1
|
Hajinasiri R. Allenoates in organic synthesis. Tetrahedron 2022. [DOI: 10.1016/j.tet.2022.133053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
2
|
Huang J, Wang W, Zhang L, Meng X. Recent advances in the synthesis of benzo[b]thiophene fused polycyclic derivatives: strategies and reactions. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.108003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
3
|
Niu C, Du DM. A squaramide-catalysed asymmetric cascade Michael addition/acyl transfer reaction between unsaturated benzothiophenones and α-nitroketones. Org Biomol Chem 2022; 20:840-846. [PMID: 35018912 DOI: 10.1039/d1ob02217b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
An efficient and practical organocatalytic asymmetric strategy was developed using unsaturated benzothiophenones and α-nitroketones catalysed by bifunctional squaramide via Michael addition and acyl transfer steps. A broad range of chiral acyloxybenzothiophene derivatives were obtained in good yields (up to 97%) with excellent enantioselectivities (up to 98% ee). What's more, employing different chiral squaramide catalysts and unsaturated benzothiophenones can deliver the acyloxy unit at the 2-position or 3-position of benzothiophene.
Collapse
Affiliation(s)
- Cheng Niu
- Key Laboratory of Medical Molecule Science & Pharmaceutics Engineering, Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, No. 5 Zhongguancun South Street, Beijing 100081, People's Republic of China.
| | - Da-Ming Du
- Key Laboratory of Medical Molecule Science & Pharmaceutics Engineering, Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, No. 5 Zhongguancun South Street, Beijing 100081, People's Republic of China.
| |
Collapse
|
4
|
Yuan SP, Dou PH, Jia YQ, Zhao JQ, You Y, Wang ZH, Zhou MQ, Yuan WC. Catalytic asymmetric aromatizing inverse electron-demand [4+2] cycloaddition of 1-thioaurones and 1-azaaurones. Chem Commun (Camb) 2021; 58:553-556. [PMID: 34908046 DOI: 10.1039/d1cc06357j] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Using 1-thioaurones and 1-azaaurones as electron-deficient oxa-dienes, an organocatalytic asymmetric aromatizing inverse electron-demand [4+2] cycloaddition with γ-deconjugated butenolides and azlactones was developed. A wide range of optically active benzothiophene-fused δ-lactones and indole-fused δ-lactones were obtained with desirable outcomes (up to 94% yield, >99 : 1 dr and 99% ee).
Collapse
Affiliation(s)
- Shu-Pei Yuan
- National Engineering Research Center of Chiral Drugs, Chengdu Institute of Organic Chemistry, Chinese Academy of Sciences, Chengdu 610041, China. .,Innovation Research Center of Chiral Drugs, Institute for Advanced Study, Chengdu University, Chengdu 610106, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Pei-Hao Dou
- National Engineering Research Center of Chiral Drugs, Chengdu Institute of Organic Chemistry, Chinese Academy of Sciences, Chengdu 610041, China. .,Innovation Research Center of Chiral Drugs, Institute for Advanced Study, Chengdu University, Chengdu 610106, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yun-Qing Jia
- National Engineering Research Center of Chiral Drugs, Chengdu Institute of Organic Chemistry, Chinese Academy of Sciences, Chengdu 610041, China. .,Innovation Research Center of Chiral Drugs, Institute for Advanced Study, Chengdu University, Chengdu 610106, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jian-Qiang Zhao
- Innovation Research Center of Chiral Drugs, Institute for Advanced Study, Chengdu University, Chengdu 610106, China
| | - Yong You
- Innovation Research Center of Chiral Drugs, Institute for Advanced Study, Chengdu University, Chengdu 610106, China
| | - Zhen-Hua Wang
- Innovation Research Center of Chiral Drugs, Institute for Advanced Study, Chengdu University, Chengdu 610106, China
| | - Ming-Qiang Zhou
- National Engineering Research Center of Chiral Drugs, Chengdu Institute of Organic Chemistry, Chinese Academy of Sciences, Chengdu 610041, China.
