aerolysin Nanopore Electrochemistry. Acc Chem Res 2025; 58:517-528. [PMID: 39874057 DOI: 10.1021/acs.accounts.4c00630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2025]
Abstract
ConspectusIons are the crucial signaling components for living organisms. In cells, their transportation across pore-forming membrane proteins is vital for regulating physiological functions, such as generating ionic current signals in response to target molecule recognition. This ion transport is affected by confined interactions and local environments within the protein pore. Therefore, the pore-forming protein can efficiently transduce the characteristics of each target molecule into ion-transport-mediated signals with high sensitivity. Inspired by nature, various protein pores have been developed into high-throughput and label-free nanopore sensors for single-molecule detection, enabling rapid and accurate readouts. In particular, aerolysin, a key virulence factor of Aeromonas hydrophila, exhibits a high sensitivity in generating ionic current fingerprints for detecting subtle differences in the sequence, conformation, and structure of DNA, proteins, polypeptides, oligosaccharides, and other molecules. Aerolysin features a cap that is approximately 14 nm wide on the cis side and a central pore that is about 10 nm long with a minimum diameter of around 1 nm. Its long lumen, with 11 charged rings at two entrances and neutral amino acids in between, facilitates the dwelling of the single analyte within the pore. This characteristic enables rich interactions between the well-defined residues within the pore and the analyte. As a result, the ionic current signal offers a unique molecular fingerprint, extending beyond the traditional volume exclusion model in nanopore sensing. In 2006, aerolysin was first reported to discriminate conformational differences of single peptides, opening the door for a rapidly growing field of aerolysin nanopore electrochemistry. Over the years, various mutant aerolysin nanopores have emerged, associated with advanced instrumentation and data analysis algorithms, enabling the simultaneous identification of over 30 targets with the number still increasing. Aerolysin nanopore electrochemistry in particular allows time-resolved qualitative and quantitative analysis ranging from DNA sequencing, proteomics, enzyme kinetics, and single-molecule reactions to potential clinical diagnostics. Especially, the feasibility of aerolysin nanopore electrochemistry in dynamic quantitative analysis would revolutionize omics studies at the single-molecule level, paving the way for the promising field of single-molecule temporal omics. Despite the success of this approach so far, it remains challenging to understand how confined interactions correlate to the distinguishable ionic signatures. Recent attempts have added correction terms to the volume exclusion model to account for variations in ion mobility within the nanopore caused by the confined interactions between the aerolysin and the analyte. Therefore, in this Account, we revisit the origin of the current blockade induced by target molecules inside the aerolysin nanopore. We highlight the contributions of the confined noncovalent interactions to the sensing ability of the aerolysin nanopore through the corrected conductance model. This Account then describes the design of interaction networks within the aerolysin nanopore, including electrostatic, hydrophobic, hydrogen-bonding, cation-π, and ion-charged amino acid interactions, for ultrasensitive biomolecular identification and quantification. Finally, we provide an outlook on further understanding the noncovalent interaction network inside the aerolysin nanopore, improving the manipulating and fine-tuning of confined electrochemistry toward a broad range of practical applications.
Collapse
Affiliation(s)
- Jun-Ge Li
- Molecular Sensing and Imaging Center, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Yi-Lun Ying
- Molecular Sensing and Imaging Center, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
- Chemistry and Biomedicine Innovation Center, Nanjing University, Nanjing 210023, China
| | - Yi-Tao Long
- Molecular Sensing and Imaging Center, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| |
Collapse
|
2
|
Sharma P, Sana T, Khatoon S, Naikoo UM, Mosina, Malhotra N, Hasnain MS, Nayak AK, Narang J. Nanopores for DNA and biomolecule analysis: Diagnostic, genomic insights, applications in energy conversion and catalysis. Anal Biochem 2025; 701:115791. [PMID: 39894145 DOI: 10.1016/j.ab.2025.115791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Revised: 01/21/2025] [Accepted: 01/27/2025] [Indexed: 02/04/2025]
Abstract
Recently, nanopores have emerged as highly significant structures with broad applications in diverse scientific and technological fields. They can naturally occur in biological membranes or be artificially fabricated using advanced techniques. Recent advances in nanopore technology have revolutionized genomics by offering previously unheard-of capacities for deoxyribo nucleic acid (DNA) sequencing and analysis. These tiny pores allow individual molecules to be found more easily, allowing for real-time DNA analysis and providing currently unheard-of insights into genetics and diagnostics. By tracking alterations in electrical or ionic currents as biomolecules traverse the pore, nanopores make possible the real-time recognition of other biomolecules, like proteins, nucleic acids, and small molecules, eliminating the need for labeling. This label-free detection potential holds a huge promise in medical diagnostics, genotyping, environmental monitoring, etc. Nanopores have significantly improved DNA sequencing technology such as increment in read length, enabling researchers to sequence entire genomic regions, accuracy can be improved and recent updates have led to a reported increase in total DNA reads, demonstrating the technology's capacity for high-throughput applications via trapping individual DNA strands and monitoring the variations of ionic current as each nucleotide passes across the pore. Finally, nanopore sequencing is well-known as a novel and highly flexible technique for DNA analyses, which has a huge deal of promise in clinical diagnosis and genomics research. Hence, this review article comprehensively explains nanopores for DNA analysis and other biomolecules, their synthesis, and diverse applications.
Collapse
Affiliation(s)
- Pradakshina Sharma
- Department of Biotechnology, School of Chemical and Life Sciences, Jamia Hamdard, Hamdard Nagar, New Delhi, 110062, India
| | - Tasmiya Sana
- Centre for Nanotechnology Research, Vellore Institute of Technology, Vellore, 632014, Tamil Nadu, India
| | - Shaheen Khatoon
- Department of Biotechnology, School of Chemical and Life Sciences, Jamia Hamdard, Hamdard Nagar, New Delhi, 110062, India
| | - Ubiad Mushtaq Naikoo
- Department of Biotechnology, School of Chemical and Life Sciences, Jamia Hamdard, Hamdard Nagar, New Delhi, 110062, India
| | - Mosina
- Department of Biotechnology, School of Chemical and Life Sciences, Jamia Hamdard, Hamdard Nagar, New Delhi, 110062, India
| | - Nitesh Malhotra
- Department of Physiotherapy, School of Allied Health Sciences, Manav Rachna International Institute of Research and Studies, Faridabad, Haryana, 121003, India
| | - Md Saquib Hasnain
- Department of Pharmacy, Marwadi University, Rajkot, 360003, Gujarat, India.
| | - Amit Kumar Nayak
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Siksha 'O' Anusandhan (Deemed to be University), Bhubaneswar, 751003, Odisha, India.
| | - Jagriti Narang
- Department of Biotechnology, School of Chemical and Life Sciences, Jamia Hamdard, Hamdard Nagar, New Delhi, 110062, India.
| |
Collapse
|
3
|
Zhang Y, Hu C, Liu R, He S, Yang J, Yao W, Li Y, Guo X. Protein nanopore-based sensors for public health analyte detection. J Mater Chem B 2024; 12:9845-9862. [PMID: 39258387 DOI: 10.1039/d4tb01149j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/12/2024]
Abstract
High-throughput and label-free protein nanopore-based sensors are extensively used in DNA sequencing, single-protein analysis, molecular sensing and chemical catalysis with single channel recording. These technologies show great potential for identifying various harmful substances linked to public health by addressing the limitations of current portability and the speed of existing techniques. In this review, we provide an overview of the fundamental principles of nanopore sensing, with a focus on chemical modification and genetic engineering strategies aimed at enhancing the detection sensitivity and identification accuracy of protein nanopores. The engineered protein nanopores enable direct sensing, while the introduction of aptamers and substrates enables indirect sensing, translating the physical structure and chemical properties of analytes into readable signals. These scientific discoveries and engineering efforts have provided new prospects for detecting and monitoring trace hazardous substances.
