1
|
Guo K, Bao L, Yu Z, Lu X. Carbon encapsulated nanoparticles: materials science and energy applications. Chem Soc Rev 2024. [PMID: 39314168 DOI: 10.1039/d3cs01122d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/25/2024]
Abstract
The technological implementation of electrochemical energy conversion and storage necessitates the acquisition of high-performance electrocatalysts and electrodes. Carbon encapsulated nanoparticles have emerged as an exciting option owing to their unique advantages that strike a high-level activity-stability balance. Ever-growing attention to this unique type of material is partly attributed to the straightforward rationale of carbonizing ubiquitous organic species under energetic conditions. In addition, on-demand precursors pave the way for not only introducing dopants and surface functional groups into the carbon shell but also generating diverse metal-based nanoparticle cores. By controlling the synthetic parameters, both the carbon shell and the metallic core are facilely engineered in terms of structure, composition, and dimensions. Apart from multiple easy-to-understand superiorities, such as improved agglomeration, corrosion, oxidation, and pulverization resistance and charge conduction, afforded by the carbon encapsulation, potential core-shell synergistic interactions lead to the fine-tuning of the electronic structures of both components. These features collectively contribute to the emerging energy applications of these nanostructures as novel electrocatalysts and electrodes. Thus, a systematic and comprehensive review is urgently needed to summarize recent advancements and stimulate further efforts in this rapidly evolving research field.
Collapse
Affiliation(s)
- Kun Guo
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China.
| | - Lipiao Bao
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China.
| | - Zhixin Yu
- Department of Energy and Petroleum Engineering, University of Stavanger, Stavanger 4036, Norway
| | - Xing Lu
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China.
- School of Chemistry and Chemical Engineering, Hainan University, Haikou 570228, China
| |
Collapse
|
2
|
Yue C, Liu N, Li Y, Liu Y, Sun F, Bao W, Tuo Y, Pan Y, Jiang P, Zhou Y, Lu Y. From atomic bonding to heterointerfaces: Co 2P/WC constructed by lacunary polyoxometalates induced strategy as efficient hydrogen evolution electrocatalysts at all pH values. J Colloid Interface Sci 2023; 645:276-286. [PMID: 37150001 DOI: 10.1016/j.jcis.2023.04.090] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Revised: 04/15/2023] [Accepted: 04/19/2023] [Indexed: 05/09/2023]
Abstract
Herein, a novel in-situ "atomic binding to heterointerface" strategy is proposed to obtain Co2P/WC@NC/CNTs catalyst with abundant heterointerface between cobalt phosphide and tungsten carbide (Co2P/WC) by the polyoxometalates (POMs)-based metal-organic frameworks (MOFs) precursor. The natural quasi interfaces in K10[Co4(H2O)2(PW9O34)2] molecule crucially guide the abundant Co2P/WC heterointerfaces down to atomic level. Meanwhile, MOFs cages can effectively encapsulate nanosized POMs at molecular level to control the size and dispersion of Co2P/WC nanoparticle, while carbon nanotubes (CNTs) enhance conductivity at nanoscale level. The interfacial electronic modulation between Co2P and WC lowering the energy barrier of the rate determining step, thus Co2P/WC@NC/CNTs showed reasonable hydrogen evolution reaction (HER) activity and stability in all-pH media including sea water. This work provides a "bottom-up" synthetic strategy for confined heterostructures, thus offering the prospect for more efficient interfacial charge modulation.
Collapse
Affiliation(s)
- Changle Yue
- State Key Laboratory of Heavy Oil Processing, College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao 266580, PR China
| | - Na Liu
- State Key Laboratory of Heavy Oil Processing, College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao 266580, PR China
| | - Yaping Li
- State Key Laboratory of Heavy Oil Processing, College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao 266580, PR China
| | - Yang Liu
- State Key Laboratory of Heavy Oil Processing, College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao 266580, PR China
| | - Fengyue Sun
- State Key Laboratory of Heavy Oil Processing, College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao 266580, PR China
| | - Wenjing Bao
- State Key Laboratory of Heavy Oil Processing, College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao 266580, PR China
| | - Yongxiao Tuo
- College of New Energy, China University of Petroleum (East China), Qingdao 266580, PR China
| | - Yuan Pan
- State Key Laboratory of Heavy Oil Processing, College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao 266580, PR China
| | - Ping Jiang
- College of Petroleum Engineering, China University of Petroleum (East China), Qingdao 266580, PR China
| | - Yan Zhou
- School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao 266580, PR China.
