1
|
Vargas DF, Fonzo S, Simonetti SO, Kaufman TS, Larghi EL. A rhodium-catalyzed C-H activation/cyclization approach toward the total syntheses of cassiarin C and 8- O-methylcassiarin A from a common intermediate. Org Biomol Chem 2024; 22:7880-7894. [PMID: 39247987 DOI: 10.1039/d4ob01122h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/10/2024]
Abstract
Three short and efficient total syntheses of cassiarin C are reported, from a chromanone common key intermediate. A C-H activation strategy, under rhodium catalysis on its pivaloyl oxime, enabled the installation of the pyridine ring. Dehydrogenation of 8-O-methylcassiarin C afforded 8-O-methylcassiarin A. A kinetic experiment and DFT calculations of the intermediates helped to gain insight into the unusual site- and stereo-specific H/D exchange of cassiarin C in CD3OD.
Collapse
Affiliation(s)
- Didier F Vargas
- Instituto de Química Rosario (IQUIR, CONICET-UNR), Universidad Nacional de Rosario, Suipacha 531, 2000, Rosario, Argentina
- Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 531, 2000, Rosario, Argentina.
| | - Santiago Fonzo
- Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 531, 2000, Rosario, Argentina.
| | - Sebastian O Simonetti
- Instituto de Química Rosario (IQUIR, CONICET-UNR), Universidad Nacional de Rosario, Suipacha 531, 2000, Rosario, Argentina
- Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 531, 2000, Rosario, Argentina.
| | - Teodoro S Kaufman
- Instituto de Química Rosario (IQUIR, CONICET-UNR), Universidad Nacional de Rosario, Suipacha 531, 2000, Rosario, Argentina
- Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 531, 2000, Rosario, Argentina.
| | - Enrique L Larghi
- Instituto de Química Rosario (IQUIR, CONICET-UNR), Universidad Nacional de Rosario, Suipacha 531, 2000, Rosario, Argentina
- Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 531, 2000, Rosario, Argentina.
| |
Collapse
|
2
|
Liu Y, Yang Q, Wang W, Fu Y, Ding Q, Peng Y. Visible-light-induced three-component reactions of α-diazoesters, quinazolinones and cyclic ethers toward quinazoline-based hybrids. Org Biomol Chem 2024; 22:4332-4346. [PMID: 38726656 DOI: 10.1039/d4ob00295d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/30/2024]
Abstract
An effective approach for the construction of 4-short-chain ether attached carbonyl group-substituted quinazolines was developed. Visible-light-induced three-component reactions of α-diazoesters, quinazolinones, and cyclic ethers, with a broad substrate scope and excellent functional group tolerance, under extremely mild conditions without the need for any additional additives and catalysts, selectively led to quinazoline-based hybrids in good to excellent yields. The synthesized hybrids, which are a conglomeration of a quinazoline, a short-chain ether, and a carbonyl group in one molecular skeleton, have potential for application in the development of new drugs or drug candidates.
Collapse
Affiliation(s)
- Yan Liu
- Key Laboratory for Green Chemistry of Jiangxi Province, College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang, 330022, China.
| | - Qin Yang
- Key Laboratory for Green Chemistry of Jiangxi Province, College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang, 330022, China.
| | - Wei Wang
- Key Laboratory for Green Chemistry of Jiangxi Province, College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang, 330022, China.
| | - Yang Fu
- Key Laboratory for Green Chemistry of Jiangxi Province, College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang, 330022, China.
| | - Qiuping Ding
- Key Laboratory for Green Chemistry of Jiangxi Province, College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang, 330022, China.
| | - Yiyuan Peng
- Key Laboratory for Green Chemistry of Jiangxi Province, College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang, 330022, China.
