1
|
Du C, Woolcott S, Wahba AS, Hamry SR, Odette WL, Thibodeaux CJ, Marchand P, Mauzeroll J. Evaluation of Quatsome Morphology, Composition, and Stability for Pseudomonas aeruginosa Biofilm Eradication. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:1623-1632. [PMID: 38194503 DOI: 10.1021/acs.langmuir.3c02491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2024]
Abstract
Biofilm infections are a major cause of food poisoning and hospital-acquired infections. Quaternary ammonium compounds are a group of effective disinfectants widely used in industry and households, yet their efficacy is lessened when used as antibiofilm agents compared to that against planktonic bacteria. It is therefore necessary to identify alternative formulations of quaternary ammonium compounds to achieve an effective biofilm dispersal. Quaternary ammonium amphiphiles can form vesicular structures termed "quatsomes" in the presence of cholesterol. In addition to their intrinsic antimicrobial properties, quatsomes can also be used for the delivery of other types of antibiotics or biomarkers. In this study, quatsomes were prepared from binary mixtures of cholesterol and mono- or dialkyl-quaternary ammonium compounds; then, the integrity and stability of their vesicular structure were assessed and related to monomer chain number and chain length. The quatsomes were used to treat Pseudomonas aeruginosa biofilms, showing effective antibiofilm abilities comparable to those of their monomers. A systematic liquid chromatography-mass spectrometry method for quantifying quatsome vesicle components was also developed and used to establish the significance of cholesterol in the quatsome self-assembly processes.
Collapse
Affiliation(s)
- Changyue Du
- Department of Chemistry, McGill University, Montreal, Quebec H3A 0B8, Canada
| | - Sascha Woolcott
- Department of Chemistry, McGill University, Montreal, Quebec H3A 0B8, Canada
| | | | - Sally R Hamry
- Department of Chemistry, McGill University, Montreal, Quebec H3A 0B8, Canada
| | - William L Odette
- Department of Chemistry, McGill University, Montreal, Quebec H3A 0B8, Canada
| | | | - Patrick Marchand
- Sani-Marc Group, 42 Rue De L'Artisan, Victoriaville, Quebec G6P 7E3, Canada
| | - Janine Mauzeroll
- Department of Chemistry, McGill University, Montreal, Quebec H3A 0B8, Canada
| |
Collapse
|
2
|
Petrovic SM, Barbinta-Patrascu ME. Organic and Biogenic Nanocarriers as Bio-Friendly Systems for Bioactive Compounds' Delivery: State-of-the Art and Challenges. MATERIALS (BASEL, SWITZERLAND) 2023; 16:7550. [PMID: 38138692 PMCID: PMC10744464 DOI: 10.3390/ma16247550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 11/29/2023] [Accepted: 12/04/2023] [Indexed: 12/24/2023]
Abstract
"Green" strategies to build up novel organic nanocarriers with bioperformance are modern trends in nanotechnology. In this way, the valorization of bio-wastes and the use of living systems to develop multifunctional organic and biogenic nanocarriers (OBNs) have revolutionized the nanotechnological and biomedical fields. This paper is a comprehensive review related to OBNs for bioactives' delivery, providing an overview of the reports on the past two decades. In the first part, several classes of bioactive compounds and their therapeutic role are briefly presented. A broad section is dedicated to the main categories of organic and biogenic nanocarriers. The major challenges regarding the eco-design and the fate of OBNs are suggested to overcome some toxicity-related drawbacks. Future directions and opportunities, and finding "green" solutions for solving the problems related to nanocarriers, are outlined in the final of this paper. We believe that through this review, we will capture the attention of the readers and will open new perspectives for new solutions/ideas for the discovery of more efficient and "green" ways in developing novel bioperformant nanocarriers for transporting bioactive agents.
Collapse
Affiliation(s)
- Sanja M. Petrovic
- Department of Chemical Technologies, Faculty of Technology, University of Nis, Bulevar Oslobodjenja 124, 1600 Leskovac, Serbia;
| | - Marcela-Elisabeta Barbinta-Patrascu
- Department of Electricity, Solid-State Physics and Biophysics, Faculty of Physics, University of Bucharest, 405 Atomistilor Street, P.O. Box MG-11, 077125 Măgurele, Romania
| |
Collapse
|
3
|
Shakhakarmi K, Seo JE, Lamichhane S, Thapa C, Lee S. EGF, a veteran of wound healing: highlights on its mode of action, clinical applications with focus on wound treatment, and recent drug delivery strategies. Arch Pharm Res 2023; 46:299-322. [PMID: 36928481 DOI: 10.1007/s12272-023-01444-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Accepted: 03/09/2023] [Indexed: 03/18/2023]
Abstract
Epidermal growth factor (EGF) has been used in wound management and regenerative medicine since the late 1980s. It has been widely utilized for a long time and still is because of its excellent tolerability and efficacy. EGF has many applications in tissue engineering, cancer therapy, lung diseases, gastric ulcers, and wound healing. Nevertheless, its in vivo and during storage stability is a primary concern. This review focuses on the topical use of EGF, especially in chronic wound healing, the emerging use of biomaterials to deliver it, and future research possibilities. To successfully deliver EGF to wounds, a delivery system that is proteolytically resistant and stable over the long term is required. Biomaterials are an area of interest for the development of such systems. These systems may be used in non-healing wounds such as diabetic foot ulcers, pressure ulcers, and burns. In these pathologies, EGF can reduce the risk of amputation of the lower extremities, as it accelerates the wound healing process. Furthermore, appropriate delivery system would also stabilize and control the EGF release profile in a wound. Several in vitro and in vivo studies have already proven the efficacy of such systems in the above-mentioned types of wounds. Moreover, several formulations such as ointments and intralesional injections are already available on the market. However, these products are still problematic in terms of inadequate diffusion of EGF, low bioavailability storage conditions, and shelf-life. This review discusses the nano formulations comprising biomaterials infused with EGF which could be a promising delivery system for chronic wound healing in the future.