Collapse
Affiliation(s)
- Yanhua Zhang
- Dongguan Key Laboratory of Public Health Laboratory Science, School of Public Health, Guangdong Medical University, Dongguan 523808, China.
| | - Chan Hu
- Dongguan Key Laboratory of Public Health Laboratory Science, School of Public Health, Guangdong Medical University, Dongguan 523808, China.
| | - Ronghui Liu
- School of Microelectronics, Southern University of Science and Technology, Shenzhen 518055, People's Republic of China.
| | - Shujun He
- Dongguan Key Laboratory of Public Health Laboratory Science, School of Public Health, Guangdong Medical University, Dongguan 523808, China.
| | - Jie Yang
- Dongguan Key Laboratory of Public Health Laboratory Science, School of Public Health, Guangdong Medical University, Dongguan 523808, China.
| | - Wen Yao
- Dongguan Key Laboratory of Public Health Laboratory Science, School of Public Health, Guangdong Medical University, Dongguan 523808, China.
| | - Yi Li
- School of Microelectronics, Southern University of Science and Technology, Shenzhen 518055, People's Republic of China.
| | - Xinrong Guo
- Dongguan Key Laboratory of Public Health Laboratory Science, School of Public Health, Guangdong Medical University, Dongguan 523808, China.
| |
Collapse
|
4
|
Șoldănescu I, Lobiuc A, Covașă M, Dimian M. Detection of Biological Molecules Using Nanopore Sensing Techniques. Biomedicines 2023; 11:1625. [PMID: 37371721 PMCID: PMC10295350 DOI: 10.3390/biomedicines11061625] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 05/28/2023] [Accepted: 05/29/2023] [Indexed: 06/29/2023] Open
Abstract
Modern biomedical sensing techniques have significantly increased in precision and accuracy due to new technologies that enable speed and that can be tailored to be highly specific for markers of a particular disease. Diagnosing early-stage conditions is paramount to treating serious diseases. Usually, in the early stages of the disease, the number of specific biomarkers is very low and sometimes difficult to detect using classical diagnostic methods. Among detection methods, biosensors are currently attracting significant interest in medicine, for advantages such as easy operation, speed, and portability, with additional benefits of low costs and repeated reliable results. Single-molecule sensors such as nanopores that can detect biomolecules at low concentrations have the potential to become clinically relevant. As such, several applications have been introduced in this field for the detection of blood markers, nucleic acids, or proteins. The use of nanopores has yet to reach maturity for standardization as diagnostic techniques, however, they promise enormous potential, as progress is made into stabilizing nanopore structures, enhancing chemistries, and improving data collection and bioinformatic analysis. This review offers a new perspective on current biomolecule sensing techniques, based on various types of nanopores, challenges, and approaches toward implementation in clinical settings.
Collapse
Affiliation(s)
- Iuliana Șoldănescu
- Integrated Center for Research, Development and Innovation for Advanced Materials, Nanotechnologies, Manufacturing and Control Distributed Systems (MANSiD), Stefan cel Mare University of Suceava, 720229 Suceava, Romania; (I.Ș.); (M.D.)
| | - Andrei Lobiuc
- Department of Biomedical Sciences, Stefan cel Mare University of Suceava, 720229 Suceava, Romania
| | - Mihai Covașă
- Department of Biomedical Sciences, Stefan cel Mare University of Suceava, 720229 Suceava, Romania
| | - Mihai Dimian
- Integrated Center for Research, Development and Innovation for Advanced Materials, Nanotechnologies, Manufacturing and Control Distributed Systems (MANSiD), Stefan cel Mare University of Suceava, 720229 Suceava, Romania; (I.Ș.); (M.D.)
- Department of Computer, Electronics and Automation, Stefan cel Mare University of Suceava, 720229 Suceava, Romania
| |
Collapse
|
5
|
Liu LZ, Liu L, Shi ZH, Bian XL, Si ZR, Wang QQ, Xiang Y, Zhang Y. Amphibian pore-forming protein βγ-CAT drives extracellular nutrient scavenging under cell nutrient deficiency. iScience 2023; 26:106598. [PMID: 37128610 PMCID: PMC10148134 DOI: 10.1016/j.isci.2023.106598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 02/22/2023] [Accepted: 03/30/2023] [Indexed: 05/03/2023] Open
Abstract
Nutrient acquisition is essential for animal cells. βγ-CAT is a pore-forming protein (PFP) and trefoil factor complex assembled under tight regulation identified in toad Bombina maxima. Here, we reported that B. maxima cells secreted βγ-CAT under glucose, glutamine, and pyruvate deficiency to scavenge extracellular proteins for their nutrient supply and survival. AMPK signaling positively regulated the expression and secretion of βγ-CAT. The PFP complex selectively bound extracellular proteins and promoted proteins uptake through endolysosomal pathways. Elevated intracellular amino acids, enhanced ATP production, and eventually prolonged cell survival were observed in the presence of βγ-CAT and extracellular proteins. Liposome assays indicated that high concentration of ATP negatively regulated the opening of βγ-CAT channels. Collectively, these results uncovered that βγ-CAT is an essential element in cell nutrient scavenging under cell nutrient deficiency by driving vesicular uptake of extracellular proteins, providing a new paradigm for PFPs in cell nutrient acquisition and metabolic flexibility.
Collapse
Affiliation(s)
- Ling-Zhen Liu
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences/Engineering Laboratory of Peptides of the Chinese Academy of Sciences, Kunming Institute of Zoology, the Chinese Academy of Sciences, Kunming, Yunnan 650201, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan 650204, China
| | - Long Liu
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences/Engineering Laboratory of Peptides of the Chinese Academy of Sciences, Kunming Institute of Zoology, the Chinese Academy of Sciences, Kunming, Yunnan 650201, China
- Human Aging Research Institute (HARI) and School of Life Sciences, Nanchang University, Nanchang, Jiangxi 330031, China
| | - Zhi-Hong Shi
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences/Engineering Laboratory of Peptides of the Chinese Academy of Sciences, Kunming Institute of Zoology, the Chinese Academy of Sciences, Kunming, Yunnan 650201, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan 650204, China
| | - Xian-Ling Bian
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences/Engineering Laboratory of Peptides of the Chinese Academy of Sciences, Kunming Institute of Zoology, the Chinese Academy of Sciences, Kunming, Yunnan 650201, China
- School of Life Science, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Zi-Ru Si
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences/Engineering Laboratory of Peptides of the Chinese Academy of Sciences, Kunming Institute of Zoology, the Chinese Academy of Sciences, Kunming, Yunnan 650201, China
- School of Life Science, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Qi-Quan Wang
- Human Aging Research Institute (HARI) and School of Life Sciences, Nanchang University, Nanchang, Jiangxi 330031, China
| | - Yang Xiang
- Human Aging Research Institute (HARI) and School of Life Sciences, Nanchang University, Nanchang, Jiangxi 330031, China
- Corresponding author
| | - Yun Zhang
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences/Engineering Laboratory of Peptides of the Chinese Academy of Sciences, Kunming Institute of Zoology, the Chinese Academy of Sciences, Kunming, Yunnan 650201, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan 650204, China
- Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming, Yunnan 650201, China
- Corresponding author
| |
Collapse
|
6
|
Luo Y, Cao Z, Liu Y, Zhang R, Yang S, Wang N, Shi Q, Li J, Dong S, Fan C, Zhao J. The emerging landscape of microfluidic applications in DNA data storage. LAB ON A CHIP 2023; 23:1981-2004. [PMID: 36946437 DOI: 10.1039/d2lc00972b] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
DNA has been considered a promising alternative to the current solid-state devices for digital information storage. The past decade has witnessed tremendous progress in the field of DNA data storage contributed by researchers from various disciplines. However, the current development status of DNA storage is still far from practical use, mainly due to its high material cost and time consumption for data reading/writing, as well as the lack of a comprehensive, automated, and integrated system. Microfluidics, being capable of handling and processing micro-scale fluid samples in a massively paralleled and highly integrated manner, has gradually been recognized as a promising candidate for addressing the aforementioned issues. In this review, we provide a discussion on recent efforts of applying microfluidics to advance the development of DNA data storage. Moreover, to showcase the tremendous potential that microfluidics can contribute to this field, we will further highlight the recent advancements of applying microfluidics to the key functional modules within the DNA data storage workflow. Finally, we share our perspectives on future directions for how to continue the infusion of microfluidics with DNA data storage and how to advance toward a truly integrated system and reach real-life applications.