| |
Collapse
|
3
|
Alkubaisi BO, Ravi A, Srikanth G, Sebastian A, Khanfar MA, El-Gamal MI, Sieburth SM, Shahin AI, Al-Tel TH. Divergent Protocol for the Synthesis of Isoquinolino[1,2- b]quinazolinone and Isoquinolino[2,1- a]quinazolinone Derivatives. J Org Chem 2023; 88:4244-4253. [PMID: 36926917 DOI: 10.1021/acs.joc.2c02791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/17/2023]
Abstract
The development of robust and step-economic strategies to access structurally diverse drug-like compound collections remains a challenge. A distinct structural option that constitutes the core scaffold of many biologically significant molecules is the quinazolinone ring system. Several members of this family of privileged substructures have gained attention due to their diverse biological activities. In this context, the development of an efficient strategy for their access is needed. Herein, we report a divergent metal-free operation to access a diverse collection of C6-substituted pyrrolo[4',3',2':4,5]isoquinolino[1,2-b]quinazolin-8(6H)-one and pyrrolo[4',3',2':4,5]isoquinolino[2,1-a]quinazolin-12(6H)-one architectures. The described cascade unites Friedel-Crafts and aza-Michael addition reactions. This operationally simple protocol enables a rapid access to these scaffolds and is compatible with a wide scope of starting materials. In addition, the cascade features a promising approach for the design of unique compound libraries for drug design and discovery programs.
Collapse
Affiliation(s)
- Bilal O Alkubaisi
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Anil Ravi
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Gourishetty Srikanth
- Department of Biology, Chemistry and Environmental Sciences, American University of Sharjah, Sharjah 26666, United Arab Emirates
| | - Anusha Sebastian
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Monther A Khanfar
- College of Science, Department of Chemistry, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Mohammed I El-Gamal
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah 27272, United Arab Emirates.,Department of Medicinal Chemistry, College of Pharmacy, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Scott McN Sieburth
- Department of Chemistry, Temple University, 201 Beury Hall, Philadelphia, Pennsylvania 19122, United States
| | - Afnan I Shahin
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Taleb H Al-Tel
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah 27272, United Arab Emirates.,Department of Medicinal Chemistry, College of Pharmacy, University of Sharjah, Sharjah 27272, United Arab Emirates
| |
Collapse
|
4
|
Kumaran S, Parthasarathy K. Rhodium-Catalyzed Annulations and Heck Coupling/Aza-Michael Addition for the Synthesis of Benzothiadiazinoisoquinoline 6,6-Dioxides and Benzothiadiazinoisoindole 5,5-Dioxides, Respectively. J Org Chem 2022; 87:11989-12000. [PMID: 36049131 DOI: 10.1021/acs.joc.2c00964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A new and efficient protocol has been demonstrated for the synthesis of benzothiadiazinoisoquinoline 6,6-dioxides and benzothiadiazinoisoindole 5,5-dioxides in good to excellent yields. These compounds are formed through a sequential Rh(III)-catalyzed C-H cyclization of dihydrophenylbenzothiadiazine 1,1-dioxides with alkynes and oxidative Heck coupling/aza-Michael addition of dihydrophenylbenzothiadiazine 1,1-dioxides with acrylates, respectively.
Collapse
Affiliation(s)
- Subramani Kumaran
- Department of Organic Chemistry, University of Madras, Guindy Campus, Tamilnadu, Chennai 600025, India
| | - Kanniyappan Parthasarathy
- Department of Organic Chemistry, University of Madras, Guindy Campus, Tamilnadu, Chennai 600025, India
| |
Collapse
|
5
|
Singla D, Paul K. Ru(II)-Catalyzed Regioselective C(5)-H Functionalization of Quinazolinone-Coumarin Conjugates: Synthesis and Photophysical Studies. J Org Chem 2022; 87:10673-10683. [PMID: 35930499 DOI: 10.1021/acs.joc.2c00872] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The quinazolinone template offers an exciting potential for transforming molecules into useful bioactivity. Herein, we report the first regioselective C-5 alkenylation of quinazolinone-coumarin conjugates via ruthenium(II) catalyst using amide as a weak directing group. This methodology permits excellent regioselectivity, extensive substrate tolerance, and mild reaction conditions. In addition, it generates interesting fluorophores that show positive solvatochromism in the range from 404 nm (toluene) to 541 nm (methanol).
