1
|
Hydroxyl-and-carboxyl ligand concatenating multi-lanthanide substituted tellurotungstates and electrochemical detection of noradrenaline. J RARE EARTH 2021. [DOI: 10.1016/j.jre.2021.09.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
3
|
Yousefi F, Movahedpour A, Shabaninejad Z, Ghasemi Y, Rabbani S, Sobnani-Nasab A, Mohammadi S, Hajimoradi B, Rezaei S, Savardashtaki A, Mazoochi M, Mirzaei H. Electrochemical-Based Biosensors: New Diagnosis Platforms for Cardiovascular Disease. Curr Med Chem 2020; 27:2550-2575. [DOI: 10.2174/0929867326666191024114207] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2019] [Revised: 09/05/2019] [Accepted: 09/12/2019] [Indexed: 02/05/2023]
Abstract
One of the major reasons for mortality throughout the world is cardiovascular diseases.
Therefore, bio-markers of cardiovascular disease are of high importance to diagnose and manage procedure.
Detecting biomarkers provided a promising procedure in developing bio-sensors. Fast, selective,
portable, accurate, inexpensive, and sensitive biomarker sensing instruments will be necessary for
detecting and predicting diseases. One of the cardiac biomarkers may be ordered as C-reactive proteins,
lipoprotein-linked phospho-lipase, troponin I or T, myoglobin, interleukin-6, interleukin-1, tumor necrosis
factor alpha, LDL and myeloperoxidase. The biomarkers are applied to anticipate cardio-vascular
illnesses. Initial diagnoses of these diseases are possible by several techniques; however, they are laborious
and need costly apparatus. Current researches designed various bio-sensors for resolving the respective
issues. Electrochemical instruments and the proposed bio-sensors are preferred over other
methods due to its inexpensiveness, mobility, reliability, repeatability. The present review comprehensively
dealt with detecting biomarkers of cardiovascular disease through electro-chemical techniques.
Collapse
Affiliation(s)
- Fatemeh Yousefi
- Department of Biological Sciences, Faculty of Genetics, Tarbiat Modares University, Tehran, Iran
| | - Ahmad Movahedpour
- Department of Medical Biotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Zahra Shabaninejad
- Department of Biological Sciences, Faculty of Nanotechnology, Tarbiat Modares University, Tehran, Iran
| | - Younes Ghasemi
- Department of Medical Biotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Shahram Rabbani
- Research Center for Advanced Technologies in Cardiovascular Medicine, Tehran Heart Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Ali Sobnani-Nasab
- Social Determinants of Health (SDH) Research Center, Kashan University of Medical Sciences, Kashan, Iran
| | - Soheila Mohammadi
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Behzad Hajimoradi
- Cardiology Department of Shohaday-e-Tajrish Hospital Shahid Beheshti University of Medical Sciences (SBMU), Tehran, Iran
| | - Samaneh Rezaei
- Department of Medical Biotechnology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amir Savardashtaki
- Department of Medical Biotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Majid Mazoochi
- Department of Cardiology, Cardiac Electrophysiology Center, Kashan University of Medical Sciences, Kashan, Iran
| | - Hamed Mirzaei
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| |
Collapse
|
4
|
Jiang X, Wang X, Yao C, Zhu S, Liu L, Liu R, Li L. Surface-Engineered Gold Nanoclusters with Biological Assembly-Amplified Emission for Multimode Imaging. J Phys Chem Lett 2019; 10:5237-5243. [PMID: 31438679 DOI: 10.1021/acs.jpclett.9b02046] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Here, we develop bifunctional ligand-engineered gold nanoclusters (AuNCs) as signal amplifying reporters for multimode imaging. Modified streptavidin (SA) and biotin alkyl acid-based ligands were applied to AuNCs to form AuNC-SA and AuNC-biotin. The zwitterionic ligands promoted bioassembly and avoided nonspecific adsorption. The AuNCs resisted aggregation-induced quenching and showed strong emission benefited from biological self-assembly. The engineered AuNCs featured stable emission, a large two-photon absorption cross section, long fluorescence lifetime, and good biocompatibility. Thus, cell-expressed antigen-induced protein-binding events were effectively converted into signals from the biological assemble of AuNCs. We performed a comprehensive assay of specific antigens and the cell structure, through one-photon imaging, two-photon imaging, and fluorescence lifetime imaging of AuNCs in a simple, sensitive, and reliable way.
Collapse
Affiliation(s)
- Xiaofeng Jiang
- State Key Laboratory for Advanced Metals and Materials, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, P. R. China
| | - Xiaoyu Wang
- State Key Laboratory for Advanced Metals and Materials, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, P. R. China
| | - Chuang Yao
- Key Laboratory of Extraordinary Bond Engineering and Advance Materials Technology (EBEAM) of Chongqing, Yangtze Normal University, Chongqing 408100, People's Republic of China
| | - Shuxian Zhu
- State Key Laboratory for Advanced Metals and Materials, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, P. R. China
| | - Lu Liu
- State Key Laboratory for Advanced Metals and Materials, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, P. R. China
| | - Ronghua Liu
- State Key Laboratory for Advanced Metals and Materials, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, P. R. China
| | - Lidong Li
- State Key Laboratory for Advanced Metals and Materials, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, P. R. China
| |
Collapse
|