Collapse
Affiliation(s)
- Yuan Luo
- State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, China.
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhen Cao
- College of Information Science and Electronic Engineering, Zhejiang University, Hangzhou 310027, China.
- International Joint Innovation Center, Zhejiang University, Haining 314400, China
| | - Yifan Liu
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, 201210, China.
- Shanghai Clinical Research and Trial Center, Shanghai, 201210, China
| | - Rong Zhang
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, 201210, China.
| | - Shijia Yang
- State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, China.
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ning Wang
- State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, China.
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qingyuan Shi
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, 201210, China.
| | - Jie Li
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, 201210, China.
| | - Shurong Dong
- College of Information Science and Electronic Engineering, Zhejiang University, Hangzhou 310027, China.
- International Joint Innovation Center, Zhejiang University, Haining 314400, China
| | - Chunhai Fan
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules and National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Jianlong Zhao
- State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, China.
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, P.R. China
| |
Collapse
|
7
|
Jiang J, Li MY, Wu XY, Ying YL, Han HX, Long YT. Protein nanopore reveals the renin-angiotensin system crosstalk with single-amino-acid resolution. Nat Chem 2023; 15:578-586. [PMID: 36805037 DOI: 10.1038/s41557-023-01139-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Accepted: 01/13/2023] [Indexed: 02/22/2023]
Abstract
The discovery of crosstalk effects on the renin-angiotensin system (RAS) is limited by the lack of approaches to quantitatively monitor, in real time, multiple components with subtle differences and short half-lives. Here we report a nanopore framework to quantitatively determine the effect of the hidden crosstalk between angiotensin-converting enzyme (ACE) and angiotensin-converting enzyme 2 (ACE2) on RAS. By developing an engineered aerolysin nanopore capable of single-amino-acid resolution, we show that the ACE can be selectively inhibited by ACE2 to prevent cleavage of angiotensin I, even when the concentration of ACE is more than 30-fold higher than that of ACE2. We also show that the activity of ACE2 for cleaving angiotensin peptides is clearly suppressed by the spike protein of SARS-CoV-2. This leads to the relaxation of ACE and the increased probability of accumulation of the principal effector angiotensin II. The spike protein of the SARS-CoV-2 Delta variant is demonstrated to have a much greater impact on the crosstalk than the wild type.
Collapse
Affiliation(s)
- Jie Jiang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, China
| | - Meng-Yin Li
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, China
- Chemistry and Biomedicine Innovation Center, Nanjing University, Nanjing, China
| | - Xue-Yuan Wu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, China
| | - Yi-Lun Ying
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, China
- Chemistry and Biomedicine Innovation Center, Nanjing University, Nanjing, China
| | - Huan-Xing Han
- Department of Pharmacy, Shanghai Changzheng Hospital, Shanghai, China
| | - Yi-Tao Long
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, China.
| |
Collapse
|
8
|
Stierlen A, Greive SJ, Bacri L, Manivet P, Cressiot B, Pelta J. Nanopore Discrimination of Coagulation Biomarker Derivatives and Characterization of a Post-Translational Modification. ACS CENTRAL SCIENCE 2023; 9:228-238. [PMID: 36844502 PMCID: PMC9951287 DOI: 10.1021/acscentsci.2c01256] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Indexed: 06/18/2023]
Abstract
One of the most important health challenges is the early and ongoing detection of disease for prevention, as well as personalized treatment management. Development of new sensitive analytical point-of-care tests are, therefore, necessary for direct biomarker detection from biofluids as critical tools to address the healthcare needs of an aging global population. Coagulation disorders associated with stroke, heart attack, or cancer are defined by an increased level of the fibrinopeptide A (FPA) biomarker, among others. This biomarker exists in more than one form: it can be post-translationally modified with a phosphate and also cleaved to form shorter peptides. Current assays are long and have difficulties in discriminating between these derivatives; hence, this is an underutilized biomarker for routine clinical practice. We use nanopore sensing to identify FPA, the phosphorylated FPA, and two derivatives. Each of these peptides is characterized by unique electrical signals for both dwell time and blockade level. We also show that the phosphorylated form of FPA can adopt two different conformations, each of which have different values for each electrical parameter. We were able to use these parameters to discriminate these peptides from a mix, thereby opening the way for the potential development of new point-of-care tests.
Collapse
Affiliation(s)
- Aïcha Stierlen
- LAMBE,
CNRS, CY Cergy Paris Université, 95033 Cergy, France
| | | | - Laurent Bacri
- LAMBE,
CNRS, Univ Evry, Université Paris-Saclay, 91025 Evry-Courcouronnes, France
| | - Philippe Manivet
- Centre
de Ressources Biologiques Biobank Lariboisière (BB-0033-00064), DMU BioGem, AP-HP, 75475 Paris, France
- Université
Paris Cité, Inserm, NeuroDiderot, F-75019 Paris, France
| | | | - Juan Pelta
- LAMBE,
CNRS, CY Cergy Paris Université, 95033 Cergy, France
- LAMBE,
CNRS, Univ Evry, Université Paris-Saclay, 91025 Evry-Courcouronnes, France
| |
Collapse
|
9
|
Song Z, Liang Y, Yang J. Nanopore Detection Assisted DNA Information Processing. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:nano12183135. [PMID: 36144924 PMCID: PMC9504103 DOI: 10.3390/nano12183135] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Revised: 09/04/2022] [Accepted: 09/06/2022] [Indexed: 05/27/2023]
Abstract
The deoxyribonucleotide (DNA) molecule is a stable carrier for large amounts of genetic information and provides an ideal storage medium for next-generation information processing technologies. Technologies that process DNA information, representing a cross-disciplinary integration of biology and computer techniques, have become attractive substitutes for technologies that process electronic information alone. The detailed applications of DNA technologies can be divided into three components: storage, computing, and self-assembly. The quality of DNA information processing relies on the accuracy of DNA reading. Nanopore detection allows researchers to accurately sequence nucleotides and is thus widely used to read DNA. In this paper, we introduce the principles and development history of nanopore detection and conduct a systematic review of recent developments and specific applications in DNA information processing involving nanopore detection and nanopore-based storage. We also discuss the potential of artificial intelligence in nanopore detection and DNA information processing. This work not only provides new avenues for future nanopore detection development, but also offers a foundation for the construction of more advanced DNA information processing technologies.