| | - Yukun Lu
- State Key Laboratory of Heavy Oil Processing, College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao 266580, PR China.
| |
Collapse
|
3
|
Yan M, Zhao Z, Wang T, Chen R, Zhou C, Qin Y, Yang S, Zhang M, Yang Y. Synergistic Effects in Ultrafine Molybdenum-Tungsten Bimetallic Carbide Hollow Carbon Architecture Boost Hydrogen Evolution Catalysis and Lithium-Ion Storage. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2203630. [PMID: 35980947 DOI: 10.1002/smll.202203630] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 07/16/2022] [Indexed: 06/15/2023]
Abstract
Constructing hierarchical heterostructures is considered a useful strategy to regulate surface electronic structure and improve the electrochemical kinetics. Herein, the authors develop a hollow architecture composed of MoC1- x and WC1- x carbide nanoparticles and carbon matrix for boosting electrocatalytic hydrogen evolution and lithium ions storage. The hybridization of ultrafine nanoparticles confined in the N-doped carbon nanosheets provides an appropriate hydrogen adsorption free energy and abundant boundary interfaces for lithium intercalation, leading to the synergistically enhanced composite conductivity. As a proof of concept, the as-prepared catalyst exhibits outstanding and durable electrocatalytic performance with a low overpotential of 103 and 163 mV at 10 mA cm-2 , as well as a Tafel slope of 58 and 90 mV dec-1 in alkaline electrolyte and acid electrolyte, respectively. Moreover, evaluated as an anode for a lithium-ion battery, the as-resulted sample delivers a rate capability of 1032.1 mA h g-1 at 0.1 A g-1 . This electrode indicates superior cyclability with a capability of 679.1 mA h g-1 at 5 A g-1 after 4000 cycles. The present work provides a strategy to design effective and stable bimetallic carbide composites as superior electrocatalysts and electrode materials.
Collapse
Affiliation(s)
- Meng Yan
- Research & Development Institute of Northwestern Polytechnical University in Shenzhen, Shenzhen, Guangdong, 518057, P. R. China
- State Key Laboratory of Solidification Processing, Center of Advanced Lubrication and Seal Materials, Northwestern Polytechnical University, Xi'an, Shaanxi, 710072, P. R. China
| | - Zejun Zhao
- Research & Development Institute of Northwestern Polytechnical University in Shenzhen, Shenzhen, Guangdong, 518057, P. R. China
- State Key Laboratory of Solidification Processing, Center of Advanced Lubrication and Seal Materials, Northwestern Polytechnical University, Xi'an, Shaanxi, 710072, P. R. China
| | - Teng Wang
- Research & Development Institute of Northwestern Polytechnical University in Shenzhen, Shenzhen, Guangdong, 518057, P. R. China
- State Key Laboratory of Solidification Processing, Center of Advanced Lubrication and Seal Materials, Northwestern Polytechnical University, Xi'an, Shaanxi, 710072, P. R. China
| | - Rui Chen
- State Key Laboratory of Solidification Processing, Center of Advanced Lubrication and Seal Materials, Northwestern Polytechnical University, Xi'an, Shaanxi, 710072, P. R. China
| | - Chenming Zhou
- Research & Development Institute of Northwestern Polytechnical University in Shenzhen, Shenzhen, Guangdong, 518057, P. R. China
- State Key Laboratory of Solidification Processing, Center of Advanced Lubrication and Seal Materials, Northwestern Polytechnical University, Xi'an, Shaanxi, 710072, P. R. China
| | - Yifan Qin
- Research & Development Institute of Northwestern Polytechnical University in Shenzhen, Shenzhen, Guangdong, 518057, P. R. China
- State Key Laboratory of Solidification Processing, Center of Advanced Lubrication and Seal Materials, Northwestern Polytechnical University, Xi'an, Shaanxi, 710072, P. R. China
| | - Shuai Yang
- State Key Laboratory of Solidification Processing, Center of Advanced Lubrication and Seal Materials, Northwestern Polytechnical University, Xi'an, Shaanxi, 710072, P. R. China
| | - Mingchang Zhang
- Institute of Science and Technology for New Energy Xi'an Technological University, Xi'an, Shaanxi, 710021, P. R. China
