1
|
Jia K, Dong XJ, Li SS, Ji WX, Zhang CW. Tunable abundant valley Hall effect and chiral spin-valley locking in Janus monolayer VCGeN 4. NANOSCALE 2024; 16:8639-8649. [PMID: 38618905 DOI: 10.1039/d3nr05643k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/16/2024]
Abstract
It is both conceptually and practically fascinating to explore fundamental research studies and practical applications of two-dimensional systems with the tunable abundant valley Hall effect. In this work, based on first-principles calculations, the tunable abundant valley Hall effect is proved to appear in Janus monolayer VCGeN4. When the magnetization is along the out-of-plane direction, VCGeN4 is an intrinsic ferromagnetic semiconductor with a valley feature. The intriguing spontaneous valley polarization exists in VCGeN4 due to the common influence of broken inversion and time-reversal symmetries, which makes it easier to realize the anomalous valley Hall effect. Furthermore, we observe that the valley-non-equilibrium quantum anomalous Hall effect is driven by external strain, which is located between two half-valley-metal states. When reversing the magnetization, the spin flipping makes the position of the edge state to change from one valley to another valley, demonstrating an intriguing behavior known as chiral spin-valley locking. Although the easy magnetic axis orientation is along the in-plane direction, we can utilize an external magnetic field to transform the magnetic axis orientation. Moreover, it is found that the valley state, electronic and magnetic properties can be well regulated by the electric field. Our works explore the mechanism of the tunable abundant valley Hall effect by applying an external strain and electric field, which provides a perfect platform to investigate the spin, valley, and topology.
Collapse
Affiliation(s)
- Kang Jia
- School of Physics and Technology, Institute of Spintronics, University of Jinan, Jinan, Shandong, 250022, People's Republic of China.
- School of Physics and Physical Engineering, Qufu Normal University, Qufu, Shandong, 273100, People's Republic of China
| | - Xiao-Jing Dong
- School of Physics and Physical Engineering, Qufu Normal University, Qufu, Shandong, 273100, People's Republic of China
| | - Sheng-Shi Li
- School of Physics and Technology, Institute of Spintronics, University of Jinan, Jinan, Shandong, 250022, People's Republic of China.
| | - Wei-Xiao Ji
- School of Physics and Technology, Institute of Spintronics, University of Jinan, Jinan, Shandong, 250022, People's Republic of China.
| | - Chang-Wen Zhang
- School of Physics and Technology, Institute of Spintronics, University of Jinan, Jinan, Shandong, 250022, People's Republic of China.
- School of Physics and Physical Engineering, Qufu Normal University, Qufu, Shandong, 273100, People's Republic of China
| |
Collapse
|
2
|
Jia K, Dong XJ, Li SS, Ji WX, Zhang CW. Novel valley character and tunable quasi-half-valley metal state in Janus monolayer VSiGeP 4. Phys Chem Chem Phys 2024; 26:4683-4691. [PMID: 38251932 DOI: 10.1039/d3cp05636h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2024]
Abstract
The manipulation and regulation of valley characteristics have aroused widespread interest in emerging information fields and fundamental research. Realizing valley polarization is one crucial issue for spintronic and valleytronic applications, the concepts of a half-valley metal (HVM) and ferrovalley (FV) materials have been put forward. Then, to separate electron and hole carriers, a fresh concept of a quasi-HVM (QHVM) has been proposed, in which only one type of carrier is valley polarized for electron and hole carriers. Based on first-principles calculations, we demonstrate that the Janus monolayer VSiGeP4 has QHVM character. To well regulate the QHVM state, strain engineering is utilized to adjust the electronic and valley traits of monolayer VSiGeP4. In the discussed strain range, monolayer VSiGeP4 always favors the ferromagnetic ground state and out-of-plane magnetization, which ensures the appearance of spontaneous valley polarization. It is found that the QHVM state can be induced in different electronic correlations (U), and the strain can effectively tune the valley, magnetic, and electronic features to maintain the QHVM state under various U values. Our work opens up a new research idea in the design of multifunctional spintronic and valleytronic devices.
Collapse
Affiliation(s)
- Kang Jia
- School of Physics and Physical Engineering, Qufu Normal University, Qufu, Shandong, 273100, People's Republic of China.
| | - Xiao-Jing Dong
- School of Physics and Physical Engineering, Qufu Normal University, Qufu, Shandong, 273100, People's Republic of China.
| | - Sheng-Shi Li
- School of Physics and Technology, Institute of Spintronics, University of Jinan, Jinan, Shandong, 250022, People's Republic of China
| | - Wei-Xiao Ji
- School of Physics and Technology, Institute of Spintronics, University of Jinan, Jinan, Shandong, 250022, People's Republic of China
| | - Chang-Wen Zhang
- School of Physics and Physical Engineering, Qufu Normal University, Qufu, Shandong, 273100, People's Republic of China.
- School of Physics and Technology, Institute of Spintronics, University of Jinan, Jinan, Shandong, 250022, People's Republic of China
| |
Collapse
|
3
|
Movlarooy T, Vatankhahan A. Ferromagnetic half-metal with high Curie temperature in Cr P nanoribbons: good material for spintronic applications. Phys Chem Chem Phys 2023; 25:24155-24162. [PMID: 37655592 DOI: 10.1039/d3cp01319g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
Abstract
In this work, the stability, and electronic, magnetic, and transport characteristics of chromium phosphorus nanoribbons (CrPNRs) have been investigated. The results, obtained from the non-equilibrium Green's function and density functional theory, indicate that the nanoribbon is stable in terms of binding energies as well as dynamically. The calculated electronic structure shows that this nanoribbon has an indirect band gap of about 1.67 eV for the spin-down channel and is metallic for the spin-up channel. The metallicity of the spin-up channel originates from the P-3p orbitals and the magnetic properties are due to the Cr-3d orbitals. The obtained transport properties indicate the value of the current for the spin-up state is about 50 μA. The negative differential resistance (NDR) phenomenon and also a 100% spin filtering effect are seen between voltages of 0.4 and 0.5 V. The results showed that CrPNRs have a high Curie temperature of more than 690 K, indicating that this nanoribbon is a useful ferromagnetic material for nanoelectronic devices and spintronic applications at ambient temperature.