Collapse
Affiliation(s)
| | - Jo-Eun Seo
- College of Pharmacy, Keimyung University, Daegu, 704-701, Republic of Korea
| | | | - Chhitij Thapa
- College of Pharmacy, Keimyung University, Daegu, 704-701, Republic of Korea
| | - Sangkil Lee
- College of Pharmacy, Keimyung University, Daegu, 704-701, Republic of Korea.
| |
Collapse
|
4
|
Fluorescent Multifunctional Organic Nanoparticles for Drug Delivery and Bioimaging: A Tutorial Review. Pharmaceutics 2022; 14:pharmaceutics14112498. [PMID: 36432688 PMCID: PMC9698844 DOI: 10.3390/pharmaceutics14112498] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 11/08/2022] [Accepted: 11/08/2022] [Indexed: 11/19/2022] Open
Abstract
Fluorescent organic nanoparticles (FONs) are a large family of nanostructures constituted by organic components that emit light in different spectral regions upon excitation, due to the presence of organic fluorophores. FONs are of great interest for numerous biological and medical applications, due to their high tunability in terms of composition, morphology, surface functionalization, and optical properties. Multifunctional FONs combine several functionalities in a single nanostructure (emission of light, carriers for drug-delivery, functionalization with targeting ligands, etc.), opening the possibility of using the same nanoparticle for diagnosis and therapy. The preparation, characterization, and application of these multifunctional FONs require a multidisciplinary approach. In this review, we present FONs following a tutorial approach, with the aim of providing a general overview of the different aspects of the design, preparation, and characterization of FONs. The review encompasses the most common FONs developed to date, the description of the most important features of fluorophores that determine the optical properties of FONs, an overview of the preparation methods and of the optical characterization techniques, and the description of the theoretical approaches that are currently adopted for modeling FONs. The last part of the review is devoted to a non-exhaustive selection of some recent biomedical applications of FONs.
Collapse
|
5
|
Martínez-Miguel M, Castellote-Borrell M, Köber M, Kyvik AR, Tomsen-Melero J, Vargas-Nadal G, Muñoz J, Pulido D, Cristóbal-Lecina E, Passemard S, Royo M, Mas-Torrent M, Veciana J, Giannotti MI, Guasch J, Ventosa N, Ratera I. Hierarchical Quatsome-RGD Nanoarchitectonic Surfaces for Enhanced Integrin-Mediated Cell Adhesion. ACS APPLIED MATERIALS & INTERFACES 2022; 14:48179-48193. [PMID: 36251059 PMCID: PMC9614722 DOI: 10.1021/acsami.2c10497] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 10/05/2022] [Indexed: 06/16/2023]
Abstract
The synthesis and study of the tripeptide Arg-Gly-Asp (RGD), the binding site of different extracellular matrix proteins, e.g., fibronectin and vitronectin, has allowed the production of a wide range of cell adhesive surfaces. Although the surface density and spacing of the RGD peptide at the nanoscale have already shown a significant influence on cell adhesion, the impact of its hierarchical nanostructure is still rather unexplored. Accordingly, a versatile colloidal system named quatsomes, based on fluid nanovesicles formed by the self-assembling of cholesterol and surfactant molecules, has been devised as a novel template to achieve hierarchical nanostructures of the RGD peptide. To this end, RGD was anchored on the vesicle's fluid membrane of quatsomes, and the RGD-functionalized nanovesicles were covalently anchored to planar gold surfaces, forming a state of quasi-suspension, through a long poly(ethylene glycol) (PEG) chain with a thiol termination. An underlying self-assembled monolayer (SAM) of a shorter PEG was introduced for vesicle stabilization and to avoid unspecific cell adhesion. In comparison with substrates featuring a homogeneous distribution of RGD peptides, the resulting hierarchical nanoarchitectonic dramatically enhanced cell adhesion, despite lower overall RGD molecules on the surface. The new versatile platform was thoroughly characterized using a multitechnique approach, proving its enhanced performance. These findings open new methods for the hierarchical immobilization of biomolecules on surfaces using quatsomes as a robust and novel tissue engineering strategy.