| | - Yong Yang
- Research & Development Institute of Northwestern Polytechnical University in Shenzhen, Shenzhen, Guangdong, 518057, P. R. China
- State Key Laboratory of Solidification Processing, Center of Advanced Lubrication and Seal Materials, Northwestern Polytechnical University, Xi'an, Shaanxi, 710072, P. R. China
| |
Collapse
|
4
|
Sun SC, Jiang H, Chen ZY, Chen Q, Ma MY, Zhen L, Song B, Xu CY. Bifunctional WC-Supported RuO 2 Nanoparticles for Robust Water Splitting in Acidic Media. Angew Chem Int Ed Engl 2022; 61:e202202519. [PMID: 35266633 DOI: 10.1002/anie.202202519] [Citation(s) in RCA: 44] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Indexed: 01/14/2023]
Abstract
We report the strong catalyst-support interaction in WC-supported RuO2 nanoparticles (RuO2 -WC NPs) anchored on carbon nanosheets with low loading of Ru (4.11 wt.%), which significantly promotes the oxygen evolution reaction activity with a η10 of 347 mV and a mass activity of 1430 A gRu -1 , eight-fold higher than that of commercial RuO2 (176 A gRu -1 ). Theoretical calculations demonstrate that the strong catalyst-support interaction between RuO2 and the WC support could optimize the surrounding electronic structure of Ru sites to reduce the reaction barrier. Considering the likewise excellent catalytic ability for hydrogen production, an acidic overall water splitting (OWS) electrolyzer with a good stability constructed by bifunctional RuO2 -WC NPs only requires a cell voltage of 1.66 V to afford 10 mA cm-2 . The unique 0D/2D nanoarchitectures rationally combining a WC support with precious metal oxides provides a promising strategy to tradeoff the high catalytic activity and low cost for acidic OWS applications.
Collapse
Affiliation(s)
- Shu-Chao Sun
- School of Materials Science and Engineering, Harbin Institute of Technology, Harbin, 150001, P. R. China.,MOE Key Laboratory of Micro-Systems and Micro-Structures Manufacturing, Harbin Institute of Technology, Harbin, 150080, P. R. China
| | - Hao Jiang
- School of Materials Science and Engineering, Harbin Institute of Technology, Harbin, 150001, P. R. China
| | - Zi-Yao Chen
- School of Materials Science and Engineering, Harbin Institute of Technology, Harbin, 150001, P. R. China
| | - Qing Chen
- Sauvage Laboratory for Smart Materials, School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen, 518055, P. R. China
| | - Ming-Yuan Ma
- School of Materials Science and Engineering, Harbin Institute of Technology, Harbin, 150001, P. R. China
| | - Liang Zhen
- School of Materials Science and Engineering, Harbin Institute of Technology, Harbin, 150001, P. R. China.,MOE Key Laboratory of Micro-Systems and Micro-Structures Manufacturing, Harbin Institute of Technology, Harbin, 150080, P. R. China.,Sauvage Laboratory for Smart Materials, School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen, 518055, P. R. China
| | - Bo Song
- National Key Laboratory of Science and Technology on Advanced Composites in Special Environments, Harbin Institute of Technology, Harbin, 150001, P. R. China
| | - Cheng-Yan Xu
- MOE Key Laboratory of Micro-Systems and Micro-Structures Manufacturing, Harbin Institute of Technology, Harbin, 150080, P. R. China.,Sauvage Laboratory for Smart Materials, School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen, 518055, P. R. China
| |
Collapse
|
5
|
Sun S, Jiang H, Chen Z, Chen Q, Ma M, Zhen L, Song B, Xu C. Bifunctional WC‐Supported RuO2 Nanoparticles for Robust Water Splitting in Acidic Media. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202202519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Shuchao Sun
- Harbin Institute of Technology School of Materials Science and Engineering CHINA
| | - Hao Jiang
- Harbin Institute of Technology School of Materials Science and Engineering CHINA
| | - Ziyao Chen
- Harbin Institute of Technology School of Materials Science and Engineering CHINA
| | - Qing Chen
- Harbin Institute of Technology Shenzhen School of Materials Science and Engineering CHINA
