1
|
Competitive ELISA based on pH-responsive persistent luminescence nanoparticles for autofluorescence-free biosensor determination of ochratoxin A in cereals. Anal Bioanal Chem 2023; 415:1877-1887. [PMID: 36853411 DOI: 10.1007/s00216-023-04591-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 01/21/2023] [Accepted: 02/06/2023] [Indexed: 03/01/2023]
Abstract
An accurate and sensitive competitive enzyme-linked immunosorbent assay (ELISA) based on persistent luminescence nanoparticles Zn2GeO4:Mn2+, Eu3+ (ZGME) was developed for detecting ochratoxin A (OTA), a powerfully toxic mycotoxin usually found in grains. As a signal output element of autofluorescence-free biosensors, ZGME can be integrated into ELISA with glucose oxidase (GOx)-binding OTA molecules due to its excellent pH-responsive persistent luminescence. In the absence of OTA, the OTA-GOx conjugate was captured by the anti-OTA monoclonal antibody (anti-OTA mAb) pre-coated on the 96-well plate. The results indicate a decrease in the pH value of the solution, which triggered the quenching of ZGME luminescence due to GOx-dependent gluconic acid production. The presence of OTA inhibited the binding of OTA-GOx on the plate, thus decreasing the production of gluconic acid and increasing the persistent luminous intensity of ZGME. Under the optimized concentrations of anti-OTA mAb and OTA-GOx, quantitative determination of OTA was achieved by plotting the increase or decrease in persistent luminescence intensity of ZGME at 535 nm. In this study, the linear range was from 0.1 μg L-1 to 63 μg L-1, and the limit of detection (LOD) was as low as 0.045 μg L-1. In five food samples (corn grit, brown rice, soybean, rice, and wheat), the results exhibited good stability and repeatability, with a recovery range from 81.3% to 94.4% and a relative standard deviation (RSD) of less than 4.2%. Hence, the established method provides a sensitive, accurate, and autofluorescence-free approach for the determination of OTA in different grain samples.
Collapse
|
2
|
Sun M, Chen M, Wang J. Perspective and Prospects on persistent luminescent nanoparticles for biological imaging and tumor therapy. Curr Med Chem 2023; 31:CMC-EPUB-129402. [PMID: 36809957 DOI: 10.2174/0929867330666230210093411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 12/07/2022] [Accepted: 12/16/2022] [Indexed: 02/17/2023]
Abstract
Persistent luminescent nanoparticles (PLNPs) are photoluminescent materials that can still emit luminescence after the cessation of the excitation light source. In recent years, due to their unique optical properties, the PLNPs have attracted extensive attention in the biomedical field. Since the PLNPs effectively eliminate autofluorescence interference from biological tissues, many researchers have contributed a lot of work in the fields of biological imaging and tumor therapy. This article mainly introduces the synthesis methods of the PLNPs and their progress in the application of biological imaging and tumor therapy, as well as the challenges and development prospects.