Collapse
Affiliation(s)
- Marc Martínez-Miguel
- Institut
de Ciència de Materials de Barcelona (ICMAB-CSIC), Campus UAB, Bellaterra 08193, Spain
- Biomedical
Research Networking Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Madrid 28029, Spain
| | | | - Mariana Köber
- Institut
de Ciència de Materials de Barcelona (ICMAB-CSIC), Campus UAB, Bellaterra 08193, Spain
- Biomedical
Research Networking Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Madrid 28029, Spain
| | - Adriana R. Kyvik
- Institut
de Ciència de Materials de Barcelona (ICMAB-CSIC), Campus UAB, Bellaterra 08193, Spain
- Biomedical
Research Networking Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Madrid 28029, Spain
| | - Judit Tomsen-Melero
- Institut
de Ciència de Materials de Barcelona (ICMAB-CSIC), Campus UAB, Bellaterra 08193, Spain
- Biomedical
Research Networking Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Madrid 28029, Spain
| | - Guillem Vargas-Nadal
- Institut
de Ciència de Materials de Barcelona (ICMAB-CSIC), Campus UAB, Bellaterra 08193, Spain
| | - Jose Muñoz
- Institut
de Ciència de Materials de Barcelona (ICMAB-CSIC), Campus UAB, Bellaterra 08193, Spain
| | - Daniel Pulido
- Biomedical
Research Networking Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Madrid 28029, Spain
- Unidad
de Péptidos, UB, Unidad asociada
al CSIC por el IQAC, Barcelona 08028, Spain
| | - Edgar Cristóbal-Lecina
- Biomedical
Research Networking Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Madrid 28029, Spain
- Unidad
de Péptidos, UB, Unidad asociada
al CSIC por el IQAC, Barcelona 08028, Spain
| | - Solène Passemard
- Institut
de Ciència de Materials de Barcelona (ICMAB-CSIC), Campus UAB, Bellaterra 08193, Spain
| | - Miriam Royo
- Biomedical
Research Networking Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Madrid 28029, Spain
- Institut
de Química Avançada de Catalunya (IQAC−CSIC), Barcelona 08034, Spain
| | - Marta Mas-Torrent
- Institut
de Ciència de Materials de Barcelona (ICMAB-CSIC), Campus UAB, Bellaterra 08193, Spain
- Biomedical
Research Networking Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Madrid 28029, Spain
| | - Jaume Veciana
- Institut
de Ciència de Materials de Barcelona (ICMAB-CSIC), Campus UAB, Bellaterra 08193, Spain
- Biomedical
Research Networking Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Madrid 28029, Spain
| | - Marina I. Giannotti
- Biomedical
Research Networking Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Madrid 28029, Spain
- Nanoprobes
and Nanoswitches group, Institute for Bioengineering of Catalonia
(IBEC), The Barcelona Institute of Science
and Technology (BIST), Barcelona 08028, Spain
- Departament
de Ciència dels Materials i Química Física, Universitat de Barcelona, Barcelona 08028, Spain
| | - Judith Guasch
- Institut
de Ciència de Materials de Barcelona (ICMAB-CSIC), Campus UAB, Bellaterra 08193, Spain
- Biomedical
Research Networking Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Madrid 28029, Spain
- Dynamic Biomimetics
for Cancer Immunotherapy, Max Planck Partner
Group, ICMAB-CSIC, Campus UAB, Bellaterra 08193, Spain
| | - Nora Ventosa
- Institut
de Ciència de Materials de Barcelona (ICMAB-CSIC), Campus UAB, Bellaterra 08193, Spain
- Biomedical
Research Networking Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Madrid 28029, Spain
| | - Imma Ratera
- Institut
de Ciència de Materials de Barcelona (ICMAB-CSIC), Campus UAB, Bellaterra 08193, Spain
- Biomedical
Research Networking Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Madrid 28029, Spain
| |
Collapse
|
6
|
Morla-Folch J, Vargas-Nadal G, Fuentes E, Illa-Tuset S, Köber M, Sissa C, Pujals S, Painelli A, Veciana J, Faraudo J, Belfield KD, Albertazzi L, Ventosa N. Ultrabright Föster Resonance Energy Transfer Nanovesicles: The Role of Dye Diffusion. CHEMISTRY OF MATERIALS : A PUBLICATION OF THE AMERICAN CHEMICAL SOCIETY 2022; 34:8517-8527. [PMID: 36248229 PMCID: PMC9558306 DOI: 10.1021/acs.chemmater.2c00384] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The development of contrast agents based on fluorescent nanoparticles with high brightness and stability is a key factor to improve the resolution and signal-to-noise ratio of current fluorescence imaging techniques. However, the design of bright fluorescent nanoparticles remains challenging due to fluorescence self-quenching at high concentrations. Developing bright nanoparticles showing FRET emission adds several advantages to the system, including an amplified Stokes shift, the possibility of ratiometric measurements, and of verifying the nanoparticle stability. Herein, we have developed Förster resonance energy transfer (FRET)-based nanovesicles at different dye loadings and investigated them through complementary experimental techniques, including conventional fluorescence spectroscopy and super-resolution microscopy supported by molecular dynamics calculations. We show that the optical properties can be modulated by dye loading at the nanoscopic level due to the dye's molecular diffusion in fluid-like membranes. This work shows the first proof of a FRET pair dye's dynamism in liquid-like membranes, resulting in optimized nanoprobes that are 120-fold brighter than QDot 605 and exhibit >80% FRET efficiency with vesicle-to-vesicle variations that are mostly below 10%.