Collapse
Affiliation(s)
- Tayebeh Movlarooy
- Faculty of Physics and Nuclear Engineering, Shahrood University of Technology, Shahrood, Iran.
| | - Adeleh Vatankhahan
- Faculty of Physics and Nuclear Engineering, Shahrood University of Technology, Shahrood, Iran.
| |
Collapse
|
4
|
Jia K, Dong XJ, Li SS, Ji WX, Zhang CW. Electronic-correlation induced sign-reversible Berry phase and quantum anomalous valley Hall effects in Janus monolayer OsClBr. Phys Chem Chem Phys 2023. [PMID: 37254578 DOI: 10.1039/d3cp01504a] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Topological phase transition can be induced by electronic correlation effects combined with spin-orbit coupling (SOC). Here, based on the first-principles calculations +U approach, the influence of electronic correlation effects and SOC on topological and electronic properties of the Janus monolayer OsClBr is investigated. With intrinsic out-of-plane (OOP) magnetic anisotropy, the Janus monolayer OsClBr exhibits a sequence of states, namely, the ferrovalley (FV) to half-valley-metal (HVM) to quantum anomalous valley Hall effect (QAVHE) to HVM to FV states with increasing U values. The QAVHE is characterized by a chiral edge state linking the conduction and valence bands with a Chern number C = 1, which is closely associated with the band inversion between dx2-y2/dxy and dz2 orbitals, and sign-reversible Berry curvature. The section with larger U values (2.31-2.35 eV) is very essential for determining the new HVM and QAVHE states, and also proves that a strong electron correlation effect exists in the interior of the Janus monolayer OsClBr. When taking into consideration a representative U value (U = 2.5 eV), a valley polarization value of 157 meV can be observed, which can be switched by reversing the magnetization direction of Os atoms. It is noteworthy that the Curie temperature (TC) strongly depends on the electronic correlation effects. Our work provides a comprehensive discussion on the electronic and topological properties of the Janus monolayer OsClBr, and demonstrates that the electronic correlation effects combined with SOC can drive the emergence of QAVHE, which will open up new opportunities for valleytronic, spintronic, and topological nanoelectronic applications.
Collapse
Affiliation(s)
- Kang Jia
- School of Physics and Physical Engineering, Qufu Normal University, Qufu, Shandong, 273100, People's Republic of China
| | - Xiao-Jing Dong
- School of Physics and Physical Engineering, Qufu Normal University, Qufu, Shandong, 273100, People's Republic of China
| | - Sheng-Shi Li
- School of Physics and Technology, Institute of Spintronics, University of Jinan, Jinan, Shandong, 250022, People's Republic of China.
| | - Wei-Xiao Ji
- School of Physics and Technology, Institute of Spintronics, University of Jinan, Jinan, Shandong, 250022, People's Republic of China.
| | - Chang-Wen Zhang
- School of Physics and Physical Engineering, Qufu Normal University, Qufu, Shandong, 273100, People's Republic of China
- School of Physics and Technology, Institute of Spintronics, University of Jinan, Jinan, Shandong, 250022, People's Republic of China.
| |
Collapse
|
5
|
Jia K, Dong XJ, Li SS, Ji WX, Zhang CW. Spontaneous valley polarization and valley-nonequilibrium quantum anomalous Hall effect in Janus monolayer ScBrI. NANOSCALE 2023; 15:8395-8405. [PMID: 37092871 DOI: 10.1039/d2nr07221a] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Topology and ferrovalley (FV) are two essential concepts in emerging device applications and the fundamental research field. To date, relevant reports are extremely rare about the coupling of FV and topology in a single system. By Monte Carlo (MC) simulations and first-principles calculations, a stable intrinsic FV ScBrI semiconductor with high Curie temperature (TC) is predicted. Because of the combination of spin-orbital coupling (SOC) and exchange interaction, the Janus monolayer ScBrI shows a spontaneous valley polarization of 90 meV, which is located in the top valence band. For the magnetization direction perpendicular to the plane, the changes from FV to half-valley-metal (HVM), to valley-nonequilibrium quantum anomalous Hall effect (VQAHE), to HVM, and to FV can be induced by strain engineering. It is worth noting that there are no particular valley polarization and VQAHE states for in-plane (IP) magnetic anisotropy. By obtaining the real magnetic anisotropy energy (MAE) under different strains, due to spontaneous valley polarization, intrinsic out-of-plane (OOP) magnetic anisotropy, a chiral edge state, and a unit Chern number, the VQAHE can reliably appear between two HVM states. The increasing strains can induce VQAHE, which can be clarified by a band inversion between dx2-y2/dxy and dz2 orbitals, and a sign-reversible Berry curvature. Once synthesized, the Janus monolayer ScBrI would find more significant applications in topological electronic, valleytronic, and spintronic nanodevices.
Collapse
Affiliation(s)
- Kang Jia
- School of Physics and Physical Engineering, Qufu Normal University, Qufu, Shandong, 273100, People's Republic of China
| | - Xiao-Jing Dong
- School of Physics and Physical Engineering, Qufu Normal University, Qufu, Shandong, 273100, People's Republic of China
| | - Sheng-Shi Li
- School of Physics and Technology, Institute of Spintronics, University of Jinan, Jinan, Shandong, 250022, People's Republic of China.
| | - Wei-Xiao Ji
- School of Physics and Technology, Institute of Spintronics, University of Jinan, Jinan, Shandong, 250022, People's Republic of China.
| | - Chang-Wen Zhang
- School of Physics and Physical Engineering, Qufu Normal University, Qufu, Shandong, 273100, People's Republic of China
- School of Physics and Technology, Institute of Spintronics, University of Jinan, Jinan, Shandong, 250022, People's Republic of China.
| |
Collapse
|
6
|
Yang Y. Mini-review of interesting properties in Mn 2CoAl bulk and films. Front Chem 2022; 10:1054337. [PMID: 36339051 PMCID: PMC9626756 DOI: 10.3389/fchem.2022.1054337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 10/06/2022] [Indexed: 12/05/2022] Open
Abstract
Heusler compounds exhibit many interesting properties, such as high thermopower, magnetocaloric properties, and even topological insulator states. Heusler Mn2CoAl alloy has been experimentally and theoretically proposed as a promising spin-gapless semiconductor with novel electronic, magnetic, spintronic, transport, and topological properties. Furthermore, the spin-gapless semiconducting-like behaviors are also predicted in Mn2CoAl films by measuring the transport and magnetic properties. This mini-review systematically summarizes the interesting properties of Mn2CoAl bulk and Mn2CoAl-based films. This mini-review is hoped to guide further experimental investigations and applications in the particular scientific community.