Collapse
Affiliation(s)
- Zichen Song
- School of Control and Computer Engineering, North China Electric Power University, Beijing 102206, China
| | - Yuan Liang
- Department of Computer Science and Technology, School of Electronics Engineering and Computer Science, Peking University, Beijing 100871, China
| | - Jing Yang
- School of Control and Computer Engineering, North China Electric Power University, Beijing 102206, China
| |
Collapse
|
10
|
Spontaneous formation of nanopores within a nanofilm: phase diagram and multiple stable states. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.119541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
11
|
Recent Advances in Aptamer‐Based Nanopore Sensing at Single‐Molecule Resolution. Chem Asian J 2022; 17:e202200364. [DOI: 10.1002/asia.202200364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 05/20/2022] [Indexed: 11/07/2022]
|
12
|
Chauhan N, Saxena K, Jain U. Single molecule detection; from microscopy to sensors. Int J Biol Macromol 2022; 209:1389-1401. [PMID: 35413320 DOI: 10.1016/j.ijbiomac.2022.04.038] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 03/31/2022] [Accepted: 04/05/2022] [Indexed: 01/31/2023]
Abstract
Single molecule detection is necessary to find out physical, chemical properties and their mechanism involved in the normal functioning of body cells. In this way, they can provide a new direction to the healthcare system. Various techniques have been developed and employed for their successful detection. Herein, we have emphasized various traditional methods as well as biosensing technology which offer single molecule sensitivity. The various methods including plasmonic resonance, nanopores, whispering gallery mode, Simoa assay and recognition tunneling are discussed in the initial part which has been followed by a discussion about biosensor-based detection. Plasmonic, SERS, CRISPR/Cas, and other types of biosensors are focused in this review and found to be highly sensitive for single molecule detection. This review provides an overview of progression in different techniques employed for single molecule detection.
Collapse
Affiliation(s)
- Nidhi Chauhan
- Amity Institute of Nanotechnology (AINT), Amity University Uttar Pradesh (AUUP), Noida 201313, U.P., India
| | - Kirti Saxena
- Amity Institute of Nanotechnology (AINT), Amity University Uttar Pradesh (AUUP), Noida 201313, U.P., India
| | - Utkarsh Jain
- Amity Institute of Nanotechnology (AINT), Amity University Uttar Pradesh (AUUP), Noida 201313, U.P., India.
| |
Collapse
|
13
|
Wan Y, Zong C, Li X, Wang A, Li Y, Yang T, Bao Q, Dubow M, Yang M, Rodrigo LA, Mao C. New Insights for Biosensing: Lessons from Microbial Defense Systems. Chem Rev 2022; 122:8126-8180. [PMID: 35234463 DOI: 10.1021/acs.chemrev.1c01063] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Microorganisms have gained defense systems during the lengthy process of evolution over millions of years. Such defense systems can protect them from being attacked by invading species (e.g., CRISPR-Cas for establishing adaptive immune systems and nanopore-forming toxins as virulence factors) or enable them to adapt to different conditions (e.g., gas vesicles for achieving buoyancy control). These microorganism defense systems (MDS) have inspired the development of biosensors that have received much attention in a wide range of fields including life science research, food safety, and medical diagnosis. This Review comprehensively analyzes biosensing platforms originating from MDS for sensing and imaging biological analytes. We first describe a basic overview of MDS and MDS-inspired biosensing platforms (e.g., CRISPR-Cas systems, nanopore-forming proteins, and gas vesicles), followed by a critical discussion of their functions and properties. We then discuss several transduction mechanisms (optical, acoustic, magnetic, and electrical) involved in MDS-inspired biosensing. We further detail the applications of the MDS-inspired biosensors to detect a variety of analytes (nucleic acids, peptides, proteins, pathogens, cells, small molecules, and metal ions). In the end, we propose the key challenges and future perspectives in seeking new and improved MDS tools that can potentially lead to breakthrough discoveries in developing a new generation of biosensors with a combination of low cost; high sensitivity, accuracy, and precision; and fast detection. Overall, this Review gives a historical review of MDS, elucidates the principles of emulating MDS to develop biosensors, and analyzes the recent advancements, current challenges, and future trends in this field. It provides a unique critical analysis of emulating MDS to develop robust biosensors and discusses the design of such biosensors using elements found in MDS, showing that emulating MDS is a promising approach to conceptually advancing the design of biosensors.
Collapse
Affiliation(s)
- Yi Wan
- State Key Laboratory of Marine Resource Utilization in the South China Sea, School of Pharmaceutical Sciences, Marine College, Hainan University, Haikou 570228, P. R. China
| | - Chengli Zong
- State Key Laboratory of Marine Resource Utilization in the South China Sea, School of Pharmaceutical Sciences, Marine College, Hainan University, Haikou 570228, P. R. China
| | - Xiangpeng Li
- Department of Bioengineering and Therapeutic Sciences, Schools of Medicine and Pharmacy, University of California, San Francisco, 1700 Fourth Street, Byers Hall 303C, San Francisco, California 94158, United States
| | - Aimin Wang
- State Key Laboratory of Marine Resource Utilization in the South China Sea, School of Pharmaceutical Sciences, Marine College, Hainan University, Haikou 570228, P. R. China
| | - Yan Li
- College of Animal Science, Zhejiang University, Hangzhou, Zhejiang 310058, P. R. China
| | - Tao Yang
- School of Materials Science and Engineering, Zhejiang University, Hangzhou, Zhejiang 310058, P. R. China
| | - Qing Bao
- School of Materials Science and Engineering, Zhejiang University, Hangzhou, Zhejiang 310058, P. R. China
| | - Michael Dubow
- Institute for Integrative Biology of the Cell (I2BC), UMR 9198 CNRS, CEA, Université Paris-Saclay, Campus C.N.R.S, Bâtiment 12, Avenue de la Terrasse, 91190 Gif-sur-Yvette, France
| | - Mingying Yang
- College of Animal Science, Zhejiang University, Hangzhou, Zhejiang 310058, P. R. China
| | - Ledesma-Amaro Rodrigo
- Imperial College Centre for Synthetic Biology, Department of Bioengineering, Imperial College London, London SW7 2AZ, United Kingdom
| | - Chuanbin Mao
- Department of Chemistry & Biochemistry, Stephenson Life Science Research Center, University of Oklahoma, 101 Stephenson Parkway, Norman, Oklahoma 73019, United States.,School of Materials Science and Engineering, Zhejiang University, Hangzhou, Zhejiang 310058, P. R. China
| |
Collapse
|
14
|
Zhang L, Burns N, Jordan M, Jayasinghe L, Guo P. Macromolecule sensing and tumor biomarker detection by harnessing terminal size and hydrophobicity of viral DNA packaging motor channels into membranes and flow cells. Biomater Sci 2021; 10:167-177. [PMID: 34812812 DOI: 10.1039/d1bm01264a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Biological nanopores for single-pore sensing have the advantage of size homogeneity, structural reproducibility, and channel amenability. In order to translate this to clinical applications, the functional biological nanopore must be inserted into a stable system for high-throughput analysis. Here we report factors that control the rate of pore insertion into polymer membrane and analyte translocation through the channel of viral DNA packaging motors of Phi29, T3 and T7. The hydrophobicity of aminol or carboxyl terminals and their relation to the analyte translocation were investigated. It was found that both the size and the hydrophobicity of the pore terminus are critical factors for direct membrane insertion. An N-terminus or C-terminus hydrophobic mutation is crucial for governing insertion orientation and subsequent macromolecule translocation due to the one-way traffic property. The N- or C-modification led to two different modes of application. The C-terminal insertion permits translocation of analytes such as peptides to enter the channel through the N terminus, while N-terminus insertion prevents translocation but offers the measurement of gating as a sensing parameter, thus generating a tool for detection of markers. A urokinase-type Plasminogen Activator Receptor (uPAR) binding peptide was fused into the C-terminal of Phi29 nanopore to serve as a probe for uPAR protein detection. The uPAR has proven to be a predictive biomarker in several types of cancer, including breast cancer. With an N-terminal insertion, the binding of the uPAR antigen to individual peptide probe induced discretive steps of current reduction due to the induction of channel gating. The distinctive current signatures enabled us to distinguish uPAR positive and negative tumor cell lines. This finding provides a theoretical basis for a robust biological nanopore sensing system for high-throughput macromolecular sensing and tumor biomarker detection.