Collapse
Affiliation(s)
- Minghui Sun
- Department of Clinical Laboratory Medicine, Southwest Hospital, Army Medical University, 30 Gaotanyan, Shapingba District, Chongqing 400038, China
| | - Ming Chen
- Department of Clinical Laboratory Medicine, Southwest Hospital, Army Medical University, 30 Gaotanyan, Shapingba District, Chongqing 400038, China
| | - Jun Wang
- Department of Clinical Laboratory Medicine, Southwest Hospital, Army Medical University, 30 Gaotanyan, Shapingba District, Chongqing 400038, China
| |
Collapse
|
3
|
Xiao HJ, Liao XJ, Wang H, Ren SW, Cao JT, Liu YM. In Situ Formation of Bi2MoO6-Bi2S3 Heterostructure: A Proof-Of-Concept Study for Photoelectrochemical Bioassay of l-Cysteine. Front Chem 2022; 10:845617. [PMID: 35665063 PMCID: PMC9158332 DOI: 10.3389/fchem.2022.845617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Accepted: 03/24/2022] [Indexed: 11/13/2022] Open
Abstract
A novel signal-increased photoelectrochemical (PEC) biosensor for l-cysteine (L-Cys) was proposed based on the Bi2MoO6–Bi2S3 heterostructure formed in situ on the indium–tin oxide (ITO) electrode. To fabricate the PEC biosensor, Bi2MoO6 nanoparticles were prepared by a hydrothermal method and coated on a bare ITO electrode. When L-Cys existed, Bi2S3 was formed in situ on the interface of the Bi2MoO6/ITO electrode by a chemical displacement reaction. Under the visible light irradiation, the Bi2MoO6–Bi2S3/ITO electrode exhibited evident enhancement in photocurrent response compared with the Bi2MoO6/ITO electrode, owing to the signal-increased sensing system and the excellent property of the formed Bi2MoO6–Bi2S3 heterostructure such as the widened light absorption range and efficient separation of photo-induced electron–hole pairs. Under the optimal conditions, the sensor for L-Cys detection has a linear range from 5.0 × 10−11 to 1.0 × 10−4 mol L−1 and a detection limit of 5.0 × 10−12 mol L−1. The recoveries ranging from 90.0% to 110.0% for determining L-Cys in human serum samples validated the applicability of the biosensor. This strategy not only provides a method for L-Cys detection but also broadens the application of the PEC bioanalysis based on in situ formation of photoactive materials.
Collapse
Affiliation(s)
- Hui-Jin Xiao
- Xinyang Key Laboratory of Functional Nanomaterials for Bioanalysis, College of Chemistry and Chemical Engineering, Xinyang Normal University, Xinyang, China
| | - Xiao-Jing Liao
- Xinyang Key Laboratory of Functional Nanomaterials for Bioanalysis, College of Chemistry and Chemical Engineering, Xinyang Normal University, Xinyang, China
| | - Hui Wang
- Xinyang Key Laboratory of Functional Nanomaterials for Bioanalysis, College of Chemistry and Chemical Engineering, Xinyang Normal University, Xinyang, China
| | | | - Jun-Tao Cao
- Xinyang Key Laboratory of Functional Nanomaterials for Bioanalysis, College of Chemistry and Chemical Engineering, Xinyang Normal University, Xinyang, China
- *Correspondence: Jun-Tao Cao, ; Yan-Ming Liu,
| | - Yan-Ming Liu
- Xinyang Key Laboratory of Functional Nanomaterials for Bioanalysis, College of Chemistry and Chemical Engineering, Xinyang Normal University, Xinyang, China
- *Correspondence: Jun-Tao Cao, ; Yan-Ming Liu,
| |
Collapse
|
4
|
Yu G, Sun Z, Wu Y, Sai N. Dual-QDs ratios fluorescent probe for sensitive and stable detection of insulin. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 268:120641. [PMID: 34865977 DOI: 10.1016/j.saa.2021.120641] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 11/11/2021] [Accepted: 11/14/2021] [Indexed: 06/13/2023]
Abstract
In this work, immune modified graphene quantum dot (GQD) and semiconductor quantum dot (SQD) with blue and red emission respectively were synthesized to assemble a dual-QDs ratios fluorescent probe, which could be efficient used for insulin determination. There may be the dynamic equilibrium of förster resonance energy transfer (FRET) and aggregation-induced emission (AIE) in the internal of the probe, thus emitted special dual fluorescent lights. However, this sate of probe was cleaved upon exposure to target insulin, resulting in changing of the dual fluorescent lights. The resulting ratios response can be correlated quantitatively to the concentration of insulin, and was found to have a detection limit (as low as 0.045 ng mL-1) and rapid response time (as short as 5 min). It has been preliminarily used for ratiometric sensing of insulin in biological samples and exhibited consistency of the insulin detected results and higher stability compared with conventional ELISA. Therefore, this sensitive, rapid and stable detection system has great potential for next generation of the bioassay platform for clinical diagnosis and other applications.