Collapse
Affiliation(s)
- Judit Morla-Folch
- Institut
de Ciència de Materials de Barcelona, ICMAB-CSIC, Campus UAB, Bellaterra, Catalonia 08193, Spain
- CIBER
de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN)Instituto de Salud Carlos III. Bellaterra, 08193, Spain
| | - Guillem Vargas-Nadal
- Institut
de Ciència de Materials de Barcelona, ICMAB-CSIC, Campus UAB, Bellaterra, Catalonia 08193, Spain
- CIBER
de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN)Instituto de Salud Carlos III. Bellaterra, 08193, Spain
| | - Edgar Fuentes
- Nanoscopy
for Nanomedicine Group, Institute for Bioengineering
of Catalonia (IBEC) C\ Baldiri Reixac 15-21, Helix Building, Barcelona, 08028, Catalonia, Spain
| | - Sílvia Illa-Tuset
- Institut
de Ciència de Materials de Barcelona, ICMAB-CSIC, Campus UAB, Bellaterra, Catalonia 08193, Spain
| | - Mariana Köber
- Institut
de Ciència de Materials de Barcelona, ICMAB-CSIC, Campus UAB, Bellaterra, Catalonia 08193, Spain
- CIBER
de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN)Instituto de Salud Carlos III. Bellaterra, 08193, Spain
| | - Cristina Sissa
- Dipartimento
di Scienze Chimiche, della Vita e della Sostenibilità Ambientale, Università di Parma, Parco Area delle Scienze 17/A, Parma, 43124, Italy
| | - Silvia Pujals
- Nanoscopy
for Nanomedicine Group, Institute for Bioengineering
of Catalonia (IBEC) C\ Baldiri Reixac 15-21, Helix Building, Barcelona, 08028, Catalonia, Spain
| | - Anna Painelli
- Dipartimento
di Scienze Chimiche, della Vita e della Sostenibilità Ambientale, Università di Parma, Parco Area delle Scienze 17/A, Parma, 43124, Italy
| | - Jaume Veciana
- Institut
de Ciència de Materials de Barcelona, ICMAB-CSIC, Campus UAB, Bellaterra, Catalonia 08193, Spain
- CIBER
de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN)Instituto de Salud Carlos III. Bellaterra, 08193, Spain
| | - Jordi Faraudo
- Institut
de Ciència de Materials de Barcelona, ICMAB-CSIC, Campus UAB, Bellaterra, Catalonia 08193, Spain
| | - Kevin D. Belfield
- Department
of Chemistry and Environmental Science, College of Science and Liberal
Arts, New Jersey Institute of Technology
(NJIT) 323 Martin Luther King, Jr., Blvd., Newark, New Jersey 07102, United States
| | - Lorenzo Albertazzi
- Nanoscopy
for Nanomedicine Group, Institute for Bioengineering
of Catalonia (IBEC) C\ Baldiri Reixac 15-21, Helix Building, Barcelona, 08028, Catalonia, Spain
- Molecular
Biosensing for Medical Diagnostics Group, Biomedical Engineering, Technology Eindhoven University of Technology (TUE) Eindhoven, 5612 AZ, The Netherlands
| | - Nora Ventosa
- Institut
de Ciència de Materials de Barcelona, ICMAB-CSIC, Campus UAB, Bellaterra, Catalonia 08193, Spain
- CIBER
de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN)Instituto de Salud Carlos III. Bellaterra, 08193, Spain
| |
Collapse
|
7
|
Odette WL, Mauzeroll J. Formation of Oxidation- and Acid-Sensitive Assemblies from Sterols and a Quaternary Ammonium Ferrocene Derivative: Quatsome- and Onion-like Vesicles and Extended Nanoribbons. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:4396-4406. [PMID: 35348341 DOI: 10.1021/acs.langmuir.2c00128] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Quatsomes are a class of nonphospholipid vesicles in which bilayers are formed from mixtures of quaternary ammonium (QA) amphiphiles and sterols. We describe the formation of oxidation and acid-sensitive quatsome-like vesicles and other bilayer assemblies from mixtures of a ferrocenylated QA amphiphile (FTDMA) and several cholesterol derivatives. The influence of the sterol and the preparation method (extrusion or probe sonication) on the stability and morphology of the resulting vesicles is explored; a variety of structures can be obtained from small (ca. 30 nm) spherical unilamellar and oligolamellar quatsome-like vesicles to large (ca. 200 nm) multilamellar onion-like vesicles to extended nanoribbons many micrometers long. FTDMA-sterol vesicles undergo drastic shifts in vesicle and membrane structure when treated with a chemical oxidant (Frémy's salt), a feature previously observed in liposomes containing FTDMA and now confirmed in nonphospholipid vesicles. Size distributions of spherical quatsome-like vesicles obtained from cryo-TEM are examined to estimate the membrane bending rigidity, and a hypothesis is presented to explain the underlying mechanism of the profound membrane alterations observed as a consequence of ferrocene oxidation.