Collapse
Affiliation(s)
- Ying Yang
- College of Physics and Electronic Engineering, Chongqing Normal University, Chongqing, China
| |
Collapse
|
7
|
Wang J, Wang D. Two-dimensional spin-gapless semiconductors: A mini-review. Front Chem 2022; 10:996344. [PMID: 36092680 PMCID: PMC9452911 DOI: 10.3389/fchem.2022.996344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Accepted: 07/26/2022] [Indexed: 11/13/2022] Open
Abstract
In the past decade, two-dimensional (2D) materials and spintronic materials have been rapidly developing in recent years. 2D spin-gapless semiconductors (SGSs) are a novel class of ferromagnetic 2D spintronic materials with possible high Curie temperature, 100% spin-polarization, possible one-dimensional or zero-dimensional topological signatures, and other exciting spin transport properties. In this mini-review, we summarize a series of ideal 2D SGSs in the last 3 years, including 2D oxalate-based metal-organic frameworks, 2D single-layer Fe2I2, 2D Cr2X3 (X = S, Se, and Te) monolayer with the honeycomb kagome (HK) lattice, 2D CrGa2Se4 monolayer, 2D HK Mn-cyanogen lattice, 2D MnNF monolayer, and 2D Fe4N2 pentagon crystal. The mini-review also discusses the unique magnetic, electronic, topological, and spin-transport properties and the possible application of these 2D SGSs. The mini-review can be regarded as an improved understanding of the current state of 2D SGSs in recent 3 years.
Collapse
Affiliation(s)
| | - Dandan Wang
- School of Physical Science and Technology, Southwest University, Chongqing, China
| |
Collapse
|
8
|
Abedi S, Taghizadeh Sisakht E, Hashemifar SJ, Ghafari Cherati N, Abdolhosseini Sarsari I, Peeters FM. Prediction of novel two-dimensional Dirac nodal line semimetals in Al 2B 2 and AlB 4 monolayers. NANOSCALE 2022; 14:11270-11283. [PMID: 35880622 DOI: 10.1039/d2nr00888b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Topological semimetal phases in two-dimensional (2D) materials have gained widespread interest due to their potential applications in novel nanoscale devices. Despite the growing number of studies on 2D topological nodal lines (NLs), candidates with significant topological features that combine nontrivial topological semimetal phase with superconductivity are still rare. Herein, we predict Al2B2 and AlB4 monolayers as new 2D nonmagnetic Dirac nodal line semimetals with several novel features. Our extensive electronic structure calculations combined with analytical studies reveal that, in addition to multiple Dirac points, these 2D configurations host various highly dispersed NLs around the Fermi level, all of which are semimetal states protected by time-reversal and in-plane mirror symmetries. The most intriguing NL in Al2B2 encloses the K point and crosses the Fermi level, showing a considerable dispersion and thus providing a fresh playground to explore exotic properties in dispersive Dirac nodal lines. More strikingly, for the AlB4 monolayer, we provide the first evidence for a set of 2D nonmagnetic open type-II NLs coexisting with superconductivity at a rather high transition temperature. The coexistence of superconductivity and nontrivial band topology in AlB4 not only makes it a promising material to exhibit novel topological superconducting phases, but also a rather large energy dispersion of type-II nodal lines in this configuration may offer a platform for the realization of novel topological features in the 2D limit.
Collapse
Affiliation(s)
- Saeid Abedi
- Department of Physics, Isfahan University of Technology, Isfahan, 84156-83111, Iran.
| | | | - S Javad Hashemifar
- Department of Physics, Isfahan University of Technology, Isfahan, 84156-83111, Iran.
| | - Nima Ghafari Cherati
- Department of Physics, Isfahan University of Technology, Isfahan, 84156-83111, Iran.
| | | | - Francois M Peeters
- Department of Physics, University of Antwerp, Groenenborgerlaan 171, B-2020 Antwerpen, Belgium
| |
Collapse
|
9
|
Rojas O. Emergence of quantum spin frustration in spin-1/2 Ising-Heisenberg model on a decorated honeycomb lattice. Phys Rev E 2022; 106:014109. [PMID: 35974568 DOI: 10.1103/physreve.106.014109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 06/28/2022] [Indexed: 06/15/2023]
Abstract
We study the spin-1/2 Ising-XXZ model on a decorated honeycomb lattice composed of five spins per unit cell, one Ising spin, and four Heisenberg spins. This model involving the Heisenberg exchange interaction is one of the few models that can be exactly solvable through the generalized star-triangle transformation. The significance of this model is its close relationship to the fully decorated quantum Heisenberg honeycomb lattice since 4/5 of the particles are Heisenberg spins. We investigate the phase diagram at zero temperature and identify a relevant quantum spin frustrated phase resulting from the contribution of quantum Heisenberg exchange interaction. We obtain an exact residual entropy for the quantum spin frustrated phase, which coincides with the residual entropy of the antiferromagnetic spin-1/2 Ising model on a triangular lattice. We also thoroughly explore its thermodynamic properties, focusing mainly on the frustrated region such as entropy, specific heat, spontaneous magnetization, and critical temperature under several conditions.
Collapse
Affiliation(s)
- Onofre Rojas
- Department of Physics, Institute of Natural Science, Federal University of Lavras, 37200-900, Lavras-MG, Brazil
| |
Collapse
|
10
|
Ding LJ, Li GG, Zhang CW, Li P, Wang PJ. Prediction of nodal-line semimetals in 2D ScX (X = P, As) with high stability and considerable fermi velocities. Chem Phys 2022. [DOI: 10.1016/j.chemphys.2021.111375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
11
|
Zhang K, Chen M, Wang D, Lv H, Wu X, Yang J. Nodal-loop half metallicity in a two-dimensional Fe 4N 2 pentagon crystal with room-temperature ferromagnetism. NANOSCALE 2021; 13:19493-19499. [PMID: 34796890 DOI: 10.1039/d1nr06033c] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Two-dimensional (2D) materials with fully spin-polarized nodal-loop band crossing are a class of topological magnetic materials, holding promise for high-speed low-dissipation spintronic devices. Recently, several 2D nodal-loop materials have been reported in theory and experiment, such as Cu2Si, Be2C, CuSe, and Cr2S3 monolayers, adopting triangular, tetragonal, hexagonal, or complex lattices. However, a 2D nodal-loop half metal with room-temperature magnetism is still less reported. Here, we report that the 2D Fe4N2 pentagon crystal is a nodal-loop half metal with room-temperature magnetism over 428 K and a global minimum structure via first-principles calculations and global structure search. The Dirac nodal lines in Fe4N2 form a flat nodal loop at the Fermi level and a spin-polarized type-II nodal-loop above the Fermi level, which are protected by mirror symmetry. Our results establish Fe4N2 as a platform to obtain nodal-loop half metallicity in the 2D pentagon lattice and provide opportunities to build high-speed low-dissipation spintronics in the nanoscale.