Collapse
Affiliation(s)
- Guanggui Yu
- Department of Nutrition and Food Hygiene, School of Public Health, Tianjin Medical University, Tianjin 300070, China
| | - Zhong Sun
- Department of Nutrition and Food Hygiene, School of Public Health, Tianjin Medical University, Tianjin 300070, China
| | - Yuntang Wu
- Department of Nutrition and Food Hygiene, School of Public Health, Tianjin Medical University, Tianjin 300070, China
| | - Na Sai
- Department of Nutrition and Food Hygiene, School of Public Health, Tianjin Medical University, Tianjin 300070, China.
| |
Collapse
|
5
|
Autofluorescence free detection of carcinoembryonic antigen in pleural effusion by persistent luminescence nanoparticle-based aptasensors. Anal Chim Acta 2022; 1194:339408. [DOI: 10.1016/j.aca.2021.339408] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 11/14/2021] [Accepted: 12/27/2021] [Indexed: 12/20/2022]
|
6
|
Li K, Yang H, Yuan X, Zhang M. A novel and indirect method for L-cysteine detection in traditional Chinese medicines by chemical vapor generation-atomic fluorescence spectrometry. Microchem J 2022. [DOI: 10.1016/j.microc.2021.106891] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
7
|
Abstract
Optical imaging is an indispensable tool in clinical diagnostics and fundamental biomedical research. Autofluorescence-free optical imaging, which eliminates real-time optical excitation to minimize background noise, enables clear visualization of biological architecture and physiopathological events deep within living subjects. Molecular probes especially developed for autofluorescence-free optical imaging have been proven to remarkably improve the imaging sensitivity, penetration depth, target specificity, and multiplexing capability. In this Review, we focus on the advancements of autofluorescence-free molecular probes through the lens of particular molecular or photophysical mechanisms that produce long-lasting luminescence after the cessation of light excitation. The versatile design strategies of these molecular probes are discussed along with a broad range of biological applications. Finally, challenges and perspectives are discussed to further advance the next-generation autofluorescence-free molecular probes for in vivo imaging and in vitro biosensors.
Collapse
Affiliation(s)
- Yuyan Jiang
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 70 Nanyang Drive, Singapore 637457, Singapore
| | - Kanyi Pu
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 70 Nanyang Drive, Singapore 637457, Singapore.,School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637371, Singapore
| |
Collapse
|
8
|
Algar WR, Massey M, Rees K, Higgins R, Krause KD, Darwish GH, Peveler WJ, Xiao Z, Tsai HY, Gupta R, Lix K, Tran MV, Kim H. Photoluminescent Nanoparticles for Chemical and Biological Analysis and Imaging. Chem Rev 2021; 121:9243-9358. [PMID: 34282906 DOI: 10.1021/acs.chemrev.0c01176] [Citation(s) in RCA: 131] [Impact Index Per Article: 43.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Research related to the development and application of luminescent nanoparticles (LNPs) for chemical and biological analysis and imaging is flourishing. Novel materials and new applications continue to be reported after two decades of research. This review provides a comprehensive and heuristic overview of this field. It is targeted to both newcomers and experts who are interested in a critical assessment of LNP materials, their properties, strengths and weaknesses, and prospective applications. Numerous LNP materials are cataloged by fundamental descriptions of their chemical identities and physical morphology, quantitative photoluminescence (PL) properties, PL mechanisms, and surface chemistry. These materials include various semiconductor quantum dots, carbon nanotubes, graphene derivatives, carbon dots, nanodiamonds, luminescent metal nanoclusters, lanthanide-doped upconversion nanoparticles and downshifting nanoparticles, triplet-triplet annihilation nanoparticles, persistent-luminescence nanoparticles, conjugated polymer nanoparticles and semiconducting polymer dots, multi-nanoparticle assemblies, and doped and labeled nanoparticles, including but not limited to those based on polymers and silica. As an exercise in the critical assessment of LNP properties, these materials are ranked by several application-related functional criteria. Additional sections highlight recent examples of advances in chemical and biological analysis, point-of-care diagnostics, and cellular, tissue, and in vivo imaging and theranostics. These examples are drawn from the recent literature and organized by both LNP material and the particular properties that are leveraged to an advantage. Finally, a perspective on what comes next for the field is offered.
