1
|
Zhang Z, Xu Z, Wang R, Li F, Gong H, Jiang H. The solid/liquid phase transfer effect of 18-crown-6 for the potassium salts catalyzed β-hydroxyethylation of mercaptan with ethylene carbonate. MONATSHEFTE FUR CHEMIE 2023. [DOI: 10.1007/s00706-023-03056-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/30/2023]
|
2
|
Nucleophilic Reactions Using Alkali Metal Fluorides Activated by Crown Ethers and Derivatives. Catalysts 2023. [DOI: 10.3390/catal13030479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2023] Open
Abstract
We review crown ether-facilitated nucleophilic reactions using metal salts, presenting the studies using kinetic measurements and quantum chemical methods. We focus on the mechanistic features, specifically on the contact ion-pair (CIP) mechanism of metal salts for nucleophilic processes promoted by crown ethers and derivatives. Experimental verification of the CIP form of the metal salt CsF complexed with [18-Crown-6] by H-NMR spectroscopy is described. The use of chiral crown ethers and derivatives for enantioselective nucleophilic processes is also discussed.
Collapse
|
3
|
Khandelwal M, Pemawat G, Khangarot RK. Recent Developments in Nucleophilic Fluorination with Potassium Fluoride (KF): A Review. ASIAN J ORG CHEM 2022. [DOI: 10.1002/ajoc.202200325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Manisha Khandelwal
- Mohanlal Sukhadia University Department of Chemistry UCOS, Durga Nursery Road 313001 Udaipur INDIA
| | - Gangotri Pemawat
- Mohanlal Sukhadia University Department of Chemistry UCOS, Durga Nursery Road 313001 Udaipur INDIA
| | - Rama Kanwar Khangarot
- Mohanlal Sukhadia University Department of Chemistry UCOS, Durga Nursery Road 313001 Udaipur INDIA
| |
Collapse
|
4
|
Lisboa FM, Pliego JR. S N2 versus E2 reactions in a complex microsolvated environment: theoretical analysis of the equilibrium and activation steps of a nucleophilic fluorination. J Mol Model 2022; 28:159. [PMID: 35596807 DOI: 10.1007/s00894-022-05160-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 05/12/2022] [Indexed: 10/18/2022]
Abstract
The reactivity of the fluoride ion towards alkyl halides is highly dependent on the solvating environment. In polar aprotic solvents with large counter-ions is highly reactive and produces substantial E2 product, whereas in polar protic solvents leads to slow kinetics and high selectivity for SN2 reactions. The use of a more complex environment with stoichiometric addition of tert-butanol to acetonitrile solvent is able to module the reactivity and selectivity of tetrabutylammonium fluoride (TBAF). In the present work, we have performed a detailed theoretical analysis of this complex reaction system by density functional theory, continuum solvation model, and including explicit tert-butanol molecules. A kinetic model based on the free energy profile was also used to predict the reactivity and selectivity. The results indicated that the TBAF(tert-butanol) complex plays the key role to increase the SN2 selectivity, whereas higher aggregates are not relevant. The E2 product is formed exclusively via free TBAF, because the solvating tert-butanol in the TBAF(tert-butanol) complex inhibits the E2 pathway. Our analysis suggests that diols or tetraols could produce an improved selectivity.
Collapse
Affiliation(s)
- Fernando M Lisboa
- Departamento de Ciências Naturais, Universidade Federal de São João del-Rei, São João del-Rei, MG, 36301-160, Brazil
| | - Josefredo R Pliego
- Departamento de Ciências Naturais, Universidade Federal de São João del-Rei, São João del-Rei, MG, 36301-160, Brazil.