Collapse
Affiliation(s)
- Dinesh Singla
- School of Chemistry and Biochemistry, Thapar Institute of Engineering and Technology, Patiala 147001, India
| | - Kamaldeep Paul
- School of Chemistry and Biochemistry, Thapar Institute of Engineering and Technology, Patiala 147001, India
| |
Collapse
|
6
|
Wu Q, Deng Z, Xie D, Liu Y, Yang Q, Fu Y, Peng Y. Aminothiolation of 2-(2-bromophenyl)quinazolinones with elemental sulfur to access 7H-benzo[4,5]isothiazolo[3,2-b]quinazolinones through C–S/S–N bond formation under metal-free condition. Tetrahedron 2022. [DOI: 10.1016/j.tet.2022.132911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
7
|
|
8
|
Pal P, Das GK. Mechanistic insights into Rh(III)-catalyzed C H activation/annulation of N-Aryloxyacetamides with alkynyloxiranes. MOLECULAR CATALYSIS 2021. [DOI: 10.1016/j.mcat.2021.111971] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
9
|
Pal P, Mondal S, Chatterjee A, Saha R, Chakrabarty K, Das G. Mechanistic exploration of Rh(III)-catalyzed C-H allylation of benzamides with allyl bromide. J Organomet Chem 2021. [DOI: 10.1016/j.jorganchem.2021.121888] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
10
|
Wang L, Jiang K, Zhang N, Zhang Z. Rhodium‐Catalyzed Synthesis of Isoquinolino[1,2‐
b
]Quinazolines
via
C−H Annulation in Biomass‐Derived
γ
‐Valerolactone. ASIAN J ORG CHEM 2021. [DOI: 10.1002/ajoc.202100247] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Liang Wang
- School of Chemical and Pharmaceutical Engineering Changzhou Vocational Institute of Engineering Gehu Road 33, Wujin District Changzhou 213164 P. R. China
| | - Kuan‐chang Jiang
- School of Petrochemical Engineering Changzhou University Gehu Road 1, Wujin District Changzhou 213164 P. R. China
| | - Nana Zhang
- School of Chemical and Pharmaceutical Engineering Changzhou Vocational Institute of Engineering Gehu Road 33, Wujin District Changzhou 213164 P. R. China
| | - Zhi‐hui Zhang
- School of Petrochemical Engineering Changzhou University Gehu Road 1, Wujin District Changzhou 213164 P. R. China
| |
Collapse
|
11
|
Umadevi N, Kumar G, Reddy NG, Reddy BS. Recent Advances in C–H Activation and Functionalization of Quinazolinones/ Quinazolines. CURR ORG CHEM 2021. [DOI: 10.2174/1385272824999201210180732] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
This review summarizes the transition metal-catalyzed direct C–H functionalization
of quinazolinones and quinazolines through C-C, C-N and C-O bond formations. It focuses
mainly on the C-H (sp<sup>2</sup> or sp<sup>3</sup>) bond arylation, amination, sulfamidation, acetoxylation,
halogenation, annulation of quinazolinones and quinazolines. This review illustrates the scope
of C-H activation and functionalization of various quinazolinone and quinazoline derivatives.