Collapse
Affiliation(s)
- W Russ Algar
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, BC V6T 1Z1, Canada
| | - Melissa Massey
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, BC V6T 1Z1, Canada
| | - Kelly Rees
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, BC V6T 1Z1, Canada
| | - Rehan Higgins
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, BC V6T 1Z1, Canada
| | - Katherine D Krause
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, BC V6T 1Z1, Canada
| | - Ghinwa H Darwish
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, BC V6T 1Z1, Canada
| | - William J Peveler
- School of Chemistry, Joseph Black Building, University of Glasgow, Glasgow G12 8QQ, U.K
| | - Zhujun Xiao
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, BC V6T 1Z1, Canada
| | - Hsin-Yun Tsai
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, BC V6T 1Z1, Canada
| | - Rupsa Gupta
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, BC V6T 1Z1, Canada
| | - Kelsi Lix
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, BC V6T 1Z1, Canada
| | - Michael V Tran
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, BC V6T 1Z1, Canada
| | - Hyungki Kim
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, BC V6T 1Z1, Canada
| |
Collapse
|
9
|
Feng Y, Su Y, Liu R, Lv Y. Engineering activatable nanoprobes based on time-resolved luminescence for chemo/biosensing. Trends Analyt Chem 2021. [DOI: 10.1016/j.trac.2021.116283] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
10
|
Liu N, Xiang X, Fu L, Cao Q, Huang R, Liu H, Han G, Wu L. Regenerative field effect transistor biosensor for in vivo monitoring of dopamine in fish brains. Biosens Bioelectron 2021; 188:113340. [PMID: 34030092 DOI: 10.1016/j.bios.2021.113340] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 03/27/2021] [Accepted: 05/11/2021] [Indexed: 10/21/2022]
Abstract
The detection of dopamine, one of the neurotransmitters in cerebral physiology, is critical in studying brain activities and understanding brain functions. However, regenerative biosensor for monitoring dopamine in the progress of physiological and pathological events is still challenging, due to lack of the platform for repetitive on-line detection-regeneration cycle. Herein, we have developed a regenerated field effect transistor (FET) combined with in vivo monitoring system. In this biosensor, gold-coated magnetic nanoparticles (Fe3O4@AuNPs) acts as a regenerated recognition unit for dopamine. Just by simple removal of a permanent magnet, dopamine on the biosensor interface are catalyzed by tyrosinase, thus achieving the regeneration of the biosensor. As a result, this FET biosensor not only reveals high sensitivity and selectivity, but also exhibits excellent stability after 15 regeneration processing. This biosensor is capable of monitor dopamine with a linear range between 1 μmol L-1 and 120 μmol L-1 and low detection limit (DL) of 3.3 nmol L-1. Then, the platform has been successfully applied in dopamine analysis in fish brain under global cerebral cortical neurons. This FET biosensor is the first to on-line and remote control the sensitivity and DL by permanent magnet. It opens the door to reusable, inexpensive and large-scale productions.