| | - Mingyuan Ma
- Harbin Institute of Technology School of Materials Science and Engineering CHINA
| | - Liang Zhen
- Harbin Institute of Technology School of Materials Science and Engineering CHINA
| | - Bo Song
- Harbin Institute of Technology P.O.Box 3010,No.2 Yikuang street 150001 Harbin CHINA
| | - Chengyan Xu
- Harbin Institute of Technology Shenzhen School of Materials Science and Engineering CHINA
| |
Collapse
|
6
|
Liu Q, Ranocchiari M, van Bokhoven JA. Catalyst overcoating engineering towards high-performance electrocatalysis. Chem Soc Rev 2021; 51:188-236. [PMID: 34870651 DOI: 10.1039/d1cs00270h] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Clean and sustainable energy needs the development of advanced heterogeneous catalysts as they are of vital importance for electrochemical transformation reactions in renewable energy conversion and storage devices. Advances in nanoscience and material chemistry have afforded great opportunities for the design and optimization of nanostructured electrocatalysts with high efficiency and practical durability. In this review article, we specifically emphasize the synthetic methodologies for the versatile surface overcoating engineering reported to date for optimal electrocatalysts. We discuss the recent progress in the development of surface overcoating-derived electrocatalysts potentially applied in polymer electrolyte fuel cells and water electrolyzers by correlating catalyst intrinsic structures with electrocatalytic properties. Finally, we present the opportunities and perspectives of surface overcoating engineering for the design of advanced (electro)catalysts and their deep exploitation in a broad scope of applications.
Collapse
Affiliation(s)
- Qiang Liu
- Institute for Chemical and Bioengineering, ETH Zurich, Vladimir Prelog Weg 1, 8093 Zurich, Switzerland. .,Laboratory for Catalysis and Sustainable Chemistry, Paul Scherrer Institut, 5232 Villigen PSI, Switzerland
| | - Marco Ranocchiari
- Laboratory for Catalysis and Sustainable Chemistry, Paul Scherrer Institut, 5232 Villigen PSI, Switzerland
| | - Jeroen A van Bokhoven
- Institute for Chemical and Bioengineering, ETH Zurich, Vladimir Prelog Weg 1, 8093 Zurich, Switzerland. .,Laboratory for Catalysis and Sustainable Chemistry, Paul Scherrer Institut, 5232 Villigen PSI, Switzerland
| |
Collapse
|
7
|
Yin Y, Wen M, Tong Z, Zhan Q, Chen J, Liu X, Li Y, Wu Z, Dionysiou DD. In-situ mediation of graphitic carbon film-encapsulated tungsten carbide for enhancing hydrogen evolution performance and stability. Electrochim Acta 2021. [DOI: 10.1016/j.electacta.2021.138566] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
8
|
Wu S, Lu X, Chen X, Gao H, Gao J, Li G. Structure-controlled tungsten carbide nanoplates for enhanced hydrogen evolution reaction. NANO EXPRESS 2021. [DOI: 10.1088/2632-959x/abf2ad] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Abstract
Developing a low-cost and durable non-noble metal eletrocatalyst for hydrogen evolution reaction (HER) is critical in efficient hydrogen production. Herein, tungsten carbide nanoplates (WC NPs) with typical mesoporous structure were prepared by a controlled hydrothermal reaction followed by a gas-solid carburization process. The crystal phases, microstructure and chemical components of the nanoplates were characterized, and their electrochemical properties were measured. The results show that the as-prepared WC NPs expose active sites upmost, and exhibit enhanced conductivity and superior HER performance in acid solution in terms of a small η
10 (overpotential to obtain a current density of 10 mA cm−2) of 120 mV, a Tafel slope of 58 mV dec−1 and outstanding long-term cycling stability. These indicate that the HER properties of WC NPs are dramatically enhanced compared to that of all phase pure WC materials reported in recent years. This enhancement can be attributed to their unique structural and electronic properties, which can be exploited to improve the electrochemical properties of traditional non-noble metal material.