Collapse
Affiliation(s)
- Kai Zhang
- School of Chemistry and Materials Sciences, CAS Key Laboratory of Materials for Energy Conversion, Synergetic Innovation of Quantum Information & Quantum Technology, and CAS Center for Excellence in Nanoscience, University of Science and Technology of China, Hefei, Anhui 230026, China.
- Hefei National Laboratory of Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Minglong Chen
- School of Chemistry and Materials Sciences, CAS Key Laboratory of Materials for Energy Conversion, Synergetic Innovation of Quantum Information & Quantum Technology, and CAS Center for Excellence in Nanoscience, University of Science and Technology of China, Hefei, Anhui 230026, China.
| | - Dayong Wang
- School of Chemistry and Materials Sciences, CAS Key Laboratory of Materials for Energy Conversion, Synergetic Innovation of Quantum Information & Quantum Technology, and CAS Center for Excellence in Nanoscience, University of Science and Technology of China, Hefei, Anhui 230026, China.
| | - Haifeng Lv
- School of Chemistry and Materials Sciences, CAS Key Laboratory of Materials for Energy Conversion, Synergetic Innovation of Quantum Information & Quantum Technology, and CAS Center for Excellence in Nanoscience, University of Science and Technology of China, Hefei, Anhui 230026, China.
- Hefei National Laboratory of Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Xiaojun Wu
- School of Chemistry and Materials Sciences, CAS Key Laboratory of Materials for Energy Conversion, Synergetic Innovation of Quantum Information & Quantum Technology, and CAS Center for Excellence in Nanoscience, University of Science and Technology of China, Hefei, Anhui 230026, China.
- Hefei National Laboratory of Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Jinlong Yang
- School of Chemistry and Materials Sciences, CAS Key Laboratory of Materials for Energy Conversion, Synergetic Innovation of Quantum Information & Quantum Technology, and CAS Center for Excellence in Nanoscience, University of Science and Technology of China, Hefei, Anhui 230026, China.
- Hefei National Laboratory of Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui 230026, China
| |
Collapse
|
12
|
Lin P, Fang F, Zhang L, Li Y, Wang K. Various Nodal Lines in P6 3/mmc-type TiTe Topological Metal and its (001) Surface State. Front Chem 2021; 9:755350. [PMID: 34650960 PMCID: PMC8510513 DOI: 10.3389/fchem.2021.755350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Accepted: 09/10/2021] [Indexed: 11/13/2022] Open
Abstract
Searching for existing topological materials is a hot topic in quantum and computational chemistry. This study uncovers P63/mmc type TiTe compound—an existing material—is a newly discovered topological metal that hosts the various type of nodal line states. Different nodal line states normally exhibit different properties; they may have their individual applications. We report that TiTe hosts I, II, and hybrid type nodal line (NL) states at its ground state without chemical doping and strain engineering effects. Specifically, two type I NLs, two hybrid-type NLs, and one Γ—centered type II NL can be found in the kz = 0 plane. Moreover, the spin-orbit coupling induced gaps for these NLs are very small and within acceptable limits. The surface states of the TiTe (001) plane were determined to provide strong evidence for the appearance of the three types of NLs in TiTe. We also provide a reference for the data of the dynamic and mechanical properties of TiTe. We expect that the proposed NL states in TiTe can be obtained in future experiments.
Collapse
Affiliation(s)
- Peng Lin
- Engineering and Technology Center, The Fourth Medical College of Harbin Medical University, Harbin, China
| | - Fang Fang
- Engineering and Technology Center, The Fourth Medical College of Harbin Medical University, Harbin, China
| | - Li Zhang
- Changchun Institute of Technology, Changchun, China
| | - Yang Li
- Engineering and Technology Center, The Fourth Medical College of Harbin Medical University, Harbin, China.,Nanoscience and Engineering and Technology Electrophysiology Research Center, The Fourth Medical College of Harbin Medical University, Harbin, China
| | - Kai Wang
- Engineering and Technology Center, The Fourth Medical College of Harbin Medical University, Harbin, China.,Nanoscience and Engineering and Technology Electrophysiology Research Center, The Fourth Medical College of Harbin Medical University, Harbin, China
| |
Collapse
|
13
|
Zhou F, Liu Y, Kuang M, Wang P, Wang J, Yang T, Wang X, Cheng Z, Zhang G. Time-reversal-breaking Weyl nodal lines in two-dimensional A 3C 2 (A = Ti, Zr, and Hf) intrinsically ferromagnetic materials with high Curie temperature. NANOSCALE 2021; 13:8235-8241. [PMID: 33885113 DOI: 10.1039/d1nr00139f] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Most materials that feature nontrivial band topology are spin-degenerate and three dimensional, strongly restricting them from application in spintronic nanodevices. Hence, two-dimensional (2D) intrinsically spin-polarized systems with rich topological elements are still in extreme scarcity. Here, 2D A3C2 (A = Ti, Zr, and Hf) materials with the P6[combining macron]m2 type structure are reported as new ferromagnetic materials with intrinsic magnetism and good stability. Unlike the Weyl nodal lines existing in nonmagnetic 2D systems, A3C2 hosts time-reversal-breaking Weyl nodal rings (two Γ-centered, one K-centered, and one K'-centered) without spin-orbit coupling (SOC). These nodal rings still remained under SOC with magnetization along the z direction (easy magnetization axis). More interestingly, the Curie temperatures (TC) of A3C2 were determined based on the Monte Carlo simulation. Ti3C2 features an extraordinary TC (above 800 K), and those of Zr3C2 and Hf3C2 are above room temperature. Therefore, A3C2 materials are excellent platforms to study magnetic Weyl nodal lines in high TC ferromagnetic 2D materials.
Collapse
Affiliation(s)
- Feng Zhou
- School of Physical Science and Technology, Southwest University, Chongqing 400715, China.
| | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Li XY, Ji WX, Wang PJ, Zhang CW. Half-Dirac semimetals and the quantum anomalous Hall effect in Kagome Cd 2N 3 lattices. NANOSCALE ADVANCES 2021; 3:847-854. [PMID: 36133851 PMCID: PMC9418731 DOI: 10.1039/d0na00530d] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Accepted: 12/05/2020] [Indexed: 06/14/2023]
Abstract
Half-Dirac semimetals (HDSs), which possess 100% spin-polarizations for Dirac materials, are highly desirable for exploring various topological phases of matter as low-dimensionality opens unprecedented opportunities for manipulating the quantum state of low-cost electronic nanodevices. The search for high-temperature HDSs is still a current hotspot and yet challenging experimentally. Herein based on first-principles calculations, we propose the realization of Half Dirac semimetals (HDS) in two-dimensional (2D) Kagome transition-metal nitride Cd2N3, which is robust against strain engineering. Monte Carlo simulations reveal that Cd2N3 possesses a Curie temperature reaching up to T C = 225 K, which is much higher than that of the reported monolayers CrI3 (T C = 45 K) and Cr2Ge2Te6 (T C = 20 K). The band crossings in Cd2N3 are gapped out by the spin-orbit coupling, which brings about the quantum anomalous Hall (QAH) effect with a sizeable band gap of E g = 4.9 meV, characterized by the nonzero Chern number (C = 1) and chiral edge states. A tight-binding model is further used to clarify the origin of HDSs and nontrivial electronic properties. The results suggest monolayer transition-metal nitrides as a promising platform to explore fascinating physical phenomena associated with novel 2D emergent HDSs and QAH insulators toward realistic spintronics devices, thus stimulating experimental interest.