| | - Wei-Cheng Yuan
- National Engineering Research Center of Chiral Drugs, Chengdu Institute of Organic Chemistry, Chinese Academy of Sciences, Chengdu 610041, China. .,Innovation Research Center of Chiral Drugs, Institute for Advanced Study, Chengdu University, Chengdu 610106, China
| |
Collapse
|
5
|
Dai Y, Di J, Hao Z, Meng X, Zhang L. Synthesis of Spiro[benzo[
b
]thiophene‐2(3
H
),1′‐cyclopropan]‐3‐ones via Domino Reaction Between Thioaurones and Sulfur Ylides. ASIAN J ORG CHEM 2021. [DOI: 10.1002/ajoc.202100117] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Yayue Dai
- Tianjin Key Laboratory of Organic Solar Cells and Photochemical Conversion Tianjin Key Laboratory of Drug Targeting and Bioimaging School of Chemistry & Chemical Engineering Tianjin University of Technology Tianjin 300384 P. R. China
| | - Jianhao Di
- Tianjin Key Laboratory of Organic Solar Cells and Photochemical Conversion Tianjin Key Laboratory of Drug Targeting and Bioimaging School of Chemistry & Chemical Engineering Tianjin University of Technology Tianjin 300384 P. R. China
| | - Zeyang Hao
- Tianjin Key Laboratory of Organic Solar Cells and Photochemical Conversion Tianjin Key Laboratory of Drug Targeting and Bioimaging School of Chemistry & Chemical Engineering Tianjin University of Technology Tianjin 300384 P. R. China
| | - Xiangtai Meng
- Tianjin Key Laboratory of Organic Solar Cells and Photochemical Conversion Tianjin Key Laboratory of Drug Targeting and Bioimaging School of Chemistry & Chemical Engineering Tianjin University of Technology Tianjin 300384 P. R. China
| | - Lei Zhang
- Tianjin Engineering Technology Center of Chemical Wastewater Source Reduction and Recycling School of Science Tianjin Chengjian University Tianjin 300384 P. R. China
| |
Collapse
|
6
|
Deng Q, Yu A, Zhang L, Meng X. Selective Synthesis of Benzothiophene‐Fused Polycyclic, Eight‐Membered N‐Heterocycles via Amine‐Mediated Three‐Component Domino Strategy. Adv Synth Catal 2020. [DOI: 10.1002/adsc.202001129] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Affiliation(s)
- Qingsong Deng
- Tianjin Key Laboratory of Organic Solar Cells and Photochemical Conversion School of Chemistry & Chemical Engineering Tianjin University of Technology Tianjin 300384 People's Republic of China
| | - Aimin Yu
- Tianjin Key Laboratory of Organic Solar Cells and Photochemical Conversion School of Chemistry & Chemical Engineering Tianjin University of Technology Tianjin 300384 People's Republic of China
| | - Lei Zhang
- Tianjin Engineering Technology Center of Chemical Wastewater Source Reduction and Recycling School of Science, Tianjin Chengjian University Tianjin 300384 People's Republic of China
- College of Chemistry Beijing Normal University Beijing 100875 People's Republic of China
| | - Xiangtai Meng
- Tianjin Key Laboratory of Organic Solar Cells and Photochemical Conversion School of Chemistry & Chemical Engineering Tianjin University of Technology Tianjin 300384 People's Republic of China
| |
Collapse
|
7
|
Deng Q, Meng X. Recent Advances in the Cycloaddition Reactions of 2‐Benzylidene‐1‐benzofuran‐3‐ones, and Their Sulfur, Nitrogen and Methylene Analogues. Chem Asian J 2020; 15:2838-2853. [DOI: 10.1002/asia.202000550] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 07/13/2020] [Indexed: 12/20/2022]
Affiliation(s)
- Qingsong Deng
- Tianjin Key Laboratory of Organic Solar Cells and Photochemical Conversion Tianjin Key Laboratory of Drug Targeting and Bioimaging School of Chemistry & Chemical Engineering Tianjin University of Technology Tianjin 300384 P.R. China
| | - Xiangtai Meng
- Tianjin Key Laboratory of Organic Solar Cells and Photochemical Conversion Tianjin Key Laboratory of Drug Targeting and Bioimaging School of Chemistry & Chemical Engineering Tianjin University of Technology Tianjin 300384 P.R. China
| |
Collapse
|
8
|
Babu KR, Li Y, Xu W, Tang Y, Zhang W, Xu S. Multicomponent benzannulation of allylic P-ylides with isocyanates or aldehydes for construction of anilines and biaryls. Chem Commun (Camb) 2020; 56:8865-8868. [PMID: 32638748 DOI: 10.1039/d0cc03461d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The reactivity of allylic phosphorus ylides generated in situ from alkoxycarbonylmethylenephosphoranes and propiolates is investigated toward isocyanates and aromatic aldehydes, which leads to one-pot multicomponent benzannulations for efficient synthesis of polysubstituted anilines and biaryls, respectively. The mechanism may involve a tandem [2+2] cycloaddition/fragmentation/Wittig/cyclization/elimination/aromatization sequence.