Collapse
Affiliation(s)
- N. Umadevi
- Indian Institute of Chemical Technology, Hyderabad, India
| | - G. Kumar
- Department of Chemistry, Yogi Vemana University, Kadapa, Andhra Pradesh, India
| | - N.C. Gangi Reddy
- Department of Chemistry, Yogi Vemana University, Kadapa, Andhra Pradesh, India
| | | |
Collapse
|
12
|
Chen M, Lou M, Deng Z, Yang Q, Peng Y. Rhodium(III)‐Catalyzed Alkylation of 2‐Arylquinazolin‐4(3H)‐ones with Cyclopropanols by Directing C‐H Activation and Ring Opening at Ambient Temperature. ASIAN J ORG CHEM 2020. [DOI: 10.1002/ajoc.202000459] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Mu‐Wang Chen
- Key Laboratory of Small Functional Organic Molecule Ministry of Education Jiangxi's Key Laboratory of Green Chemistry and College of Chemistry & Chemical Engineering Jiangxi Normal University Nanchang Jiangxi 330022 P. R. China
| | - Minhao Lou
- Key Laboratory of Small Functional Organic Molecule Ministry of Education Jiangxi's Key Laboratory of Green Chemistry and College of Chemistry & Chemical Engineering Jiangxi Normal University Nanchang Jiangxi 330022 P. R. China
| | - Zhihong Deng
- Key Laboratory of Small Functional Organic Molecule Ministry of Education Jiangxi's Key Laboratory of Green Chemistry and College of Chemistry & Chemical Engineering Jiangxi Normal University Nanchang Jiangxi 330022 P. R. China
| | - Qin Yang
- Key Laboratory of Small Functional Organic Molecule Ministry of Education Jiangxi's Key Laboratory of Green Chemistry and College of Chemistry & Chemical Engineering Jiangxi Normal University Nanchang Jiangxi 330022 P. R. China
| | - Yiyuan Peng
- Key Laboratory of Small Functional Organic Molecule Ministry of Education Jiangxi's Key Laboratory of Green Chemistry and College of Chemistry & Chemical Engineering Jiangxi Normal University Nanchang Jiangxi 330022 P. R. China
| |
Collapse
|
13
|
Wang N, Yang Q, Deng Z, Mao X, Peng Y. Rhodium-Catalyzed Merging of 2-Arylquinazolinone and 2,2-Difluorovinyl Tosylate: Diverse Synthesis of Monofluoroolefin Quinazolinone Derivatives. ACS OMEGA 2020; 5:14635-14644. [PMID: 32596601 PMCID: PMC7315571 DOI: 10.1021/acsomega.0c01344] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Accepted: 05/20/2020] [Indexed: 05/07/2023]
Abstract
An efficient method for the synthesis of 2-(o-monofluoroalkenylaryl)quinazolinone derivatives was developed. In this context, the quinazolinone ring served as the inherent directing group, 2,2-difluorovinyl tosylate was used as the monofluoroolefin synthon, and Rh(III)-catalyzed C-H bond difluorovinylation of 2-arylquinazolinons was performed to give the corresponding monofluoroalkene-containing quinazolinons in yields of 65-92%. The method is characterized by broad synthetic utility, mild conditions, and high efficiency.
Collapse
Affiliation(s)
- Ning Wang
- Key Laboratory of Functional Small
Organic Molecules, Ministry of Education, Jiangxi Province’s
Key Laboratory of Green Chemistry, Jiangxi
Normal University, Nanchang 330022, China
| | - Qin Yang
- Key Laboratory of Functional Small
Organic Molecules, Ministry of Education, Jiangxi Province’s
Key Laboratory of Green Chemistry, Jiangxi
Normal University, Nanchang 330022, China
| | - Zhihong Deng
- Key Laboratory of Functional Small
Organic Molecules, Ministry of Education, Jiangxi Province’s
Key Laboratory of Green Chemistry, Jiangxi
Normal University, Nanchang 330022, China