Collapse
Affiliation(s)
- Xin-Yang Li
- School of Physics and Technology, University of Jinan Jinan Shandong 250022 People's Republic of China
| | - Wei-Xiao Ji
- School of Physics and Technology, University of Jinan Jinan Shandong 250022 People's Republic of China
| | - Pei-Ji Wang
- School of Physics and Technology, University of Jinan Jinan Shandong 250022 People's Republic of China
| | - Chang-Wen Zhang
- School of Physics and Technology, University of Jinan Jinan Shandong 250022 People's Republic of China
| |
Collapse
|
15
|
Bao H, Zhao B, Xue Y, Huan H, Gao G, Liu X, Yang Z. Various half-metallic nodal loops in organic Cr 2N 6C 3 monolayers. NANOSCALE 2021; 13:3161-3172. [PMID: 33527935 DOI: 10.1039/d0nr07485c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Topological nodal-line semimetals, as a type of exotic quantum electronic state, have drawn considerable research interest recently. In this work, we propose a new two-dimensional covalent-organic Cr2N6C3 monolayer (ML) material, which has a combined honeycomb and effective Kagome lattice and has various half-metallic nodal loops (HMNLs). First-principles calculations show that the Cr2N6C3 ML is dynamically and thermally stable and has an out-of-plane ferromagnetic order. Remarkably, various nodal loops, including types I-III, are found coexisting in the material, all of which are rare half-metallic states. The obtained HMNLs, simultaneously possessing the merits of spintronics and semimetals, are robust against spin-orbit coupling and biaxial strain. A topological phase transition, characterized by loop-winding indexes, can be induced in the ML by applying uniaxial strain. Tight-binding model calculations show that the obtained HMNLs originate primarily from the band inversion between Cr dx2-y2/xy and N pz orbitals, accommodated on the honeycomb and Kagome sublattices, respectively. The various predicted HMNLs and topological behaviors mean that the Cr2N6C3 MLs have promisingly versatile applications in future low-power-consuming spintronics and electronics.
Collapse
Affiliation(s)
- Hairui Bao
- State Key Laboratory of Surface Physics and Key Laboratory of Computational Physical Sciences (MOE) & Department of Physics, Fudan University, Shanghai 200433, China.
| | | | | | | | | | | | | |
Collapse
|
16
|
Li XY, Zhang MH, Ren MJ, Zhang CW. Emergence of 2D high-temperature nodal-line half-metal in monolayer AgN. Phys Chem Chem Phys 2020; 22:27024-27030. [PMID: 33210701 DOI: 10.1039/d0cp04961a] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Nodal-line half-metals (NLHMs) are highly desirable for future spintronic devices due to their exotic quantum properties. However, the experimental realization in spin-polarized materials is nontrivial to date. Herein we perform first-principles calculations to demonstrate a 2D honeycomb, AgN, as a promising candidate of NLHMs, which is thermodynamically and dynamically stable. Band structure analysis reveals that two concentric NLs coexist centered at a Γ point near EF, accompanied by the electron and hole pockets that touch each other linearly with single-spin components. Inclusion of SOC can enrich the electronic structures of AgN, sensitive to the protection of mirror reflection symmetry: the NLHM survives if the spin is perpendicular to the Mz mirror plane, while it tunes into Wyle nodal-points by rotating spins from the out-of-plane to the in-plane direction. The characteristics of HM and NL can be well maintained on semiconducting h-BN and is immune to mechanical strains. These tunable magnetic properties render 2D AgN suitable for exotic quantum transports in nodal fermions as well as related spintronic devices.
Collapse
Affiliation(s)
- Xin-Yang Li
- School of Physics and Technology, Institute of Spintronics, University of Jinan, Jinan, Shandong 250022, P. R. China.
| | | | | | | |
Collapse
|
17
|
Xu H. Realization of Opened and Closed Nodal Lines and Four- and Three-fold Degenerate Nodal Points in XPt (X = Sc, Y, La) Intermetallic Compound: A Computational Modeling Study. Front Chem 2020; 8:609118. [PMID: 33251188 PMCID: PMC7674926 DOI: 10.3389/fchem.2020.609118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Accepted: 10/12/2020] [Indexed: 11/13/2022] Open
Abstract
Realizing rich topological elements in topological materials has attracted increasing attention in the fields of chemistry, physics, and materials science. Topological semimetals/metals are classified into three main types: nodal-point, nodal-line, and nodal-surface types with zero-, one-, and two-dimensional topological elements, respectively. This study reports that XPt (X = Sc, Y, La) intermetallic compounds are topological metals with opened and closed nodal lines, and triply degenerate nodal points (TNPs) when the spin-orbit coupling (SOC) is ignored. Based on the calculated phonon dispersions, one can find that ScPt and YPt are dynamically stable whereas LaPt is not. When SOC is added, the one-dimensional nodal line and zero-dimensional TNPs disappear. Interestingly, a new zero-dimensional topological element, that is, Dirac points with 4-fold degenerate isolated band crossings with linear band dispersion appear. The proposed materials can be considered a good platform to realize zero- and one-dimensional topological elements in a single compound and to study the relationship between zero- and one-dimensional topological elements.