| |
Collapse
|
5
|
Copper-Mediated Aromatic Fluorination Using N-Heterocycle-Carbene Ligand: Free Energy Profile of the Cu(I)/Cu(III) and Cu(II) radical Mechanisms. J Organomet Chem 2022. [DOI: 10.1016/j.jorganchem.2022.122397] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
6
|
Oh Y, Yun W, Lee S, Kim DW. Kinetics and Quantum Chemical Analysis of Intramolecular S
N
2 Reactions by Using Metal Salts and Promoted by Crown Ethers: Contact Ion Pair vs. Separated Nucleophile Mechanism. ChemistrySelect 2022. [DOI: 10.1002/slct.202104431] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Young‐Ho Oh
- Department of Applied Chemistry Kyung Hee University 1732, Deogyeong-daero, Giheung-gu Yongin-si Gyeonggi-do 17104, Republic of Korea
| | - Wonhyuk Yun
- Department of Chemistry and Chemical Engineering Inha University 100 Inha-ro, Nam-gu Incheon 402-751, Republic of Korea
| | - Sungyul Lee
- Department of Applied Chemistry Kyung Hee University 1732, Deogyeong-daero, Giheung-gu Yongin-si Gyeonggi-do 17104, Republic of Korea
| | - Dong Wook Kim
- Department of Chemistry and Chemical Engineering Inha University 100 Inha-ro, Nam-gu Incheon 402-751, Republic of Korea
| |
Collapse
|
7
|
Li X, Yongcai W, Lijuan S, Zhang Y. Catalytic Halogen‐Exchange Fluorination of 4‐Chlorobenzaldehyde to 4‐Fluorobenzaldehyde, a Greener Process. ASIAN J ORG CHEM 2022. [DOI: 10.1002/ajoc.202100732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Xiukai Li
- Institute of Bioengineering and Bioimaging 31 Biopolis Way The Nanos, Singapore 138669 Singapore
| | - Wu Yongcai
- Wanlong Chemicals 212332 Zhenjiang P.R.China
| | - Shi Lijuan
- Wanlong Chemicals 212332 Zhenjiang P.R.China
| | - Yugen Zhang
- Institute of Bioengineering and Bioimaging 31 Biopolis Way The Nanos, Singapore 138669 Singapore
| |
Collapse
|
8
|
Catalytic cycle and off-cycle steps in the palladium-catalyzed fluorination of aryl bromide with biaryl monophosphine ligands: Theoretical free energy profile. MOLECULAR CATALYSIS 2021. [DOI: 10.1016/j.mcat.2021.111540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
9
|
Pliego JR. The role of intermolecular forces in ionic reactions: the solvent effect, ion-pairing, aggregates and structured environment. Org Biomol Chem 2021; 19:1900-1914. [PMID: 33554992 DOI: 10.1039/d0ob02413a] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
The environment enclosing an ionic species has a critical effect on its reactivity. In a more general sense, medium effects are not limited to the solvent, but involve the counter ion effect (ion pairing), formation of larger aggregates and structured environment as provided by the host in the case of host-guest complexes. In this review, a general view of the medium effect on anion-molecule reactions is presented. Nucleophilic substitution reactions of aliphatic (SN2) and aromatic (SNAr) systems, as well as elimination reactions (E2), are the focus of the discussion. In particular, nucleophilic fluorination with KF, CsF and tetraalkylammonium fluoride was used as the main model, because of the importance of this kind of reaction and the recent advances in the study of these systems. The solvent effect, ion pairing, formation of aggregates and formation of complexes with crown ethers, cryptands and calixarenes are discussed. For a deeper insight into the medium effect, many results of reliable theoretical calculations in close agreement with experiments were chosen as examples.
Collapse
Affiliation(s)
- Josefredo R Pliego
- Departamento de Ciências Naturais, Universidade Federal de São João del-Rei, 36301-160, São João del-Rei, MG, Brazil.
| |
Collapse
|
10
|
Micro-solvation and counter ion effects on ionic reactions: Activation of potassium fluoride with 18-crown-6 and tert-butanol in aprotic solvents. J Mol Liq 2020. [DOI: 10.1016/j.molliq.2020.114211] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
11
|
Silva SL, Valle MS, Pliego JR. Nucleophilic Fluorination with KF Catalyzed by 18-Crown-6 and Bulky Diols: A Theoretical and Experimental Study. J Org Chem 2020; 85:15457-15465. [PMID: 33227195 DOI: 10.1021/acs.joc.0c02229] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The activation of potassium fluoride for nucleophilic fluorination of alkyl halides is an important challenge because of the high lattice energy of this salt and its low solubility in many polar aprotic solvents. Crown ethers have been used for increasing the solubilization of KF during several decades. Nevertheless, these macrocycles are not enough to produce a high reaction rate. In this work, theoretical methods were used for designing a synergic combination of bulky diols with crown ethers able to accelerate this kind of reaction. The calculations have predicted that the bulky diol 1,4-Bis(2-hydroxy-2-propyl)benzene, which has distant hydroxyl groups, is able to catalyze nucleophilic fluorination in combination with 18-crown-6 via two hydrogen bonds to the SN2 transition state. Experimental studies following the theoretical predictions have confirmed the catalytic effect and the estimated kinetic data point out that the bulky diol at 1 mol L-1 in combination with 18-crown-6 is able to produce an 18-fold increase in the reaction rate in relation to crown ether catalysis only. The reaction produces 46% yield of fluorination after 24 h at moderate temperature of 82 °C, with minimal formation of the side elimination product. Thus, this work presents an improved method for fluorination with KF salt.