| | - Xuechun Mao
- Key Laboratory of Functional Small
Organic Molecules, Ministry of Education, Jiangxi Province’s
Key Laboratory of Green Chemistry, Jiangxi
Normal University, Nanchang 330022, China
| | - Yiyuan Peng
- Key Laboratory of Functional Small
Organic Molecules, Ministry of Education, Jiangxi Province’s
Key Laboratory of Green Chemistry, Jiangxi
Normal University, Nanchang 330022, China
| |
Collapse
|
14
|
Yin Z, Li X, Deng Z, Yang Q, Peng Y. The synthesis of isoxazolo[2,3-c]quinazolines via a cycloaddition of quinazoline-3-oxides and acrylates. Tetrahedron Lett 2020. [DOI: 10.1016/j.tetlet.2020.151818] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
15
|
Kumaran S, Parthasarathy K. Cobalt(III)-Catalyzed Synthesis of Fused Quinazolinones by C-H/N-H Annulation of 2-Arylquinazolinones with Alkynes. European J Org Chem 2020. [DOI: 10.1002/ejoc.201901763] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Subramani Kumaran
- Department of Organic Chemistry; University of Madras; Guindy Campus -600025 Chennai Tamilnadu India
| | - Kanniyappan Parthasarathy
- Department of Organic Chemistry; University of Madras; Guindy Campus -600025 Chennai Tamilnadu India
| |
Collapse
|
16
|
Chen X, Zhang X, Lu S, Sun P. Electrosynthesis of polycyclic quinazolinones and rutaecarpine from isatoic anhydrides and cyclic amines. RSC Adv 2020; 10:44382-44386. [PMID: 35517151 PMCID: PMC9058480 DOI: 10.1039/d0ra09382c] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Accepted: 11/30/2020] [Indexed: 12/14/2022] Open
Abstract
A direct decarboxylative cyclization between readily available isatoic anhydrides and cyclic amines was established to construct polycyclic fused quinazolinones employing electrochemical methods. This procedure was performed in an undivided cell without the use of a transition-metal-catalyst and external oxidant. A broad scope of polycyclic fused quinazolinones were obtained in moderate to good yields. Additionally, rutaecarpine was also prepared through our method in one step in good yield. Polycyclic quinazolinones and rutaecarpine were synthesized from isatoic anhydrides and cyclic amines through an electrochemical method without an external oxidant and transition-metal-catalyst.![]()
Collapse
Affiliation(s)
- Xingyu Chen
- Institute of Chinese Meteria Medica
- Artermisinin Research Center
- Academy of Chinese Medical Sciences
- Beijing
- P. R. China
| | - Xing Zhang
- Institute of Chinese Meteria Medica
- Artermisinin Research Center
- Academy of Chinese Medical Sciences
- Beijing
- P. R. China
| | - Sixian Lu
- Institute of Chinese Meteria Medica
- Artermisinin Research Center
- Academy of Chinese Medical Sciences
- Beijing
- P. R. China
| | - Peng Sun
- Institute of Chinese Meteria Medica
- Artermisinin Research Center
- Academy of Chinese Medical Sciences
- Beijing
- P. R. China
| |
Collapse
|
17
|
Huang J, Fu Y, Deng Z, Chen W, Song Z, Peng Y. Rhodium-catalyzed oxidative annulation of 1H-indazoles with alkynes for the synthesis of indazolo[3,2-a]isoquinolines via C–H bond functionalization. Org Biomol Chem 2020; 18:9863-9872. [DOI: 10.1039/d0ob02060e] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
A Rh(iii)-catalyzed oxidative annulation of 1H-indazoles with internal alkynes via C–C and C–N coupling for the preparation of highly functionalized indazolo[3,2-a]isoquinolines is disclosed.