Collapse
|
9
|
Construction of echinoids-like MoS2@NiS2 electrocatalyst for efficient and robust water oxidation. Electrochim Acta 2020. [DOI: 10.1016/j.electacta.2020.136527] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
10
|
Lian Y, Han B, Liu D, Wang Y, Zhao H, Xu P, Han X, Du Y. Solvent-Free Synthesis of Ultrafine Tungsten Carbide Nanoparticles-Decorated Carbon Nanosheets for Microwave Absorption. NANO-MICRO LETTERS 2020; 12:153. [PMID: 34138171 PMCID: PMC7770940 DOI: 10.1007/s40820-020-00491-5] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Accepted: 06/15/2020] [Indexed: 04/14/2023]
Abstract
Carbides/carbon composites are emerging as a new kind of binary dielectric systems with good microwave absorption performance. Herein, we obtain a series of tungsten carbide/carbon composites through a simple solvent-free strategy, where the solid mixture of dicyandiamide (DCA) and ammonium metatungstate (AM) is employed as the precursor. Ultrafine cubic WC1-x nanoparticles (3-4 nm) are in situ generated and uniformly dispersed on carbon nanosheets. This configuration overcomes some disadvantages of conventional carbides/carbon composites and is greatly helpful for electromagnetic dissipation. It is found that the weight ratio of DCA to AM can regulate chemical composition of these composites, while less impact on the average size of WC1-x nanoparticles. With the increase in carbon nanosheets, the relative complex permittivity and dielectric loss ability are constantly enhanced through conductive loss and polarization relaxation. The different dielectric properties endow these composites with distinguishable attenuation ability and impedance matching. When DCA/AM weight ratio is 6.0, the optimized composite can produce good microwave absorption performance, whose strongest reflection loss intensity reaches up to - 55.6 dB at 17.5 GHz and qualified absorption bandwidth covers 3.6-18.0 GHz by manipulating the thickness from 1.0 to 5.0 mm. Such a performance is superior to many conventional carbides/carbon composites.
Collapse
Affiliation(s)
- Yunlong Lian
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, People's Republic of China
| | - Binhua Han
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, People's Republic of China
| | - Dawei Liu
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, People's Republic of China
| | - Yahui Wang
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, People's Republic of China
| | - Honghong Zhao
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, People's Republic of China
| | - Ping Xu
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, People's Republic of China
| | - Xijiang Han
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, People's Republic of China.
| | - Yunchen Du
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, People's Republic of China.
| |
Collapse
|
11
|
Liu R, Du Q, Zhao R, Nie X, Liu L, Li J, Du J. Ultrafine Mo
2
C Nanoparticles Confined in 2D Meshlike Carbon Nanolayers for Effective Hydrogen Evolution. ChemCatChem 2020. [DOI: 10.1002/cctc.202000277] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Rui Liu
- College of Chemistry and Chemical EngineeringTaiyuan University of Technology No. 79 Yingze West Street Taiyuan Shanxi China
| | - Qianqian Du
- College of Chemistry and Chemical EngineeringTaiyuan University of Technology No. 79 Yingze West Street Taiyuan Shanxi China
| | - Ruihua Zhao
- College of Chemistry and Chemical EngineeringTaiyuan University of Technology No. 79 Yingze West Street Taiyuan Shanxi China
- Shanxi Kunming Tobacco Co. Ltd. 21 Dachang South Road Taiyuan Shanxi China
| | - Xiaorong Nie
- College of Chemistry and Chemical EngineeringTaiyuan University of Technology No. 79 Yingze West Street Taiyuan Shanxi China
| | - Lu Liu
- College of Chemistry and Chemical EngineeringTaiyuan University of Technology No. 79 Yingze West Street Taiyuan Shanxi China
| | - Jinping Li
- College of Chemistry and Chemical EngineeringTaiyuan University of Technology No. 79 Yingze West Street Taiyuan Shanxi China
- Shanxi Key Laboratory of Gas Energy Efficient and Clean Utilization No.79 Yingze West Street Taiyuan Shanxi China
| | - Jianping Du
- College of Chemistry and Chemical EngineeringTaiyuan University of Technology No. 79 Yingze West Street Taiyuan Shanxi China
- Shanxi Key Laboratory of Gas Energy Efficient and Clean Utilization No.79 Yingze West Street Taiyuan Shanxi China
| |
Collapse
|
12
|
Lv Z, Liu D, Tian W, Dang J. Designed synthesis of WC-based nanocomposites as low-cost, efficient and stable electrocatalysts for the hydrogen evolution reaction. CrystEngComm 2020. [DOI: 10.1039/d0ce00419g] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In this study, effectively conductive rGO (reduced graphene oxide) was used as the supporter both to promote charge transfer and to refine particle size of WC, to realize efficient and stable HER performance.