Collapse
Affiliation(s)
- William L Odette
- Department of Chemistry, McGill University, 801 Sherbrooke West, Montreal, QC H3A 0B8, Canada
| | - Janine Mauzeroll
- Department of Chemistry, McGill University, 801 Sherbrooke West, Montreal, QC H3A 0B8, Canada
| |
Collapse
|
8
|
Tomsen-Melero J, Passemard S, García-Aranda N, Díaz-Riascos ZV, González-Rioja R, Nedergaard Pedersen J, Lyngsø J, Merlo-Mas J, Cristóbal-Lecina E, Corchero JL, Pulido D, Cámara-Sánchez P, Portnaya I, Ionita I, Schwartz S, Veciana J, Sala S, Royo M, Córdoba A, Danino D, Pedersen JS, González-Mira E, Abasolo I, Ventosa N. Impact of Chemical Composition on the Nanostructure and Biological Activity of α-Galactosidase-Loaded Nanovesicles for Fabry Disease Treatment. ACS APPLIED MATERIALS & INTERFACES 2021; 13:7825-7838. [PMID: 33583172 DOI: 10.1021/acsami.0c16871] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Fabry disease is a rare lysosomal storage disorder characterized by a deficiency of α-galactosidase A (GLA), a lysosomal hydrolase. The enzyme replacement therapy administering naked GLA shows several drawbacks including poor biodistribution, limited efficacy, and relatively high immunogenicity in Fabry patients. An attractive strategy to overcome these problems is the use of nanocarriers for encapsulating the enzyme. Nanoliposomes functionalized with RGD peptide have already emerged as a good platform to protect and deliver GLA to endothelial cells. However, low colloidal stability and limited enzyme entrapment efficiency could hinder the further pharmaceutical development and the clinical translation of these nanoformulations. Herein, the incorporation of the cationic miristalkonium chloride (MKC) surfactant to RGD nanovesicles is explored, comparing two different nanosystems-quatsomes and hybrid liposomes. In both systems, the positive surface charge introduced by MKC promotes electrostatic interactions between the enzyme and the nanovesicles, improving the loading capacity and colloidal stability. The presence of high MKC content in quatsomes practically abolishes GLA enzymatic activity, while low concentrations of the surfactant in hybrid liposomes stabilize the enzyme without compromising its activity. Moreover, hybrid liposomes show improved efficacy in cell cultures and a good in vitro/in vivo safety profile, ensuring their future preclinical and clinical development.
Collapse
Affiliation(s)
- Judit Tomsen-Melero
- Institut de Ciència de Materials de Barcelona, ICMAB-CSIC, Campus UAB, 08193 Bellaterra, Spain
- Nanomol Technologies SL, Campus de la UAB, 08193 Bellaterra, Spain
- Centro de Investigación Biomédica en Red-Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), 28029 Madrid, Spain
| | - Solène Passemard
- Institut de Ciència de Materials de Barcelona, ICMAB-CSIC, Campus UAB, 08193 Bellaterra, Spain
- Centro de Investigación Biomédica en Red-Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), 28029 Madrid, Spain
| | - Natalia García-Aranda
- Centro de Investigación Biomédica en Red-Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), 28029 Madrid, Spain
- Drug Delivery and Targeting, and Functional Validation and Preclinical Research (FVPR), CIBBIM-Nanomedicine, Vall d'Hebron Institut de Recerca (VHIR), Universitat Autònoma de Barcelona, 08035 Barcelona, Spain
| | - Zamira Vanessa Díaz-Riascos
- Centro de Investigación Biomédica en Red-Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), 28029 Madrid, Spain
- Drug Delivery and Targeting, and Functional Validation and Preclinical Research (FVPR), CIBBIM-Nanomedicine, Vall d'Hebron Institut de Recerca (VHIR), Universitat Autònoma de Barcelona, 08035 Barcelona, Spain
| | - Ramon González-Rioja
- Institut de Ciència de Materials de Barcelona, ICMAB-CSIC, Campus UAB, 08193 Bellaterra, Spain
- Centro de Investigación Biomédica en Red-Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), 28029 Madrid, Spain
| | - Jannik Nedergaard Pedersen
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, DK-8000 Aarhus C, Denmark
- Department of Chemistry, Aarhus University, Langelandsgade 140, DK-8000 Aarhus C, Denmark
| | - Jeppe Lyngsø
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, DK-8000 Aarhus C, Denmark
- Department of Chemistry, Aarhus University, Langelandsgade 140, DK-8000 Aarhus C, Denmark
| | - Josep Merlo-Mas
- Nanomol Technologies SL, Campus de la UAB, 08193 Bellaterra, Spain
| | - Edgar Cristóbal-Lecina
- Centro de Investigación Biomédica en Red-Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), 28029 Madrid, Spain
- Institut de Química Avançada de Catalunya (IQAC-CSIC), 08034 Barcelona, Spain
| | - José Luis Corchero
- Centro de Investigación Biomédica en Red-Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), 28029 Madrid, Spain
- Departament de Genètica i de Microbiologia, Institut de Biotecnologia i de Biomedicina (IBB), Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
| | - Daniel Pulido
- Centro de Investigación Biomédica en Red-Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), 28029 Madrid, Spain
- Institut de Química Avançada de Catalunya (IQAC-CSIC), 08034 Barcelona, Spain