Collapse
Affiliation(s)
- Jian Huang
- Key Laboratory of Functional Small Organic Molecule
- Ministry of Education
- Jiangxi Province's Key Laboratory of Green Chemistry
- Jiangxi Normal University
- Nanchang
| | - Yang Fu
- Key Laboratory of Functional Small Organic Molecule
- Ministry of Education
- Jiangxi Province's Key Laboratory of Green Chemistry
- Jiangxi Normal University
- Nanchang
| | - Zhihong Deng
- Key Laboratory of Functional Small Organic Molecule
- Ministry of Education
- Jiangxi Province's Key Laboratory of Green Chemistry
- Jiangxi Normal University
- Nanchang
| | - Wei Chen
- Key Laboratory of Functional Small Organic Molecule
- Ministry of Education
- Jiangxi Province's Key Laboratory of Green Chemistry
- Jiangxi Normal University
- Nanchang
| | - Zhibin Song
- Key Laboratory of Functional Small Organic Molecule
- Ministry of Education
- Jiangxi Province's Key Laboratory of Green Chemistry
- Jiangxi Normal University
- Nanchang
| | - Yiyuan Peng
- Key Laboratory of Functional Small Organic Molecule
- Ministry of Education
- Jiangxi Province's Key Laboratory of Green Chemistry
- Jiangxi Normal University
- Nanchang
| |
Collapse
|
18
|
Ghosh P, Ganguly B, Das S. C–H functionalization of quinazolinones by transition metal catalysis. Org Biomol Chem 2020; 18:4497-4518. [DOI: 10.1039/d0ob00742k] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Quinazolinone and its derivatives are an important class of heterocyclic scaffolds in pharmaceuticals and natural products. This review provides the recent research advances in the transition metal catalyzed selective C–H bond functionalization of quinazolinone.
Collapse
Affiliation(s)
- Prasanjit Ghosh
- Department of Chemistry
- University of North Bengal
- Darjeeling – 734013
- India
| | - Bhaskar Ganguly
- Department of Chemistry
- University of North Bengal
- Darjeeling – 734013
- India
| | - Sajal Das
- Department of Chemistry
- University of North Bengal
- Darjeeling – 734013
- India
| |
Collapse
|
19
|
Sarkar W, Mishra A, Bhowmik A, Deb I. Copper‐Mediated Direct and Selective C−H Thiolation of Quinazolinones. ASIAN J ORG CHEM 2019. [DOI: 10.1002/ajoc.201900199] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Writhabrata Sarkar
- Organic& Medicinal Chemistry DivisionCSIR-Indian Institute of Chemical Biology 4-Raja S. C. Mullick Road, Jadavpur Kolkata 700032 India
| | - Aniket Mishra
- Organic& Medicinal Chemistry DivisionCSIR-Indian Institute of Chemical Biology 4-Raja S. C. Mullick Road, Jadavpur Kolkata 700032 India
| | - Arup Bhowmik
- Organic& Medicinal Chemistry DivisionCSIR-Indian Institute of Chemical Biology 4-Raja S. C. Mullick Road, Jadavpur Kolkata 700032 India
| | - Indubhusan Deb
- Organic& Medicinal Chemistry DivisionCSIR-Indian Institute of Chemical Biology 4-Raja S. C. Mullick Road, Jadavpur Kolkata 700032 India
| |
Collapse
|
20
|
Luo Y, He H, Li J, Yu X, Guan M, Wu Y. Catalyst-controlled selective mono-/dialkylation of 2-aryl-4(3H)-quinazolinones. Org Chem Front 2019. [DOI: 10.1039/c9qo00496c] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Catalyst-controlled selective mono-/dialkylation of 2-aryl-4(3H)-quinazolinones with α-diazotized Meldrum's acid has been achieved successfully via a metal carbene migratory insertion process.