Collapse
Affiliation(s)
- Kaki Raveendra Babu
- School of Chemistry, Xi'an Key Laboratory of Sustainable Energy Materials Chemistry, and Shaanxi Quantong Joint Research Institute of New Energy Vehicles Power, Xi'an Jiaotong University, Xi'an 710049, P. R. China.
| | - Yang Li
- School of Chemistry, Xi'an Key Laboratory of Sustainable Energy Materials Chemistry, and Shaanxi Quantong Joint Research Institute of New Energy Vehicles Power, Xi'an Jiaotong University, Xi'an 710049, P. R. China.
| | - Wenbo Xu
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan 250014, P. R. China.
| | - Yuhai Tang
- School of Chemistry, Xi'an Key Laboratory of Sustainable Energy Materials Chemistry, and Shaanxi Quantong Joint Research Institute of New Energy Vehicles Power, Xi'an Jiaotong University, Xi'an 710049, P. R. China.
| | - Wenquan Zhang
- Institute of Chemical Materials, China Academy of Engineering Physics (CAEP), Mianyang 621900, P. R. China.
| | - Silong Xu
- School of Chemistry, Xi'an Key Laboratory of Sustainable Energy Materials Chemistry, and Shaanxi Quantong Joint Research Institute of New Energy Vehicles Power, Xi'an Jiaotong University, Xi'an 710049, P. R. China.
| |
Collapse
|
9
|
Wu L, Chen K, Huang Y, Li E. Phosphine‐Catalyzed δ‐Addition Reaction of γ‐Substituted Allenoates with Isatin Derivatives. ASIAN J ORG CHEM 2020. [DOI: 10.1002/ajoc.202000246] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- Lulu Wu
- School of ScienceHenan Agricultural University Zhengzhou 450002 China
| | - Kaihong Chen
- State Key Laboratory and Institute of Elemento-Organic ChemistryCollege of chemistryNankai University Tianjin 300071 China
| | - You Huang
- State Key Laboratory and Institute of Elemento-Organic ChemistryCollege of chemistryNankai University Tianjin 300071 China
| | - Er‐Qing Li
- College of ChemistryGreen Catalysis CenterZhengzhou University Zhengzhou 450001 China
| |
Collapse
|
10
|
Ma S, Yu A, Zhang S, Zhang L, Meng X. Construction of [6-5-5-6-6] Pentacyclic Skeleton via a Phosphine-Catalyzed Domino Reaction and Mechanism Study. J Org Chem 2020; 85:7884-7895. [DOI: 10.1021/acs.joc.0c00566] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Affiliation(s)
- Shanshan Ma
- Tianjin Key Laboratory of Organic Solar Cells and Photochemical Conversion; Tianjin Key Laboratory of Drug Targeting and Bioimaging, School of Chemistry & Chemical Engineering Tianjin University of Technology, Tianjin 300384, P.R. China
| | - Aimin Yu
- Tianjin Key Laboratory of Organic Solar Cells and Photochemical Conversion; Tianjin Key Laboratory of Drug Targeting and Bioimaging, School of Chemistry & Chemical Engineering Tianjin University of Technology, Tianjin 300384, P.R. China
| | - Shunguang Zhang
- Tianjin Key Laboratory of Organic Solar Cells and Photochemical Conversion; Tianjin Key Laboratory of Drug Targeting and Bioimaging, School of Chemistry & Chemical Engineering Tianjin University of Technology, Tianjin 300384, P.R. China
| | - Lei Zhang
- Tianjin Engineering Technology Center of Chemical Wastewater Source Reduction and Recycling, School of Science, Tianjin Chengjian University, Tianjin 300384, P.R. China
- College of Chemistry, Beijing Normal University, Beijing 100875, P. R. China
| | - Xiangtai Meng
- Tianjin Key Laboratory of Organic Solar Cells and Photochemical Conversion; Tianjin Key Laboratory of Drug Targeting and Bioimaging, School of Chemistry & Chemical Engineering Tianjin University of Technology, Tianjin 300384, P.R. China
| |
Collapse
|
11
|
Li EQ, Huang Y. Recent advances in phosphine catalysis involving γ-substituted allenoates. Chem Commun (Camb) 2020; 56:680-694. [DOI: 10.1039/c9cc08241g] [Citation(s) in RCA: 77] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
This feature article will describe the selected examples of organophosphine catalysis of γ-substituent allenoates with a wide range of electrophiles to give diverse annulations.