Collapse
Affiliation(s)
- Long Zhang
- Center for RNA Nanobiotechnology and Nanomedicine; College of Pharmacy; Dorothy M. Davis Heart and Lung Research Institute; James Comprehensive Cancer Center; College of Medicine; The Ohio State University, Columbus, OH 43210, USA.
| | - Nicolas Burns
- Center for RNA Nanobiotechnology and Nanomedicine; College of Pharmacy; Dorothy M. Davis Heart and Lung Research Institute; James Comprehensive Cancer Center; College of Medicine; The Ohio State University, Columbus, OH 43210, USA.
| | - Michael Jordan
- Oxford Nanopore Technologies Ltd, Gosling Building, Edmund Halley Road, Oxford Science Park, Oxford, OX4 4DQ, UK
| | - Lakmal Jayasinghe
- Oxford Nanopore Technologies Ltd, Gosling Building, Edmund Halley Road, Oxford Science Park, Oxford, OX4 4DQ, UK
| | - Peixuan Guo
- Center for RNA Nanobiotechnology and Nanomedicine; College of Pharmacy; Dorothy M. Davis Heart and Lung Research Institute; James Comprehensive Cancer Center; College of Medicine; The Ohio State University, Columbus, OH 43210, USA.
| |
Collapse
|
15
|
Song X, Xu X, Lu J, Chi X, Pang Y, Li Q. Lamprey Immune Protein Mediates Apoptosis of Lung Cancer Cells Via the Endoplasmic Reticulum Stress Signaling Pathway. Front Oncol 2021; 11:663600. [PMID: 34307136 PMCID: PMC8292836 DOI: 10.3389/fonc.2021.663600] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Accepted: 04/19/2021] [Indexed: 01/16/2023] Open
Abstract
Lamprey immune protein (LIP), a novel protein derived from the Lampetra japonica, has been shown to exert efficient tumoricidal actions without concomitant damage to healthy cells. Our study aimed to ascertain the mechanisms by which LIP inhibits lung cancer cells, thus delineating potential innovative therapeutic strategies. LIP expression in lung cancer cells was evaluated by western blotting and immunohistochemistry. Functional assays, such as high-content imaging, 3D-structured illumination microscopy (3D-SIM) imaging, flow cytometry, and confocal laser scanning microscopy, were performed to examine the proliferation and lung cancer cell apoptosis. Tumor xenograft assays were performed using an in vivo imaging system. We observed that LIP induces the decomposition of certain lung cancer cell membranes by destroying organelles such as the microtubules, mitochondria, and endoplasmic reticulum (ER), in addition to causing leakage of cytoplasm, making the maintenance of homeostasis difficult. We also demonstrated that LIP activates the ER stress pathway, which mediates lung cancer cell apoptosis by producing reactive oxygen species (ROS). In addition, injection of LIP significantly retarded the tumor growth rate in nude mice. Taken together, these data revealed a role of LIP in the regulation of lung cancer cell apoptosis via control of the ER stress signaling pathway, thus revealing its possible application in lung cancer treatment.
Collapse
Affiliation(s)
- Xiaoping Song
- College of Life Science, Liaoning Normal University, Dalian, China.,Lamprey Research Center, Liaoning Normal University, Dalian, China.,Respiratory Medicine, Affiliated Zhong shan Hospital of Dalian University, Dalian, China
| | - Xiangting Xu
- College of Life Science, Liaoning Normal University, Dalian, China.,Lamprey Research Center, Liaoning Normal University, Dalian, China
| | - Jiali Lu
- College of Life Science, Liaoning Normal University, Dalian, China.,Lamprey Research Center, Liaoning Normal University, Dalian, China
| | - Xiaoyuan Chi
- College of Life Science, Liaoning Normal University, Dalian, China.,Lamprey Research Center, Liaoning Normal University, Dalian, China
| | - Yue Pang
- College of Life Science, Liaoning Normal University, Dalian, China.,Lamprey Research Center, Liaoning Normal University, Dalian, China
| | - Qingwei Li
- College of Life Science, Liaoning Normal University, Dalian, China.,Lamprey Research Center, Liaoning Normal University, Dalian, China
| |
Collapse
|
16
|
Wu LZ, Ye Y, Wang ZX, Ma D, Li L, Xi GH, Bao BQ, Weng LX. Sensitive Detection of Single-Nucleotide Polymorphisms by Solid Nanopores Integrated With DNA Probed Nanoparticles. Front Bioeng Biotechnol 2021; 9:690747. [PMID: 34277589 PMCID: PMC8279778 DOI: 10.3389/fbioe.2021.690747] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Accepted: 05/21/2021] [Indexed: 12/01/2022] Open
Abstract
Single-nucleotide polymorphisms (SNPs) are the abundant forms of genetic variations, which are closely associated with serious genetic and inherited diseases, even cancers. Here, a novel SNP detection assay has been developed for single-nucleotide discrimination by nanopore sensing platform with DNA probed Au nanoparticles as transport carriers. The SNP of p53 gene mutation in gastric cancer has been successfully detected in the femtomolar concentration by nanopore sensing. The robust biosensing strategy offers a way for solid nanopore sensors integrated with varied nanoparticles to achieve single-nucleotide distinction with high sensitivity and spatial resolution, which promises tremendous potential applications of nanopore sensing for early diagnosis and disease prevention in the near future.