Collapse
Affiliation(s)
- Yi Luo
- Key Laboratory of Drug-Targeting of Education Ministry and Department of Medicinal Chemistry
- West China School of Pharmacy
- Sichuan University
- Chengdu
- P.R. China
| | - Hua He
- Key Laboratory of Drug-Targeting of Education Ministry and Department of Medicinal Chemistry
- West China School of Pharmacy
- Sichuan University
- Chengdu
- P.R. China
| | - Jianglian Li
- Key Laboratory of Drug-Targeting of Education Ministry and Department of Medicinal Chemistry
- West China School of Pharmacy
- Sichuan University
- Chengdu
- P.R. China
| | - Xinling Yu
- Key Laboratory of Drug-Targeting of Education Ministry and Department of Medicinal Chemistry
- West China School of Pharmacy
- Sichuan University
- Chengdu
- P.R. China
| | - Mei Guan
- West China School of Pharmacy and West China Hospital Sichuan University
- Chengdu 610041
- P. R. China
| | - Yong Wu
- Key Laboratory of Drug-Targeting of Education Ministry and Department of Medicinal Chemistry
- West China School of Pharmacy
- Sichuan University
- Chengdu
- P.R. China
| |
Collapse
|
21
|
Yang Q, Yin Z, Zheng L, Yuan J, Wei S, Ding Q, Peng Y. Copper-catalyzed cross-dehydrogenative coupling between quinazoline-3-oxides and indoles. RSC Adv 2019; 9:5870-5877. [PMID: 35517267 PMCID: PMC9060877 DOI: 10.1039/c8ra09864f] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Accepted: 02/11/2019] [Indexed: 01/16/2023] Open
Abstract
A novel and simple protocol for the synthesis of 4-(indole-3-yl)quinazolines via cross-dehydrogenative coupling of quinazoline-3-oxides and indoles under an air atmosphere has been developed.
Collapse
Affiliation(s)
- Qin Yang
- Key Laboratory of Functional Small Organic Molecule
- Ministry of Education
- Jiangxi Province's Key Laboratory of Green Chemistry
- Jiangxi Normal University
- Nanchang
| | - Zhijian Yin
- Key Laboratory of Functional Small Organic Molecule
- Ministry of Education
- Jiangxi Province's Key Laboratory of Green Chemistry
- Jiangxi Normal University
- Nanchang
| | - Lifang Zheng
- Key Laboratory of Functional Small Organic Molecule
- Ministry of Education
- Jiangxi Province's Key Laboratory of Green Chemistry
- Jiangxi Normal University
- Nanchang
| | - Jianjun Yuan
- Key Laboratory of Functional Small Organic Molecule
- Ministry of Education
- Jiangxi Province's Key Laboratory of Green Chemistry
- Jiangxi Normal University
- Nanchang
| | - Song Wei
- Key Laboratory of Functional Small Organic Molecule
- Ministry of Education
- Jiangxi Province's Key Laboratory of Green Chemistry
- Jiangxi Normal University
- Nanchang
| | - Qiuping Ding
- Key Laboratory of Functional Small Organic Molecule
- Ministry of Education
- Jiangxi Province's Key Laboratory of Green Chemistry
- Jiangxi Normal University
- Nanchang
| | - Yiyuan Peng
- Key Laboratory of Functional Small Organic Molecule
- Ministry of Education
- Jiangxi Province's Key Laboratory of Green Chemistry
- Jiangxi Normal University
- Nanchang
| |
Collapse
|
22
|
Bairy G, Das S, Begam HM, Jana R. Exceedingly Fast, Direct Access to Dihydroisoquinolino[1,2-b]quinazolinones through a Ruthenium(II)-Catalyzed Redox-Neutral C–H Allylation/Hydroamination Cascade. Org Lett 2018; 20:7107-7112. [PMID: 30407020 DOI: 10.1021/acs.orglett.8b03048] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Gurupada Bairy
- Organic and Medicinal Chemistry Division, CSIR-Indian Institute of Chemical Biology, 4 Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, West Bengal, India
- Academy of Scientific and Innovative Research (AcSIR), Kolkata 700032, West Bengal, India
| | - Suvankar Das
- Organic and Medicinal Chemistry Division, CSIR-Indian Institute of Chemical Biology, 4 Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, West Bengal, India
| | - Hasina Mamataj Begam
- Organic and Medicinal Chemistry Division, CSIR-Indian Institute of Chemical Biology, 4 Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, West Bengal, India
| | - Ranjan Jana
- Organic and Medicinal Chemistry Division, CSIR-Indian Institute of Chemical Biology, 4 Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, West Bengal, India
- Academy of Scientific and Innovative Research (AcSIR), Kolkata 700032, West Bengal, India
| |
Collapse
|