| | - Patricia Cámara-Sánchez
- Centro de Investigación Biomédica en Red-Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), 28029 Madrid, Spain
- Drug Delivery and Targeting, and Functional Validation and Preclinical Research (FVPR), CIBBIM-Nanomedicine, Vall d'Hebron Institut de Recerca (VHIR), Universitat Autònoma de Barcelona, 08035 Barcelona, Spain
| | - Irina Portnaya
- CryoEM Laboratory of Soft Matter, Faculty of Biotechnology and Food Engineering, Technion-Israel Institute of Technology, 32000 Haifa, Israel
| | - Inbal Ionita
- CryoEM Laboratory of Soft Matter, Faculty of Biotechnology and Food Engineering, Technion-Israel Institute of Technology, 32000 Haifa, Israel
| | - Simó Schwartz
- Centro de Investigación Biomédica en Red-Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), 28029 Madrid, Spain
- Drug Delivery and Targeting, CIBBIM-Nanomedicine, Vall d'Hebron Institut de Recerca (VHIR), Universitat Autònoma de Barcelona, 08035 Barcelona, Spain
| | - Jaume Veciana
- Institut de Ciència de Materials de Barcelona, ICMAB-CSIC, Campus UAB, 08193 Bellaterra, Spain
- Centro de Investigación Biomédica en Red-Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), 28029 Madrid, Spain
| | - Santi Sala
- Nanomol Technologies SL, Campus de la UAB, 08193 Bellaterra, Spain
| | - Miriam Royo
- Centro de Investigación Biomédica en Red-Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), 28029 Madrid, Spain
- Institut de Química Avançada de Catalunya (IQAC-CSIC), 08034 Barcelona, Spain
| | - Alba Córdoba
- Nanomol Technologies SL, Campus de la UAB, 08193 Bellaterra, Spain
| | - Dganit Danino
- CryoEM Laboratory of Soft Matter, Faculty of Biotechnology and Food Engineering, Technion-Israel Institute of Technology, 32000 Haifa, Israel
- Faculty of Biotechnology and Food Engineering, Guangdong Technion-Israel Institute of Technology, Daxue Road, Shantou 515063, Guangdong Province, China
| | - Jan Skov Pedersen
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, DK-8000 Aarhus C, Denmark
- Department of Chemistry, Aarhus University, Langelandsgade 140, DK-8000 Aarhus C, Denmark
| | - Elisabet González-Mira
- Institut de Ciència de Materials de Barcelona, ICMAB-CSIC, Campus UAB, 08193 Bellaterra, Spain
- Centro de Investigación Biomédica en Red-Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), 28029 Madrid, Spain
| | - Ibane Abasolo
- Centro de Investigación Biomédica en Red-Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), 28029 Madrid, Spain
- Drug Delivery and Targeting, and Functional Validation and Preclinical Research (FVPR), CIBBIM-Nanomedicine, Vall d'Hebron Institut de Recerca (VHIR), Universitat Autònoma de Barcelona, 08035 Barcelona, Spain
| | - Nora Ventosa
- Institut de Ciència de Materials de Barcelona, ICMAB-CSIC, Campus UAB, 08193 Bellaterra, Spain
- Centro de Investigación Biomédica en Red-Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), 28029 Madrid, Spain
| |
Collapse
|
9
|
Zamora A, Moris M, Silva R, Deschaume O, Bartic C, Parac-Vogt TN, Verbiest T. Visualization and characterization of metallo-aggregates using multi-photon microscopy. RSC Adv 2021; 11:657-661. [PMID: 35423665 PMCID: PMC8693374 DOI: 10.1039/d0ra07263j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Accepted: 12/17/2020] [Indexed: 11/26/2022] Open
Abstract
A simple and cost-effective method based on multi-photon microscopy is presented for the preliminary screening of the general morphology, size range and heterogeneity of Ir(iii) nano-aggregate formulations. Multi-photon microscopy can be an excellent complementary technique for the characterization of nano-aggregates containing metallic photosensitizers with multi-photon emission properties.![]()
Collapse
Affiliation(s)
- Ana Zamora
- Molecular Imaging and Photonics
- KU Leuven
- Belgium
| | | | - Rui Silva
- Molecular Imaging and Photonics
- KU Leuven
- Belgium
- Engineering Faculty of Oporto University
- Portugal (FEUP)
| | | | - Carmen Bartic
- Laboratory of Soft Matter and Biophysics
- KU Leuven
- Belgium
| | | | | |
Collapse
|
10
|
Hassan D, Omolo CA, Fasiku VO, Elrashedy AA, Mocktar C, Nkambule B, Soliman MES, Govender T. Formulation of pH-Responsive Quatsomes from Quaternary Bicephalic Surfactants and Cholesterol for Enhanced Delivery of Vancomycin against Methicillin Resistant Staphylococcus aureus. Pharmaceutics 2020; 12:E1093. [PMID: 33202629 PMCID: PMC7696852 DOI: 10.3390/pharmaceutics12111093] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 10/29/2020] [Accepted: 11/08/2020] [Indexed: 12/14/2022] Open
Abstract