Collapse
Affiliation(s)
- Samuel L Silva
- Departamento de Ciências Naturais, Universidade Federal de Säo Joäo del-Rei, Säo Joäo del-Rei, 36301-160 MG, Brazil
| | - Marcelo S Valle
- Departamento de Ciências Naturais, Universidade Federal de Säo Joäo del-Rei, Säo Joäo del-Rei, 36301-160 MG, Brazil
| | - Josefredo R Pliego
- Departamento de Ciências Naturais, Universidade Federal de Säo Joäo del-Rei, Säo Joäo del-Rei, 36301-160 MG, Brazil
| |
Collapse
|
12
|
Pliego JR. Theoretical free energy profile and benchmarking of functionals for amino-thiourea organocatalyzed nitro-Michael addition reaction. Phys Chem Chem Phys 2020; 22:11529-11536. [PMID: 32393952 DOI: 10.1039/d0cp00481b] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Amino-thiourea organocatalysis is an important catalytic process for enantioselective conjugate addition reactions. The interaction of the reactants with the catalyst has a substantial effect of dispersion forces and is a challenge for a reliable description when applying density functional theory. In this report, the classical addition of acetylacetone to β-nitro-styrene catalyzed by Takemoto's catalyst in toluene was studied using the PBE functional for geometry optimization and the DLPNO-CCSD(T) benchmark method for single point energy. The complete free energy profile calculated for the reaction was able to explain all experimental observations, including the fact that the carbon-carbon bond formation step is rate-determining. The overall barrier was calculated to be 22.8 kcal mol-1 (experimental value approximately 20 kcal mol-1), and the enantiomeric excess was calculated to be 88% (experimental value in the range of 84 to 92%). Some functionals were tested for single point energy. The hybrid B3LYP presented a high mean absolute deviation (MAD) from the DLPNO-CCSD(T) benchmark method by approximately 20 kcal mol-1. The inclusion of empirical dispersion correction in the B3LYP method decreased the MAD to 6 kcal mol-1. Even the double-hybrid mPW2-PLYP and B2GP-PLYP methods had MAD values of approximately 5 kcal mol-1. The inclusion of the dispersion correction decreased the MAD to 3.6 kcal mol-1. M06-2X and ωB97X-D3 were the most accurate among the tested functionals, with MADs of 2.5 kcal mol-1 and 1.8 kcal mol-1, respectively. Additivity approximation of the correlation energy was also tested and presented a MAD of only 0.6 kcal mol-1.
Collapse
Affiliation(s)
- Josefredo R Pliego
- Departamento de Ciências Naturais, Universidade Federal de São João del-Rei, 36301-160, São João del-Rei, MG, Brazil.
| |
Collapse
|
13
|
Dalessandro EV, Pliego JR. Reactivity and stability of ion pairs, dimers and tetramers versus solvent polarity: SNAr fluorination of 2-bromobenzonitrile with tetramethylammonium fluoride. Theor Chem Acc 2020. [DOI: 10.1007/s00214-019-2530-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
14
|
Pliego JR. Free Energy Profile of a Model Palladium Catalyzed Fluorination of Aryl Bromide with Cesium Fluoride. J Phys Chem A 2019; 123:9850-9856. [DOI: 10.1021/acs.jpca.9b08988] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Josefredo R. Pliego
- Departamento de Ciências Naturais, Universidade Federal de São João del-Rei, São João del-Rei, 36301-160 MG, Brazil
| |
Collapse
|
15
|
Synthesis of Conjugated Polymers Containing Diketopyrrolopyrrole (DPP) Building Block and the Photophysical Study. CHINESE JOURNAL OF POLYMER SCIENCE 2019. [DOI: 10.1007/s10118-019-2248-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
16
|
Nogueira IC, Pliego JR. Counter‐ion and solvent effects in the C‐ and O‐alkylation of the phenoxide ion with allyl chloride. J PHYS ORG CHEM 2019. [DOI: 10.1002/poc.3947] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Isac C. Nogueira
- Departamento de Ciências NaturaisUniversidade Federal de São João del‐Rei São João del‐Rei MG Brazil
| | - Josefredo R. Pliego
- Departamento de Ciências NaturaisUniversidade Federal de São João del‐Rei São João del‐Rei MG Brazil
| |
Collapse
|
17
|
Fluorination of benzene with disubstituted N-fluoropyridinium salts in acetonitrile solution: a DFT study. Theor Chem Acc 2019. [DOI: 10.1007/s00214-019-2417-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|