Collapse
Affiliation(s)
- Ling Zhi Wu
- Key Laboratory for Organic Electronics and Information Displays, Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials, National Synergetic Innovation Center for Advanced Materials, Nanjing University of Posts and Telecommunications, Nanjing, China.,College of Geography and Biological Information, Nanjing University of Posts and Telecommunications, Nanjing, China
| | - Yuan Ye
- Key Laboratory for Organic Electronics and Information Displays, Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials, National Synergetic Innovation Center for Advanced Materials, Nanjing University of Posts and Telecommunications, Nanjing, China
| | - Zhi Xuan Wang
- College of Geography and Biological Information, Nanjing University of Posts and Telecommunications, Nanjing, China
| | - Die Ma
- Key Laboratory for Organic Electronics and Information Displays, Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials, National Synergetic Innovation Center for Advanced Materials, Nanjing University of Posts and Telecommunications, Nanjing, China
| | - Li Li
- Key Laboratory for Organic Electronics and Information Displays, Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials, National Synergetic Innovation Center for Advanced Materials, Nanjing University of Posts and Telecommunications, Nanjing, China
| | - Guo Hao Xi
- Key Laboratory for Organic Electronics and Information Displays, Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials, National Synergetic Innovation Center for Advanced Materials, Nanjing University of Posts and Telecommunications, Nanjing, China
| | - Bi Qing Bao
- Key Laboratory for Organic Electronics and Information Displays, Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials, National Synergetic Innovation Center for Advanced Materials, Nanjing University of Posts and Telecommunications, Nanjing, China
| | - Li Xing Weng
- College of Geography and Biological Information, Nanjing University of Posts and Telecommunications, Nanjing, China
| |
Collapse
|
17
|
Abstract
Secretory pore-forming proteins (PFPs) have been identified in organisms from all kingdoms of life. Our studies with the toad species Bombina maxima found an interaction network among aerolysin family PFPs (af-PFPs) and trefoil factors (TFFs). As a toad af-PFP, BmALP1 can be reversibly regulated between active and inactive forms, with its paralog BmALP3 acting as a negative regulator. BmALP1 interacts with BmTFF3 to form a cellular active complex called βγ-CAT. This PFP complex is characterized by acting on endocytic pathways and forming pores on endolysosomes, including stimulating cell macropinocytosis. In addition, cell exocytosis can be induced and/or modulated in the presence of βγ-CAT. Depending on cell contexts and surroundings, these effects can facilitate the toad in material uptake and vesicular transport, while maintaining mucosal barrier function as well as immune defense. Based on experimental evidence, we hereby propose a secretory endolysosome channel (SELC) pathway conducted by a secreted PFP in cell endocytic and exocytic systems, with βγ-CAT being the first example of a SELC protein. With essential roles in cell interactions and environmental adaptations, the proposed SELC protein pathway should be conserved in other living organisms.
Collapse
Affiliation(s)
- Yun Zhang
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China.,Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming, Yunnan 650223, China. E-mail:
| | - Qi-Quan Wang
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
| | - Zhong Zhao
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
| | - Cheng-Jie Deng
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
| |
Collapse
|
18
|
Hu Z, Huo M, Ying Y, Long Y. Biological Nanopore Approach for Single‐Molecule Protein Sequencing. Angew Chem Int Ed Engl 2021; 60:14738-14749. [DOI: 10.1002/anie.202013462] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Indexed: 12/21/2022]
Affiliation(s)
- Zheng‐Li Hu
- State Key Laboratory of Analytical Chemistry for Life Science School of Chemistry and Chemical Engineering Nanjing University 163 Xianlin Avenue Nanjing 210023 P. R. China
| | - Ming‐Zhu Huo
- State Key Laboratory of Analytical Chemistry for Life Science School of Chemistry and Chemical Engineering Nanjing University 163 Xianlin Avenue Nanjing 210023 P. R. China
| | - Yi‐Lun Ying
- State Key Laboratory of Analytical Chemistry for Life Science School of Chemistry and Chemical Engineering Nanjing University 163 Xianlin Avenue Nanjing 210023 P. R. China
- Chemistry and Biomedicine Innovation Center Nanjing University 163 Xianlin Avenue Nanjing 210023 P. R. China
| | - Yi‐Tao Long
- State Key Laboratory of Analytical Chemistry for Life Science School of Chemistry and Chemical Engineering Nanjing University 163 Xianlin Avenue Nanjing 210023 P. R. China
| |
Collapse
|
19
|
Hu Z, Huo M, Ying Y, Long Y. Biological Nanopore Approach for Single‐Molecule Protein Sequencing. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202013462] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Zheng‐Li Hu
- State Key Laboratory of Analytical Chemistry for Life Science School of Chemistry and Chemical Engineering Nanjing University 163 Xianlin Avenue Nanjing 210023 P. R. China
| | - Ming‐Zhu Huo
- State Key Laboratory of Analytical Chemistry for Life Science School of Chemistry and Chemical Engineering Nanjing University 163 Xianlin Avenue Nanjing 210023 P. R. China
| | - Yi‐Lun Ying
- State Key Laboratory of Analytical Chemistry for Life Science School of Chemistry and Chemical Engineering Nanjing University 163 Xianlin Avenue Nanjing 210023 P. R. China
- Chemistry and Biomedicine Innovation Center Nanjing University 163 Xianlin Avenue Nanjing 210023 P. R. China
| | - Yi‐Tao Long
- State Key Laboratory of Analytical Chemistry for Life Science School of Chemistry and Chemical Engineering Nanjing University 163 Xianlin Avenue Nanjing 210023 P. R. China
| |
Collapse
|
20
|
Li MY, Ying YL, Li S, Wang YQ, Wu XY, Long YT. Unveiling the Heterogenous Dephosphorylation of DNA Using an Aerolysin Nanopore. ACS NANO 2020; 14:12571-12578. [PMID: 32806044 DOI: 10.1021/acsnano.0c03215] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The simultaneous occurrence of multiple heterogeneous DNA phosphorylation statuses, which include 5' end phosphorylation, 5' end dephosphorylation, 3' end phosphorylation, and 3' end dephosphorylation, is crucial for regulating numerous cellular processes. Although there are many methods for detecting a single type of DNA phosphorylation, the direct and simultaneous identification of DNA phosphorylation/dephosphorylation on the 5' and/or 3' ends remains a challenge, let alone the unveiling of the heterogeneous catalysis processes of related phosphatases and kinases. Taking advantage of the charge-sensitive aerolysin nanopore interface, herein, an orientation-dependent sensing strategy is developed to enhance phosphorylation-site-dependent interaction with the nanopore sensing interface, enabling the direct and simultaneous electric identification of four heterogeneous phosphorylation statuses of a single DNA. By using this strategy, we can directly evaluate the heterogeneous dephosphorylation process of alkaline phosphatase (ALP) at the single-molecule level. Our results demonstrate that the ALP in fetal bovine serum preferentially catalyzes the 3' phosphate rather than both ends. The quantification of endogenous ALP activity in fetal bovine serum could reach the submilli-IU/L level. Our aerolysin measurements provide a direct look at the heterogeneous phosphorylation status of DNA, allowing the unveiling of the dynamic single-molecule functions of kinase and phosphatase.