Globally, human beings continue to be at high risk of infectious diseases caused by methicillin-resistant Staphylococcus aureus (MRSA); and current treatments are being depleted due to antimicrobial resistance. Therefore, the synthesis and formulation of novel materials is essential for combating antimicrobial resistance. The study aimed to synthesize a quaternary bicephalic surfactant (StBAclm) and thereof to formulate pH-responsive vancomycin (VCM)-loaded quatsomes to enhance the activity of the antibiotic against MRSA. The surfactant structure was confirmed using 1H, 13C nuclear magnetic resonance (NMR), Fourier-transform infrared spectroscopy (FT-IR), and high-resolution mass spectrometry (HRMS). The quatsomes were prepared using a sonication/dispersion method and were characterized using various in vitro, in vivo, and in silico techniques. The in vitro cell biocompatibility studies of the surfactant and pH-responsive vancomycin-loaded quatsomes (VCM-StBAclm-Qt1) revealed that they are biosafe. The prepared quatsomes had a mean hydrodynamic diameter (MHD), polydispersity index (PDI), and drug encapsulation efficiency (DEE) of 122.9 ± 3.78 nm, 0.169 ± 0.02 mV, and 52.22 ± 8.4%, respectively, with surface charge switching from negative to positive at pH 7.4 and pH 6.0, respectively. High-resolution transmission electron microscopy (HR-TEM) characterization of the quatsomes showed spherical vesicles with MHD similar to the one obtained from the zeta-sizer. The in vitro drug release of VCM from the quatsomes was faster at pH 6.0 compared to pH 7.4. The minimum inhibitory concentration (MIC) of the drug loaded quatsomes against MRSA was 32-fold and 8-fold lower at pH 6.0 and pH 7.4, respectively, compared to bare VCM, demonstrating the pH-responsiveness of the quatsomes and the enhanced activity of VCM at acidic pH. The drug-loaded quatsomes demonstrated higher electrical conductivity and a decrease in protein and deoxyribonucleic acid (DNA) concentrations as compared to the bare drug. This confirmed greater MRSA membrane damage, compared to treatment with bare VCM. The flow cytometry study showed that the drug-loaded quatsomes had a similar bactericidal killing effect on MRSA despite a lower (8-fold) VCM concentration when compared to the bare VCM. Fluorescence microscopy revealed the ability of the drug-loaded quatsomes to eradicate MRSA biofilms. The in vivo studies in a skin infection mice model showed that groups treated with VCM-loaded quatsomes had a 13-fold decrease in MRSA CFUs when compared to the bare VCM treated groups. This study confirmed the potential of pH-responsive VCM-StBAclm quatsomes as an effective delivery system for targeted delivery and for enhancing the activity of antibiotics.
Collapse
Affiliation(s)
- Daniel Hassan
- Discipline of Pharmaceutical Sciences, College of Health Sciences, University of KwaZulu-Natal, Private Bag X54001, Durban 4000, South Africa; (D.H.); (V.O.F.); (A.A.E.); (C.M.); (M.E.S.S.)
| | - Calvin A. Omolo
- Discipline of Pharmaceutical Sciences, College of Health Sciences, University of KwaZulu-Natal, Private Bag X54001, Durban 4000, South Africa; (D.H.); (V.O.F.); (A.A.E.); (C.M.); (M.E.S.S.)
- Department of Pharmaceutics and Pharmacy Practice, School of Pharmacy and Health Sciences, United States International University-Africa, P. O. Box 14634, Nairobi 00800, Kenya
| | - Victoria Oluwaseun Fasiku
- Discipline of Pharmaceutical Sciences, College of Health Sciences, University of KwaZulu-Natal, Private Bag X54001, Durban 4000, South Africa; (D.H.); (V.O.F.); (A.A.E.); (C.M.); (M.E.S.S.)
| | - Ahmed A Elrashedy
- Discipline of Pharmaceutical Sciences, College of Health Sciences, University of KwaZulu-Natal, Private Bag X54001, Durban 4000, South Africa; (D.H.); (V.O.F.); (A.A.E.); (C.M.); (M.E.S.S.)
| | - Chunderika Mocktar
- Discipline of Pharmaceutical Sciences, College of Health Sciences, University of KwaZulu-Natal, Private Bag X54001, Durban 4000, South Africa; (D.H.); (V.O.F.); (A.A.E.); (C.M.); (M.E.S.S.)
| | - Bongani Nkambule
- Department of Physiology, School of Laboratory Medicine and Medical Sciences, College of Health Sciences, University of KwaZulu-Natal, Private Bag X54001, Durban 4000, South Africa;
| | - Mahmoud E. S. Soliman
- Discipline of Pharmaceutical Sciences, College of Health Sciences, University of KwaZulu-Natal, Private Bag X54001, Durban 4000, South Africa; (D.H.); (V.O.F.); (A.A.E.); (C.M.); (M.E.S.S.)
| | - Thirumala Govender
- Discipline of Pharmaceutical Sciences, College of Health Sciences, University of KwaZulu-Natal, Private Bag X54001, Durban 4000, South Africa; (D.H.); (V.O.F.); (A.A.E.); (C.M.); (M.E.S.S.)
| |
Collapse
|
11
|
Garcia R. Nanomechanical mapping of soft materials with the atomic force microscope: methods, theory and applications. Chem Soc Rev 2020; 49:5850-5884. [PMID: 32662499 DOI: 10.1039/d0cs00318b] [Citation(s) in RCA: 161] [Impact Index Per Article: 40.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/28/2024]
Abstract
Fast, high-resolution, non-destructive and quantitative characterization methods are needed to develop materials with tailored properties at the nanoscale or to understand the relationship between mechanical properties and cell physiology. This review introduces the state-of-the-art force microscope-based methods to map at high-spatial resolution the elastic and viscoelastic properties of soft materials. The experimental methods are explained in terms of the theories that enable the transformation of observables into material properties. Several applications in materials science, molecular biology and mechanobiology illustrate the scope, impact and potential of nanomechanical mapping methods.