Collapse
Affiliation(s)
- Er-Qing Li
- Green Catalysis Center
- College of Chemistry
- Zhengzhou University
- Zhengzhou 450001
- P. R. China
| | - You Huang
- State Key Laboratory and Institute of Elemento-Organic Chemistry
- College of Chemistry
- Nankai University
- Tianjin 300071
- China
| |
Collapse
|
12
|
Li K, Wang L, Yu A, Zhu L, Zhang L, Gu Y, Meng X. Synthesis of Benzothiophene-Fused Oxa[6.6.5]tricyclic Skeletons through a Cinchonidine- or NaOH-Promoted Quadruple Domino Sequence. Chemistry 2019; 25:9665-9669. [PMID: 31066939 DOI: 10.1002/chem.201900890] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Indexed: 12/26/2022]
Abstract
Two base-promoted quadruple domino reactions between thioaurones and allylic phosphonium salts have been developed to synthesize benzothiophene-fused oxa[6.6.5]tricyclic skeletons in moderate to good yields with excellent stereoselectivity and broad functional-group tolerance. This is a simple and useful protocol for the rapid construction of the umbrella-like oxa[6.6.5]tricyclic skeleton.
Collapse
Affiliation(s)
- Ke Li
- Tianjin Key Laboratory of Organic Solar Cells and Photochemical Conversion, School of Chemistry & Chemical Engineering, Tianjin University of Technology, Tianjin, 300384, P.R. China
| | - Liang Wang
- Tianjin Key Laboratory of Organic Solar Cells and Photochemical Conversion, School of Chemistry & Chemical Engineering, Tianjin University of Technology, Tianjin, 300384, P.R. China
| | - Aimin Yu
- Tianjin Key Laboratory of Organic Solar Cells and Photochemical Conversion, School of Chemistry & Chemical Engineering, Tianjin University of Technology, Tianjin, 300384, P.R. China
| | - Lingli Zhu
- Tianjin Key Laboratory of Organic Solar Cells and Photochemical Conversion, School of Chemistry & Chemical Engineering, Tianjin University of Technology, Tianjin, 300384, P.R. China
| | - Lei Zhang
- Tianjin Engineering Technology Center of Chemical, Wastewater Source Reduction and Recycling, School of Science, Tianjin Chengjian University, Tianjin, 300384, P.R. China
| | - Yingchun Gu
- Tianjin Engineering Technology Center of Chemical, Wastewater Source Reduction and Recycling, School of Science, Tianjin Chengjian University, Tianjin, 300384, P.R. China
| | - Xiangtai Meng
- Tianjin Key Laboratory of Organic Solar Cells and Photochemical Conversion, School of Chemistry & Chemical Engineering, Tianjin University of Technology, Tianjin, 300384, P.R. China
| |
Collapse
|
13
|
Synthesis of Benzothiophene-Fused Pyran Derivatives via Piperidine Promoted Domino Reaction. HETEROATOM CHEMISTRY 2019. [DOI: 10.1155/2019/4361410] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
A new domino reaction between thioaurones and malononitrile has been reported. This reaction allows efficient access to benzothiophene-fused pyran derivatives in good yields under mild reaction conditions. The substrate scope is broad; a series of benzothiophene-fused pyran derivatives have been synthesized.
Collapse
|
14
|
Ding W, Zhang Y, Yu A, Zhang L, Meng X. Substrate-Controlled Domino Reactions of Crotonate-Derived Sulfur Ylides: Synthesis of Benzothiophene Derivatives. J Org Chem 2018; 83:13821-13833. [DOI: 10.1021/acs.joc.8b02152] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Wenhuan Ding
- Tianjin Key Laboratory of Organic Solar Cells and Photochemical Conversion, School of Chemistry & Chemical Engineering, Tianjin University of Technology, Tianjin 300384, P. R. China
| | - Youquan Zhang
- Tianjin Key Laboratory of Organic Solar Cells and Photochemical Conversion, School of Chemistry & Chemical Engineering, Tianjin University of Technology, Tianjin 300384, P. R. China
| | - Aimin Yu
- Tianjin Key Laboratory of Organic Solar Cells and Photochemical Conversion, School of Chemistry & Chemical Engineering, Tianjin University of Technology, Tianjin 300384, P. R. China
| | - Lei Zhang
- Tianjin Engineering Technology Center of Chemical Wastewater Source Reduction and Recycling, School of Science, Tianjin Chengjian University, Tianjin 300384, P. R. China
- College of Chemistry, Beijing Normal University, Beijing 100875, P. R. China
| | - Xiangtai Meng
- Tianjin Key Laboratory of Organic Solar Cells and Photochemical Conversion, School of Chemistry & Chemical Engineering, Tianjin University of Technology, Tianjin 300384, P. R. China
| |
Collapse
|