Collapse
Affiliation(s)
- Na Liu
- Key Laboratory of Control of Quality and Safety for Aquatic Products, Chinese Academy of Fishery Sciences, Beijing, 100141, China; College of Food Science and Technology, Shanghai Ocean University, Shanghai, 201306, China
| | - Xueping Xiang
- Department of Pathology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310009, China
| | - Lei Fu
- Bionic Sensing and Intelligence Center, Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Qiang Cao
- Key Laboratory of Control of Quality and Safety for Aquatic Products, Chinese Academy of Fishery Sciences, Beijing, 100141, China; College of Food Science and Technology, Shanghai Ocean University, Shanghai, 201306, China
| | - Rong Huang
- Key Laboratory of Control of Quality and Safety for Aquatic Products, Chinese Academy of Fishery Sciences, Beijing, 100141, China
| | - Huan Liu
- Key Laboratory of Control of Quality and Safety for Aquatic Products, Chinese Academy of Fishery Sciences, Beijing, 100141, China
| | - Gang Han
- Key Laboratory of Control of Quality and Safety for Aquatic Products, Chinese Academy of Fishery Sciences, Beijing, 100141, China
| | - Lidong Wu
- Key Laboratory of Control of Quality and Safety for Aquatic Products, Chinese Academy of Fishery Sciences, Beijing, 100141, China.
| |
Collapse
|
11
|
Luo Q, Wang W, Tan J, Yuan Q. Surface Modified Persistent Luminescence Probes for Biosensing and Bioimaging: A Review. CHINESE J CHEM 2021. [DOI: 10.1002/cjoc.202000583] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Qiang Luo
- Institute of Chemical Biology and Nanomedicine (ICBN), State Key Laboratory of Chemo/Biosensing and Chemometrics College of Chemistry and Chemical Engineering, Hunan University Changsha Hunan 410082 China
| | - Wenjie Wang
- Institute of Chemical Biology and Nanomedicine (ICBN), State Key Laboratory of Chemo/Biosensing and Chemometrics College of Chemistry and Chemical Engineering, Hunan University Changsha Hunan 410082 China
| | - Jie Tan
- Institute of Chemical Biology and Nanomedicine (ICBN), State Key Laboratory of Chemo/Biosensing and Chemometrics College of Chemistry and Chemical Engineering, Hunan University Changsha Hunan 410082 China
| | - Quan Yuan
- Institute of Chemical Biology and Nanomedicine (ICBN), State Key Laboratory of Chemo/Biosensing and Chemometrics College of Chemistry and Chemical Engineering, Hunan University Changsha Hunan 410082 China
- Key Laboratory of Biomedical Polymers of Ministry of Education and Department of Chemistry, College of Chemistry and Molecular Sciences Wuhan University Wuhan Hubei 430072 China
| |
Collapse
|
12
|
Wu S, Li Y, Ding W, Xu L, Ma Y, Zhang L. Recent Advances of Persistent Luminescence Nanoparticles in Bioapplications. NANO-MICRO LETTERS 2020; 12:70. [PMID: 34138268 PMCID: PMC7770784 DOI: 10.1007/s40820-020-0404-8] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Accepted: 02/02/2020] [Indexed: 05/21/2023]
Abstract
Persistent luminescence phosphors are a novel group of promising luminescent materials with afterglow properties after the stoppage of excitation. In the past decade, persistent luminescence nanoparticles (PLNPs) with intriguing optical properties have attracted a wide range of attention in various areas. Especially in recent years, the development and applications in biomedical fields have been widely explored. Owing to the efficient elimination of the autofluorescence interferences from biotissues and the ultra-long near-infrared afterglow emission, many researches have focused on the manipulation of PLNPs in biosensing, cell tracking, bioimaging and cancer therapy. These achievements stimulated the growing interest in designing new types of PLNPs with desired superior characteristics and multiple functions. In this review, we summarize the works on synthesis methods, bioapplications, biomembrane modification and biosafety of PLNPs and highlight the recent advances in biosensing, imaging and imaging-guided therapy. We further discuss the new types of PLNPs as a newly emerged class of functional biomaterials for multiple applications. Finally, the remaining problems and challenges are discussed with suggestions and prospects for potential future directions in the biomedical applications.