Collapse
Affiliation(s)
- Meng-Yin Li
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P.R. China
- Chemistry and Biomedicine Innovation Center, Nanjing University, Nanjing 210023, P.R. China
| | - Yi-Lun Ying
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P.R. China
- Chemistry and Biomedicine Innovation Center, Nanjing University, Nanjing 210023, P.R. China
| | - Shuang Li
- School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, P.R. China
| | - Ya-Qian Wang
- School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, P.R. China
| | - Xue-Yuan Wu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P.R. China
- School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, P.R. China
| | - Yi-Tao Long
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P.R. China
| |
Collapse
|
21
|
Deng C, Liu L, Liu L, Wang Q, Guo X, Lee W, Li S, Zhang Y. A secreted pore‐forming protein modulates cellular endolysosomes to augment antigen presentation. FASEB J 2020; 34:13609-13625. [DOI: 10.1096/fj.202001176r] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 07/20/2020] [Accepted: 07/27/2020] [Indexed: 01/04/2023]
Affiliation(s)
- Cheng‐Jie Deng
- Key Laboratory of Animal Models and Human Disease Mechanisms of The Chinese Academy of Sciences/Key Laboratory of Bioactive Peptides of Yunnan Province Kunming Institute of Zoology The Chinese Academy of Sciences Kunming China
- Kunming College of Life Science University of Chinese Academy of Sciences Kunming China
| | - Long Liu
- Key Laboratory of Animal Models and Human Disease Mechanisms of The Chinese Academy of Sciences/Key Laboratory of Bioactive Peptides of Yunnan Province Kunming Institute of Zoology The Chinese Academy of Sciences Kunming China
- Kunming College of Life Science University of Chinese Academy of Sciences Kunming China
| | - Ling‐Zhen Liu
- Key Laboratory of Animal Models and Human Disease Mechanisms of The Chinese Academy of Sciences/Key Laboratory of Bioactive Peptides of Yunnan Province Kunming Institute of Zoology The Chinese Academy of Sciences Kunming China
- Kunming College of Life Science University of Chinese Academy of Sciences Kunming China
| | - Qi‐Quan Wang
- Key Laboratory of Animal Models and Human Disease Mechanisms of The Chinese Academy of Sciences/Key Laboratory of Bioactive Peptides of Yunnan Province Kunming Institute of Zoology The Chinese Academy of Sciences Kunming China
- Kunming College of Life Science University of Chinese Academy of Sciences Kunming China
| | - Xiao‐Long Guo
- Key Laboratory of Animal Models and Human Disease Mechanisms of The Chinese Academy of Sciences/Key Laboratory of Bioactive Peptides of Yunnan Province Kunming Institute of Zoology The Chinese Academy of Sciences Kunming China
| | - Wen‐Hui Lee
- Key Laboratory of Animal Models and Human Disease Mechanisms of The Chinese Academy of Sciences/Key Laboratory of Bioactive Peptides of Yunnan Province Kunming Institute of Zoology The Chinese Academy of Sciences Kunming China
| | - Sheng‐An Li
- Department of Pathogen Biology and Immunology Faculty of Basic Medical Science Kunming Medical University Kunming China
| | - Yun Zhang
- Key Laboratory of Animal Models and Human Disease Mechanisms of The Chinese Academy of Sciences/Key Laboratory of Bioactive Peptides of Yunnan Province Kunming Institute of Zoology The Chinese Academy of Sciences Kunming China
- Center for Excellence in Animal Evolution and Genetics Chinese Academy of Sciences Kunming China
| |
Collapse
|
22
|
Hu F, Angelov B, Li S, Li N, Lin X, Zou A. Single‐Molecule Study of Peptides with the Same Amino Acid Composition but Different Sequences by Using an Aerolysin Nanopore. Chembiochem 2020; 21:2467-2473. [DOI: 10.1002/cbic.202000119] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 04/09/2020] [Indexed: 01/04/2023]
Affiliation(s)
- Fangzhou Hu
- Shanghai Key Laboratory of Functional Materials ChemistryState Key Laboratory of Bioreactor Engineering and Institute of Applied ChemistrySchool of Chemistry and Molecular EngineeringEast China University of Science and Technology Shanghai 200237 P. R. China
| | - Borislav Angelov
- Institute of Physics, ELI BeamlinesAcademy of Sciences of the Czech Republic Na Slovance 2 18221 Prague Czech Republic
| | - Shuang Li
- Shanghai Key Laboratory of Functional Materials ChemistryState Key Laboratory of Bioreactor Engineering and Institute of Applied ChemistrySchool of Chemistry and Molecular EngineeringEast China University of Science and Technology Shanghai 200237 P. R. China
| | - Na Li
- National Center for Protein Science in ShanghaiZhangjiang LabShanghai Advanced Research Institute, CAS Shanghai 200120 P. R. China
| | - Xubo Lin
- Institute of Single Cell EngineeringBeijing Advanced Innovation Center for Biomedical EngineeringBeihang University Beijing 100191 P. R. China
| | - Aihua Zou
- Shanghai Key Laboratory of Functional Materials ChemistryState Key Laboratory of Bioreactor Engineering and Institute of Applied ChemistrySchool of Chemistry and Molecular EngineeringEast China University of Science and Technology Shanghai 200237 P. R. China
| |
Collapse
|
23
|
Lenhart B, Wei X, Zhang Z, Wang X, Wang Q, Liu C. Nanopore Fabrication and Application as Biosensors in Neurodegenerative Diseases. Crit Rev Biomed Eng 2020; 48:29-62. [PMID: 32749118 PMCID: PMC8020784 DOI: 10.1615/critrevbiomedeng.2020033151] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Since its conception as an applied biomedical technology nearly 30 years ago, nanopore is emerging as a promising, high-throughput, biomarker-targeted diagnostic tool for clinicians. The attraction of a nanopore-based detection system is its simple, inexpensive, robust, user-friendly, high-throughput blueprint with minimal sample preparation needed prior to analysis. The goal of clinical-based nanopore biosensing is to go from sample acquisition to a meaningful readout quickly. The most extensive work in nanopore applications has been targeted at DNA, RNA, and peptide identification. Although, biosensing of pathological biomarkers, which is covered in this review, is on the rise. This review is broken into two major sections: (i) the current state of existing biological, solid state, and hybrid nanopore systems and (ii) the applications of nanopore biosensors toward detecting neurodegenerative biomarkers.
Collapse
Affiliation(s)
- Brian Lenhart
- Department of Chemical Engineering, University of South Carolina, Columbia, SC
| | - Xiaojun Wei
- Department of Chemical Engineering, University of South Carolina, Columbia, SC
- Biomedical Engineering Program, University of South Carolina, Columbia, SC
| | - Zehui Zhang
- Biomedical Engineering Program, University of South Carolina, Columbia, SC
| | - Xiaoqin Wang
- Department of Chemical Engineering, University of South Carolina, Columbia, SC
| | - Qian Wang
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC
| | - Chang Liu
- Department of Chemical Engineering, University of South Carolina, Columbia, SC
- Biomedical Engineering Program, University of South Carolina, Columbia, SC
| |
Collapse
|
24
|
Gao R, Lin Y, Ying YL, Long YT. Nanopore-based sensing interface for single molecule electrochemistry. Sci China Chem 2019. [DOI: 10.1007/s11426-019-9509-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
25
|
Lu Y, Wu XY, Ying YL, Long YT. Simultaneous single-molecule discrimination of cysteine and homocysteine with a protein nanopore. Chem Commun (Camb) 2019; 55:9311-9314. [PMID: 31310244 DOI: 10.1039/c9cc04077c] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Discrimination between cysteine and homocysteine at the single-molecule level is achieved within a K238Q mutant aerolysin nanopore, which provides a confined space for high spatial resolution to identify the amino acid difference with a 5'-benzaldehyde poly(dA)4 probe. Our strategy allows potential detection and characterization of various amino acids and their modifications, and provides a crucial step towards developing nanopore protein sequencing devices.
Collapse
Affiliation(s)
- Yao Lu
- School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, P. R. China.
| | - Xue-Yuan Wu
- School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, P. R. China.
| | - Yi-Lun Ying
- School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, P. R. China. and State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China
| | - Yi-Tao Long
- School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, P. R. China. and State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China
| |
Collapse
|
26
|
Meng FN, Ying YL, Yang J, Long YT. A Wild-Type Nanopore Sensor for Protein Kinase Activity. Anal Chem 2019; 91:9910-9915. [DOI: 10.1021/acs.analchem.9b01570] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Fu-Na Meng
- School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, P. R. China
| | - Yi-Lun Ying
- School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, P. R. China
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China
| | - Jie Yang
- School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, P. R. China
| | - Yi-Tao Long
- School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, P. R. China
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China
| |
Collapse
|
27
|
Cressiot B, Ouldali H, Pastoriza-Gallego M, Bacri L, Van der Goot FG, Pelta J. Aerolysin, a Powerful Protein Sensor for Fundamental Studies and Development of Upcoming Applications. ACS Sens 2019; 4:530-548. [PMID: 30747518 DOI: 10.1021/acssensors.8b01636] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The nanopore electrical approach is a breakthrough in single molecular level detection of particles as small as ions, and complex as biomolecules. This technique can be used for molecule analysis and characterization as well as for the understanding of confined medium dynamics in chemical or biological reactions. Altogether, the information obtained from these kinds of experiments will allow us to address challenges in a variety of biological fields. The sensing, design, and manufacture of nanopores is crucial to realize these objectives. For some time now, aerolysin, a pore forming toxin, and its mutants have shown high potential in real time analytical chemistry, size discrimination of neutral polymers, oligosaccharides, oligonucleotides and peptides at monomeric resolution, sequence identification, chemical modification on DNA, potential biomarkers detection, and protein folding analysis. This review focuses on the results obtained with aerolysin nanopores on the fields of chemistry, biology, physics, and biotechnology. We discuss and compare as well the results obtained with other protein channel sensors.