Collapse
Affiliation(s)
- Zepeng Lv
- College of Materials Science and Engineering
- Chongqing University
- Chongqing 400044
- PR China
- Chongqing Key Laboratory of Vanadium-Titanium Metallurgy and New Materials
| | - Dong Liu
- College of Materials Science and Engineering
- Chongqing University
- Chongqing 400044
- PR China
| | - Weiqian Tian
- Department of Fibre and Polymer Technology
- KTH Royal Institute of Technology
- 10044 Stockholm
- Sweden
| | - Jie Dang
- College of Materials Science and Engineering
- Chongqing University
- Chongqing 400044
- PR China
- Chongqing Key Laboratory of Vanadium-Titanium Metallurgy and New Materials
| |
Collapse
|
13
|
Zhang H, Pan Q, Sun Z, Cheng C. Three-dimensional macroporous W 2C inverse opal arrays for the efficient hydrogen evolution reaction. NANOSCALE 2019; 11:11505-11512. [PMID: 31173025 DOI: 10.1039/c9nr03548f] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The development of a low-cost and durable non-precious metal-based electrocatalyst for the hydrogen evolution reaction (HER) is important to realize highly efficient overall water splitting. Here, we report the design and fabrication of a binder-free electrocatalyst of three-dimensional macroporous ditungsten carbide (W2C) inverse opal (W2C IO) arrays by a facile thermal carburization process with WO3 IO as a template. The as-fabricated W2C IO exhibits superior electrocatalytic performance in 0.5 M H2SO4 solution in terms of a low overpotential of 146 mV to reach a current density of 10 mA cm-2, a low Tafel slope of 78 mV dec-1 and excellent long-term stability. The superior performance can be attributed to the favorable electronic structure and hydrogen adsorption Gibbs free energy of W2C evidenced by theory calculations and the enhancement of the charge/mass transfer process by the 3D macroporous arrayed electrode design.
Collapse
Affiliation(s)
- Haifeng Zhang
- Materials and Energy School, Guangdong University of Technology, No. 100 Waihuan Xi Road, Guang Zhou Higher Education Mega Center, Guangzhou 510006, Panyu District, P.R China.
| | | | | | | |
Collapse
|
14
|
Hu Y, Yu B, Li W, Ramadoss M, Chen Y. W 2C nanodot-decorated CNT networks as a highly efficient and stable electrocatalyst for hydrogen evolution in acidic and alkaline media. NANOSCALE 2019; 11:4876-4884. [PMID: 30821306 DOI: 10.1039/c8nr10281c] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Although tungsten carbide (W2C) has long been reported as an excellent platinum-like catalyst, it is still a challenge to synthesize W2C as an electrocatalyst for a highly efficient hydrogen evolution reaction (HER) due to its high onset overpotential, inevitable aggregation, and lack of a scalable and controllable synthesis method. Herein, we synthesized W2C nanodot-decorated CNT networks (W2C@CNT-S) via a facile and scalable spray drying method followed by a carbonization process. It is demonstrated that this unique nanoarchitecture, constructed by ultrafine W2C nanodots homogeneously decorated on a three-dimensional and conductive CNT skeleton, leads to the exposure of abundant catalytic sites and promotes highly efficient electron transfer and ion diffusion during the HER process. As a result, in acidic and alkaline media, the optimized W2C@CNT-S hybrid exhibited excellent HER performance with very low onset overpotentials of only 60 and 40 mV (vs. RHE) and very small Tafel slopes of 57.4 and 56.2 mV dec-1, and only needed 176 and 148 mV (vs. RHE) to obtain a current density of 10 mA cm-2, respectively; it also showed outstanding long-term durability even after a 30-hour test in both acidic and alkaline media. This study presents an overview of a low-cost and scalable spray-drying strategy to synthesize a high-performance carbide-based electrocatalyst for hydrogen evolution.
Collapse
Affiliation(s)
- Yang Hu
- School of Electronic Science and Engineering, and State Key Laboratory of Electronic Thin Films and Integrated Devices, University of Electronic Science and Technology of China, Chengdu 610054, PR China.
| | | | | | | | | |
Collapse
|