Collapse
Affiliation(s)
- Shuqi Wu
- School of Life Sciences, Key Laboratory of Space Bioscience and Biotechnology, Northwestern Polytechnical University, Xi'an, 710072, People's Republic of China
| | - Yang Li
- School of Life Sciences, Key Laboratory of Space Bioscience and Biotechnology, Northwestern Polytechnical University, Xi'an, 710072, People's Republic of China
| | - Weihang Ding
- School of Life Sciences, Key Laboratory of Space Bioscience and Biotechnology, Northwestern Polytechnical University, Xi'an, 710072, People's Republic of China
| | - Letong Xu
- School of Life Sciences, Key Laboratory of Space Bioscience and Biotechnology, Northwestern Polytechnical University, Xi'an, 710072, People's Republic of China
| | - Yuan Ma
- School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an, 710072, People's Republic of China
| | - Lianbing Zhang
- School of Life Sciences, Key Laboratory of Space Bioscience and Biotechnology, Northwestern Polytechnical University, Xi'an, 710072, People's Republic of China.
| |
Collapse
|
13
|
Xiong F, Zhang JY, Du TT, Yang BB, Chen XG, Li L. Ultrasound-promoted specific chiroptical sensing of cysteine in aqueous solution and cells. Microchem J 2020. [DOI: 10.1016/j.microc.2019.104471] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
14
|
Rajamanikandan R, Lakshmi AD, Ilanchelian M. Smart phone assisted, rapid, simplistic, straightforward and sensitive biosensing of cysteine over other essential amino acids by β-cyclodextrin functionalized gold nanoparticles as a colorimetric probe. NEW J CHEM 2020. [DOI: 10.1039/d0nj02152k] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Herein, we have attempted the synthesis of β-CD functionalized AuNPs and then applied them as a colorimetric assay for the quantification of Cys over other different essential amino acids.
Collapse
|
15
|
Zhao X, Chen LJ, Zhao KC, Liu YS, Liu JL, Yan XP. Autofluorescence-free chemo/biosensing in complex matrixes based on persistent luminescence nanoparticles. Trends Analyt Chem 2019. [DOI: 10.1016/j.trac.2019.05.025] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
16
|
Chen S, Jia Y, Zou GY, Yu YL, Wang JH. A ratiometric fluorescent nanoprobe based on naphthalimide derivative-functionalized carbon dots for imaging lysosomal formaldehyde in HeLa cells. NANOSCALE 2019; 11:6377-6383. [PMID: 30888365 DOI: 10.1039/c9nr00039a] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Endogenous formaldehyde (FA) exists in many living cells and in inhomogeneous distribution in organelles. In particular, lysosomes play significant roles in FA generation and the biofunction of living cells. Herein, we developed a new ratiometric fluorescent nanoprobe, based on naphthalimide derivative (ND)-functionalized carbon dots (CDs), for monitoring endogenous FA in lysosomes. The fluorescence intensity (F535) of green-emitting ND at 535 nm serves as the response signal and the fluorescence intensity (F414) of blue-emitting CDs at 414 nm acts as the reference signal. The fluorescence intensity ratio (F535/F414) of the CD-ND probe is linearly correlated with FA concentration within the range of 1-40 μM in aqueous solution, and the detection limit (3σ/slope) is estimated to be 0.34 μM. As for practical application, this nanoprobe is utilized for the ratiometric fluorescence imaging of FA in live cells. Remarkably, this nanoprobe can specifically target and stain the lysosomes and detect exogenous and endogenous FA in HeLa cells. The new FA probe shows a superior lysosomal targeting ability with a Pearson's coefficient of 0.93, which is attributed to the macromolecular size and basic amine group functionalized surface of CD-ND.
Collapse
Affiliation(s)
- Shuai Chen
- College of Life and Health Sciences, Northeastern University, Shenyang 110169, China
| | | | | | | | | |
Collapse
|