Collapse
Affiliation(s)
- Heju Xu
- College of Science, North China University of Science and Technology, Tangshan, China
| |
Collapse
|
18
|
Wang X, Ding G, Khandy SA, Cheng Z, Zhang G, Wang XL, Chen H. Unique topological nodal line states and associated exceptional thermoelectric power factor platform in Nb 3GeTe 6 monolayer and bulk. NANOSCALE 2020; 12:16910-16916. [PMID: 32766657 DOI: 10.1039/d0nr03704d] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
To date, ideal topological nodal line semimetal (TNLS) candidates in high dynamically stable and high thermally stable two-dimensional (2D) materials are still extremely scarce. Herein, by performing first-principles calculations, on the one hand, we found that three-dimensional Nb3GeTe6 bulk possesses a single closed TNL in the kx = 0 plane and a fourfold TNL in the S-R direction without considering spin-orbit coupling (SOC). Under the SOC effect, a new topological signature, i.e., hourglass-like Dirac nodal line, occurs in Nb3GeTe6 bulk. On the other hand, we found that the 2D Nb3GeTe6 monolayer features a doubly degenerate TNL along surface X-S paths. Importantly, this monolayer enjoys the following advantages: (i) it has high thermal stability at room temperature and above; (ii) its TNL is nearly flat in energy and is very close to the Fermi level (EF), which provides a fantastic maximum value platform of the thermoelectric power factor around the EF; and (iii) no extraneous bands are close to the TNL, near the Fermi level. Moreover, we explore the entanglement between the topological states and thermolectric properties for the 2D Nb3GeTe6 monolayer. Our work not only reports the discovery of a novel TNL material, but also builds the link between the TNL and thermoelectric properties.
Collapse
Affiliation(s)
- Xiaotian Wang
- Institute for Superconducting and Electronic Materials (ISEM), University of Wollongong, Wollongong 2500, Australia.
| | | | | | | | | | | | | |
Collapse
|
19
|
Ma AN, Wang PJ, Zhang CW. Intrinsic ferromagnetism with high temperature, strong anisotropy and controllable magnetization in the CrX (X = P, As) monolayer. NANOSCALE 2020; 12:5464-5470. [PMID: 32083630 DOI: 10.1039/c9nr10322h] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
2D ferromagnetic (FM) materials with high temperature, large magnetocrystalline anisotropic energy (MAE), and controllable magnetization are highly desirable for novel nanoscale spintronic applications. Herein by using DFT and Monte Carlo simulations, we demonstrate the possibility of realizing intrinsic ferromagnetism in 2D monolayer CrX (X = P, As), which are stable and can be exfoliated from their bulk phase with a van der Waals layered structure. Following the Goodenough-Kanamori-Anderson (GKA) rule, the long-range ferromagnetism of CrX is caused via a 90° superexchange interaction along Cr-P(As)-Cr bonds. The Curie temperature of CrP is predicted to be 232 K based on a Heisenberg Hamiltonian model, while the Berezinskii-Kosterlitz-Thouless transition temperature of CrAs is as high as 855 K. In contrast to other 2D magnetic materials, the CrP monolayer exhibits a significant uniaxial MAE of 217 μeV per Cr atom originating from spin-orbit coupling. Analysis of MAE reveals that CrP favors easy out-of-plane magnetization, while CrAs prefers easy in-plane magnetization. Remarkably, hole and electron doping can switch the magnetization axis in between the in-plane and out-of-plane direction, allowing for the effective control of spin injection/detection in 2D structures. Our results offer an ideal platform for realizing 2D magnetoelectric devices such as spin-FETs in spintronics.
Collapse
Affiliation(s)
- An-Ning Ma
- School of Physics and Technology, University of Jinan, Jinan, Shandong 250022, People's Republic of China.
| | | | | |
Collapse
|
20
|
Zheng FB, Zhang L, Zhang J, Wang PJ, Zhang CW. Germanene/GaGeTe heterostructure: a promising electric-field induced data storage device with high carrier mobility. Phys Chem Chem Phys 2020; 22:5163-5169. [PMID: 32083263 DOI: 10.1039/c9cp06445a] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Opening up a band gap without lowering high carrier mobility in germanene and finding suitable substrate materials to form van der Waals heterostructures have recently emerged as an intriguing way of designing a new type of electronic devices. By using first-principles calculations, here, we systematically investigate the effect of the GaGeTe substrate on the electronic properties of monolayer germanene. Linear dichroism of the Dirac-cone like band dispersion and higher carrier mobility (9.7 × 103 cm2 V-1 s-1) in the Ge/GaGeTe heterostructure (HTS) are found to be preserved compared to that of free-standing germanene. Remarkably, the band structure of HTS can be flexibly modulated by applying bias voltage or strain. A prototype data storage device FET based on Ge/GaGeTe HTS is proposed, which presents a promising high performance platform with a tunable band gap and high carrier mobility.
Collapse
Affiliation(s)
- Fu-Bao Zheng
- School of Physics and Technology, University of Jinan, Jinan, Shandong 250022, People's Republic of China. and National Laboratory of Solid State Microstructures, Collaborative Innovation Center of Advanced Microstructures, and Department of Physics, Nanjing University, Nanjing 210093, People's Republic of China
| | - Liang Zhang
- School of Physics and Technology, University of Jinan, Jinan, Shandong 250022, People's Republic of China.
| | - Jin Zhang
- School of Physics and Technology, University of Jinan, Jinan, Shandong 250022, People's Republic of China.
| | - Pei-Ji Wang
- School of Physics and Technology, University of Jinan, Jinan, Shandong 250022, People's Republic of China.
| | - Chang-Wen Zhang
- School of Physics and Technology, University of Jinan, Jinan, Shandong 250022, People's Republic of China.
| |
Collapse
|
21
|
Hu Y, Li SS, Ji WX, Zhang CW, Ding M, Wang PJ, Yan SS. Glide Mirror Plane Protected Nodal-Loop in an Anisotropic Half-Metallic MnNF Monolayer. J Phys Chem Lett 2020; 11:485-491. [PMID: 31885272 DOI: 10.1021/acs.jpclett.9b03320] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Two-dimensional (2D) nodal-loop (NL) semimetals have attracted tremendous attention for their abundant physics and potential device applications, whereas the realization of gapless NL semimetals robust against spin-orbit coupling (SOC) remains a big challenge. Recently, breakthroughs have been made with the realization of gapless NL semimetals in 2D half-metallic materials, where NLs were protected by a horizontal mirror plane symmetry. Here we first propose an alternative nonsymmorphic horizontal glide mirror plane symmetry which could protect the NLs in 2D materials. On the basis of comprehensive first-principles calculations and symmetry analysis, we found that the glide mirror symmetry together with intrinsic out-of-plane spin polarization can protect the NL against SOC in a half-metallic semimetal, namely, the MnNF monolayer. Moreover, we predict that the MnNF monolayer has strong anisotropic characteristics, tunable band structure by changing the magnetization direction, and 100% spin-polarized transport properties. Our work not only provides a novel 2D half-metallic semimetal with strong anisotropy but also broadens the scope of 2D nodal-loop materials.