Collapse
Affiliation(s)
- Ricardo Garcia
- Instituto de Ciencia de Materiales de Madrid, CSIC, c/Sor Juana Inés de la Cruz 3, 28049 Madrid, Spain.
| |
Collapse
|
12
|
Morla-Folch J, Vargas-Nadal G, Zhao T, Sissa C, Ardizzone A, Kurhuzenkau S, Köber M, Uddin M, Painelli A, Veciana J, Belfield KD, Ventosa N. Dye-Loaded Quatsomes Exhibiting FRET as Nanoprobes for Bioimaging. ACS APPLIED MATERIALS & INTERFACES 2020; 12:20253-20262. [PMID: 32268722 DOI: 10.1021/acsami.0c03040] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Fluorescent organic nanoparticles (FONs) are emerging as an attractive alternative to the well-established fluorescent inorganic nanoparticles or small organic dyes. Their proper design allows one to obtain biocompatible probes with superior brightness and high photostability, although usually affected by low colloidal stability. Herein, we present a type of FONs with outstanding photophysical and physicochemical properties in-line with the stringent requirements for biomedical applications. These FONs are based on quatsome (QS) nanovesicles containing a pair of fluorescent carbocyanine molecules that give rise to Förster resonance energy transfer (FRET). Structural homogeneity, high brightness, photostability, and high FRET efficiency make these FONs a promising class of optical bioprobes. Loaded QSs have been used for in vitro bioimaging, demonstrating the nanovesicle membrane integrity after cell internalization, and the possibility to monitor the intracellular vesicle fate. Taken together, the proposed QSs loaded with a FRET pair constitute a promising platform for bioimaging and theranostics.
Collapse
Affiliation(s)
- Judit Morla-Folch
- Institut Ciencia dels Materials de Barcelona (ICMAB-CSIC), Campus UAB, 08193 Cerdanyola, Spain
- Department of Chemistry and Environmental Science, College of Science and Liberal Arts, New Jersey Institute of Technology, 323 Martin Luther King, Jr., Blvd., Newark, New Jersey 07102, United States
| | - Guillem Vargas-Nadal
- Institut Ciencia dels Materials de Barcelona (ICMAB-CSIC), Campus UAB, 08193 Cerdanyola, Spain
| | - Tinghan Zhao
- Department of Chemistry and Environmental Science, College of Science and Liberal Arts, New Jersey Institute of Technology, 323 Martin Luther King, Jr., Blvd., Newark, New Jersey 07102, United States
| | - Cristina Sissa
- Dipartimento di Scienze Chimiche, della Vita e della Sostenibilità Ambientale, Università di Parma, Parco Area delle Scienze 17/A, 43124 Parma, Italy
| | - Antonio Ardizzone
- Institut Ciencia dels Materials de Barcelona (ICMAB-CSIC), Campus UAB, 08193 Cerdanyola, Spain
| | - Siarhei Kurhuzenkau
- Dipartimento di Scienze Chimiche, della Vita e della Sostenibilità Ambientale, Università di Parma, Parco Area delle Scienze 17/A, 43124 Parma, Italy
| | - Mariana Köber
- Institut Ciencia dels Materials de Barcelona (ICMAB-CSIC), Campus UAB, 08193 Cerdanyola, Spain
- Centro de Investigación Biomédica en Red CIBER-BBN, Barcelona, Spain
| | - Mehrun Uddin
- Department of Chemistry and Environmental Science, College of Science and Liberal Arts, New Jersey Institute of Technology, 323 Martin Luther King, Jr., Blvd., Newark, New Jersey 07102, United States
| | - Anna Painelli
- Dipartimento di Scienze Chimiche, della Vita e della Sostenibilità Ambientale, Università di Parma, Parco Area delle Scienze 17/A, 43124 Parma, Italy
| | - Jaume Veciana
- Institut Ciencia dels Materials de Barcelona (ICMAB-CSIC), Campus UAB, 08193 Cerdanyola, Spain
- Centro de Investigación Biomédica en Red CIBER-BBN, Barcelona, Spain
| | - Kevin D Belfield
- Department of Chemistry and Environmental Science, College of Science and Liberal Arts, New Jersey Institute of Technology, 323 Martin Luther King, Jr., Blvd., Newark, New Jersey 07102, United States
| | - Nora Ventosa
- Institut Ciencia dels Materials de Barcelona (ICMAB-CSIC), Campus UAB, 08193 Cerdanyola, Spain
- Centro de Investigación Biomédica en Red CIBER-BBN, Barcelona, Spain
| |
Collapse
|