Collapse
Affiliation(s)
- Benjamin Cressiot
- LAMBE, Université
Evry, Université de Cergy-Pontoise, CNRS, CEA, Université
Paris-Saclay, 91025, Evry, France
| | - Hadjer Ouldali
- LAMBE, Université
Cergy-Pontoise, Université d’Evry, CNRS, CEA, Université
Paris-Seine, 95000, Cergy, France
| | - Manuela Pastoriza-Gallego
- LAMBE, Université
Cergy-Pontoise, Université d’Evry, CNRS, CEA, Université
Paris-Seine, 95000, Cergy, France
| | - Laurent Bacri
- LAMBE, Université
Evry, Université de Cergy-Pontoise, CNRS, CEA, Université
Paris-Saclay, 91025, Evry, France
| | | | - Juan Pelta
- LAMBE, Université
Evry, Université de Cergy-Pontoise, CNRS, CEA, Université
Paris-Saclay, 91025, Evry, France
| |
Collapse
|
28
|
Biomimetic Membranes with Transmembrane Proteins: State-of-the-Art in Transmembrane Protein Applications. Int J Mol Sci 2019; 20:ijms20061437. [PMID: 30901910 PMCID: PMC6472214 DOI: 10.3390/ijms20061437] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Revised: 02/26/2019] [Accepted: 03/13/2019] [Indexed: 12/14/2022] Open
Abstract
In biological cells, membrane proteins are the most crucial component for the maintenance of cell physiology and processes, including ion transportation, cell signaling, cell adhesion, and recognition of signal molecules. Therefore, researchers have proposed a number of membrane platforms to mimic the biological cell environment for transmembrane protein incorporation. The performance and selectivity of these transmembrane proteins based biomimetic platforms are far superior to those of traditional material platforms, but their lack of stability and scalability rule out their commercial presence. This review highlights the development of transmembrane protein-based biomimetic platforms for four major applications, which are biosensors, molecular interaction studies, energy harvesting, and water purification. We summarize the fundamental principles and recent progress in transmembrane protein biomimetic platforms for each application, discuss their limitations, and present future outlooks for industrial implementation.
Collapse
|
29
|
Hu ZL, Li MY, Liu SC, Ying YL, Long YT. A lithium-ion-active aerolysin nanopore for effectively trapping long single-stranded DNA. Chem Sci 2019; 10:354-358. [PMID: 30746084 PMCID: PMC6334748 DOI: 10.1039/c8sc03927e] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Accepted: 11/12/2018] [Indexed: 12/15/2022] Open
Abstract
Wild-type aerolysin (AeL) nanopores allow direct single nucleotide discrimination of very short oligonucleotides (≤10 nt) without labelling, which shows great potential for DNA sensing. To achieve real applications, one major obstacle of AeL is its poor capture ability of long single-stranded DNA (ssDNA, >10 nt). Here, we have proposed a novel and robust strategy for the electrostatic focusing of long ssDNA into a lithium-chloride (LiCl)-active AeL. By using this method, for the first time we have demonstrated AeL detection of ssDNA longer than 100 nt. Due to screening more negative charges, LiCl improves AeL capture ability of long ssDNA (i.e. 60 nt) by 2.63- to 10.23-fold compared to KCl. Further calculations and molecular dynamics simulations revealed that strong binding between Li+ and the negatively charged residue neutralized the AeL, leading to a reduction in the energy barrier for ssDNA capture. These findings facilitate the future high-throughput applications of AeL in genetic and epigenetic diagnostics.
Collapse
Affiliation(s)
- Zheng-Li Hu
- Key Laboratory for Advanced Materials , School of Chemistry and Molecular Engineering , East China University of Science and Technology , Shanghai , 200237 , P. R. China . ; Tel: +86-21-64252339
| | - Meng-Yin Li
- Key Laboratory for Advanced Materials , School of Chemistry and Molecular Engineering , East China University of Science and Technology , Shanghai , 200237 , P. R. China . ; Tel: +86-21-64252339
| | - Shao-Chuang Liu
- Key Laboratory for Advanced Materials , School of Chemistry and Molecular Engineering , East China University of Science and Technology , Shanghai , 200237 , P. R. China . ; Tel: +86-21-64252339
| | - Yi-Lun Ying
- Key Laboratory for Advanced Materials , School of Chemistry and Molecular Engineering , East China University of Science and Technology , Shanghai , 200237 , P. R. China . ; Tel: +86-21-64252339
| | - Yi-Tao Long
- Key Laboratory for Advanced Materials , School of Chemistry and Molecular Engineering , East China University of Science and Technology , Shanghai , 200237 , P. R. China . ; Tel: +86-21-64252339
| |
Collapse
|
30
|
Yang J, Wang YQ, Li MY, Ying YL, Long YT. Direct Sensing of Single Native RNA with a Single-Biomolecule Interface of Aerolysin Nanopore. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2018; 34:14940-14945. [PMID: 30462509 DOI: 10.1021/acs.langmuir.8b03264] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
RNA sensing is of vital significance to advance our comprehension of gene expression and to further benefit medical diagnostics. Taking advantage of the excellent sensing capability of the aerolysin nanopore as a single-biomolecule interface, we for the first time achieved the direct characterization of single native RNA of Poly(A)4 and Poly(U)4. Poly(A)4 induces ∼10% larger blockade current amplitude than Poly(U)4. The statistical duration of Poly(A)4 is 18.83 ± 1.08 ms, which is 100 times longer than that of Poly(U)4. Our results demonstrated that the capture of RNA homopolymers is restricted by the biased diffusion. The translocation of RNA needs to overcome a lower free-energy barrier than that of DNA. Moreover, the strong RNA-aerolysin interaction is attributed to the hydroxyl in pentose, which prolongs the translocation time. This study opens an avenue for aerolysin nanopores to directly achieve RNA sensing, including discrimination of RNA epigenetic modification and selective detection of miRNA.
Collapse
Affiliation(s)
- Jie Yang
- Key Laboratory for Advanced Materials & School of Chemistry and Molecular Engineering , East China University of Science and Technology , Shanghai 200237 , P. R. China
| | - Ya-Qian Wang
- Key Laboratory for Advanced Materials & School of Chemistry and Molecular Engineering , East China University of Science and Technology , Shanghai 200237 , P. R. China
| | - Meng-Yin Li
- Key Laboratory for Advanced Materials & School of Chemistry and Molecular Engineering , East China University of Science and Technology , Shanghai 200237 , P. R. China
| | - Yi-Lun Ying
- Key Laboratory for Advanced Materials & School of Chemistry and Molecular Engineering , East China University of Science and Technology , Shanghai 200237 , P. R. China
| | - Yi-Tao Long
- Key Laboratory for Advanced Materials & School of Chemistry and Molecular Engineering , East China University of Science and Technology , Shanghai 200237 , P. R. China
| |
Collapse
|