Collapse
Affiliation(s)
- Yang Hu
- Spintronics Institute, School of Physics and Technology , University of Jinan , Jinan 250022 , China
| | - Sheng-Shi Li
- Spintronics Institute, School of Physics and Technology , University of Jinan , Jinan 250022 , China
| | - Wei-Xiao Ji
- Spintronics Institute, School of Physics and Technology , University of Jinan , Jinan 250022 , China
| | - Chang-Wen Zhang
- Spintronics Institute, School of Physics and Technology , University of Jinan , Jinan 250022 , China
| | - Meng Ding
- Spintronics Institute, School of Physics and Technology , University of Jinan , Jinan 250022 , China
| | - Pei-Ji Wang
- Spintronics Institute, School of Physics and Technology , University of Jinan , Jinan 250022 , China
| | - Shi-Shen Yan
- Spintronics Institute, School of Physics and Technology , University of Jinan , Jinan 250022 , China
| |
Collapse
|
22
|
Bafekry A, Stampfl C, Peeters FM. Dirac half-metallicity of Thin PdCl 3 Nanosheets: Investigation of the Effects of External Fields, Surface Adsorption and Defect Engineering on the Electronic and Magnetic Properties. Sci Rep 2020; 10:213. [PMID: 31937833 PMCID: PMC6959269 DOI: 10.1038/s41598-019-57353-3] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Accepted: 12/18/2019] [Indexed: 12/18/2022] Open
Abstract
PdCl3 belongs to a novel class of Dirac materials with Dirac spin-gapless semiconducting characteristics. In this paper based, on first-principles calculations, we have systematically investigated the effect of adatom adsorption, vacancy defects, electric field, strain, edge states and layer thickness on the electronic and magnetic properties of PdCl3 (palladium trichloride). Our results show that when spin-orbital coupling is included, PdCl3 exhibits the quantum anomalous Hall effect with a non-trivial band gap of 24 meV. With increasing number of layers, from monolayer to bulk, a transition occurs from a Dirac half-metal to a ferromagnetic metal. On application of a perpendicular electrical field to bilayer PdCl3, we find that the energy band gap decreases with increasing field. Uniaxial and biaxial strain, significantly modifies the electronic structure depending on the strain type and magnitude. Adsorption of adatom and topological defects have a dramatic effect on the electronic and magnetic properties of PdCl3. In particular, the structure can become a metal (Na), half-metal (Be, Ca, Al, Ti, V, Cr, Fe and Cu with, respective, 0.72, 9.71, 7.14, 6.90, 9.71, 4.33 and 9.5 μB magnetic moments), ferromagnetic-metal (Sc, Mn and Co with 4.55, 7.93 and 2.0 μB), spin-glass semiconductor (Mg, Ni with 3.30 and 8.63 μB), and dilute-magnetic semiconductor (Li, K and Zn with 9.0, 9.0 and 5.80 μB magnetic moment, respectively). Single Pd and double Pd + Cl vacancies in PdCl3 display dilute-magnetic semiconductor characteristics, while with a single Cl vacancy, the material becomes a half-metal. The calculated optical properties of PdCl3 suggest it could be a good candidate for microelectronic and optoelectronics devices.
Collapse
Affiliation(s)
- Asadollah Bafekry
- Department of Physics, University of Guilan, 41335-1914, Rasht, Iran. .,Department of Physics, University of Antwerp, Groenenborgerlaan 171, B-2020, Antwerp, Belgium.
| | - Catherine Stampfl
- School of Physics, The University of Sydney, New South Wales, 2006, Australia
| | - Francois M Peeters
- Department of Physics, University of Antwerp, Groenenborgerlaan 171, B-2020, Antwerp, Belgium
| |
Collapse
|
23
|
Teshome T, Datta A. Topological Phase Transition in Sb 2Mg 3 Assisted by Strain. ACS OMEGA 2019; 4:8701-8706. [PMID: 31459960 PMCID: PMC6648217 DOI: 10.1021/acsomega.9b00613] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Accepted: 05/09/2019] [Indexed: 06/10/2023]
Abstract
Topological insulating materials with dissipationless surface states promise potential applications in spintronic materials. Through density functional theory, we proposed a new class of topological phase transition in Sb2Mg3 on the basis of tensile strain. At the equilibrium state, Sb2Mg3 corresponds to a normal insulator, and under the influence of tensile strain, the band gaps are gradually tuned. At ε = 7.2%, the nontrivial phase is achieved due to spin-orbital coupling (SOC), and a nontrivial topological phase band gap of 0.22 eV is opened. As a result, the Dirac cone is locked in the bulk, which is associated to p x,y band crossing. Interestingly, the tuning of nontrivial topological properties with tensile strain leading to spin saturation indicates an orbital-filtering effect. The surface state of the Sb2Mg3 material is determined by the topological invariant, Z 2 = 1, at the critical tensile strain in the presence of the SOC effect. This study enhances the scope of topological insulators and current platforms to design new spintronic devices.
Collapse
|
24
|
Shao X, Li L, Shi X, Ma Y, Wu X, Wang K. The shielding effects of a C 60 cage on the magnetic moments of transition metal atoms inside the corner holes of Si(111)-(7 × 7). NANOSCALE 2019; 11:6228-6234. [PMID: 30874699 DOI: 10.1039/c9nr01177c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The strong interaction between transition metal (TM) atoms and semiconductor surface atoms may diminish the magnetic moments of the TM atoms and prevent them from being used as single atom spin-based devices. A carbon cage that can encapsulate TM atoms and isolate them from interacting with surface atoms is considered to protect the magnetic moments of the TM atoms. We have studied the magnetic moments of Fe, Co, and Ni atoms adsorbed inside the corner hole of Si(111)-(7 × 7) by using first-principles calculations based on the density functional theory. The results show that when Co and Ni atoms are directly adsorbed inside the corner hole, the magnetic moments are 1.353μB and 0, respectively. However when a C60 cage is used to encapsulate the atoms, the magnetic moments increase to 1.849μB and 0.884μB, respectively. The results show a clear protecting effect of a carbon cage. For Fe with and without C60, the magnetic moments are 2.909μB and 2.825μB, respectively. The presence of a C60 cage can also maintain their magnetic moments. Further analysis shows that the TM atoms possess magnetic moments when the conduction electrons are localized around them. All the results can be well understood in the framework of the Anderson impurity model. Our results demonstrate that a carbon cage may effectively protect the magnetic moments of TM atoms. This provides a new strategy for developing single atom spin-based devices on semiconductors.
Collapse
Affiliation(s)
- Xiji Shao
- Harbin Institute of Technology, Harbin 150080, China
| | | | | | | | | | | |
Collapse
|
25
|
Sun Q, Kioussis N. Intrinsic ferromagnetism and topological properties in two-dimensional rhenium halides. NANOSCALE 2019; 11:6101-6107. [PMID: 30869705 DOI: 10.1039/c9nr00315k] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The realization of robust intrinsic ferromagnetism in two-dimensional (2D) materials in conjunction with the intriguing quantum anomalous Hall (QAH) effect has provided a fertile ground for novel physics and for the next-generation spintronic and topological devices. On the basis of density functional theory (DFT), we predict that layered 5d transition-metal heavier halides (TMHs), such as ReX3 (X = Br, I), show intrinsic ferromagnetism with high spin polarization and high Curie temperatures. The outstanding dynamic and thermodynamic stability ensures their experimental feasibility. The strong spin-orbit coupling (SOC) of Re makes the electronic structure of the ReI3 monolayer topologically nontrivial with a large Chern number (C = -4). DFT+U calculations reveal that the 2D system undergoes a nontrivial to trivial transition with increasing on-site Hubbard Coulomb interaction U through the emergence of a Dirac cone. This transition is corroborated by the emergence of chiral edge states and the anomalous Hall conductivity. These findings not only demonstrate room-temperature ferromagnetism in atomically thin 5d TMHs, but also pave the way for the potential realization of the QAH effect with high Chern numbers in pristine 2D layers.
Collapse
Affiliation(s)
- Qilong Sun
- Department of Physics and Astronomy, California State University, Northridge, CA 91330, USA.
| | | |
Collapse
|
26
|
Zhang L, Zhang CW, Zhang SF, Ji WX, Li P, Wang PJ. Two-dimensional honeycomb-kagome Ta 2S 3: a promising single-spin Dirac fermion and quantum anomalous hall insulator with half-metallic edge states. NANOSCALE 2019; 11:5666-5673. [PMID: 30865199 DOI: 10.1039/c9nr00826h] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Recent experimental success in the realization of two-dimensional (2D) magnetism has invigorated the search for new 2D magnetic materials with a large magnetocrystalline anisotropy, high Curie temperature, and high carrier mobility. Using first-principles calculations, here we predict a novel class of single-spin Dirac fermion states in a 2D Ta2S3 monolayer, characterized by a band structure with a large gap in one spin channel and a Dirac cone in the other with carrier mobility comparable to that of graphene. Ta2S3 is dynamically and thermodynamically stable under ambient conditions, and possesses a large out-of-plane magnetic anisotropy energy and a high Curie temperature (TC = 445 K) predicted from the spin-wave theory. When the spin and orbital degrees of freedom are allowed to couple, the Ta2S3 monolayer becomes a Chern insulator with a fully spin-polarized half-metallic edge state. An effective four-band tight-binding model is constructed to clarify the origin of a semi-Dirac cone in a spin-up channel and nontrivial band topology, which can be well maintained on a semiconducting substrate. The combination of these unique single-spin Dirac fermion and quantum anomalous Hall states renders the 2D Ta2S3 lattice a promising platform for applications in topologically high fidelity data storage and energy-efficient spintronic devices.
Collapse
Affiliation(s)
- Liang Zhang
- School of Physics and Technology, University of Jinan, Jinan, Shandong 250022, People's Republic of China.
| | | | | | | | | | | |
Collapse
|
27
|
Liu MY, Chen QY, Cao C, He Y. Topologically nontrivial phase and tunable Rashba effect in half-oxidized bismuthene. Phys Chem Chem Phys 2019; 21:2899-2909. [PMID: 30671577 DOI: 10.1039/c8cp06391e] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Bismuth based (Bi-based) materials exhibit promising potential for the study of two-dimensional (2D) topological insulators or quantum spin Hall (QSH) insulators due to their intrinsic strong spin-orbit coupling (SOC). Herein, we theoretically propose a new inversion-asymmetry topological phase with tunable Rashba effect in a 2D bismuthene monolayer, which is driven by the sublattices half-oxidation (SHO). The nontrivial topology is identified by the SHO induced p-p band inversion at the Γ point, the Z2 topological number, and the metallic edge states. Interestingly, the SOC opens a band gap as large as 0.26 eV at Γ, which is twice as large as that of the freestanding bismuthene monolayer, revealing a predominant contribution of the orbital filtering effect. Inversion-symmetry breaking leads to a substantial Rashba constant of 11.5 eV Å near the valence band top, which is about twice as large as that of the freestanding bismuthene monolayer due to the SHO effect. In particular, the topological insulator-to-topological semimetal phase-transition and the tunable Rashba effect were achieved by exerting a moderate strain. We demonstrate that 3% stretching is the most desirable strain to obtain superior properties. Hexagonal boron nitrogen (h-BN) is proposed to serve as a suitable substrate for SHO-Bi in practical applications. Our findings not only provide a new route to engineering a 2D inversion-asymmetry topological insulator but also represent a significant advance in the exploration of 2D Bi-based topological materials.
Collapse
Affiliation(s)
- Ming-Yang Liu
- Department of Physics, Yunnan University, Kunming 650091, China.
| | | | | | | |
Collapse
|
28
|
Ma AN, Li SS, Zhang SF, Zhang CW, Ji WX, Li P, Wang PJ. Discovery of a ferroelastic topological insulator in a two-dimensional tetragonal lattice. Phys Chem Chem Phys 2019; 21:5165-5169. [DOI: 10.1039/c9cp00272c] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We found that 2D tetragonal HfC allowed simultaneous presence of ferroelastic and topological orders.
Collapse
Affiliation(s)
- An-ning Ma
- School of Physics and Technology
- University of Jinan
- Jinan
- People's Republic of China
| | - Sheng-shi Li
- School of Physics and Technology
- University of Jinan
- Jinan
- People's Republic of China
| | - Shu-feng Zhang
- School of Physics and Technology
- University of Jinan
- Jinan
- People's Republic of China
| | - Chang-wen Zhang
- School of Physics and Technology
- University of Jinan
- Jinan
- People's Republic of China
| | - Wei-xiao Ji
- School of Physics and Technology
- University of Jinan
- Jinan
- People's Republic of China
| | - Ping Li
- School of Physics and Technology
- University of Jinan
- Jinan
- People's Republic of China
| | - Pei-ji Wang
- School of Physics and Technology
- University of Jinan
- Jinan
- People's Republic of China
| |
Collapse
|
29
|
Li P. Prediction of intrinsic two dimensional ferromagnetism realized quantum anomalous Hall effect. Phys Chem Chem Phys 2019; 21:6712-6717. [DOI: 10.1039/c8cp07781a] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The monolayer of FeX3 (X = Cl, Br, I) possesses a quantum anomalous Hall insulating phase generated by the honeycomb lattice of iron atoms.
Collapse
Affiliation(s)
- Ping Li
- School of Physical Science and Technology
- Soochow University
- Suzhou 215006
- People's Republic of China
| |
Collapse
|